三角函数值域求解归纳
- 格式:doc
- 大小:139.00 KB
- 文档页数:4
完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。
2)终边与角α相同的角可写成α+k·360°(k∈Z)。
3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。
弧度与角度可以互相转换。
2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。
3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。
注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。
和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。
二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。
2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。
三角函数值域的常见求法
函数值域的求法:
1、配方法:转化为二次函数,利用二次函数的特征来求值。
2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围。
3、换元法:通过变量代换转化为能求值域的函数,化归思想。
4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域。
5、基本不等式法:利用平均值不等式公式来求值域。
6、单调性法:函数为单调函数,可根据函数的单调性求值域。
7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。
此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。
例1 :求函数y sinx的值域。
cosx 2结合图形可知,此函数的值域是[』3,』3]。
33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。
高中数学三角函数公式归纳高中数学三角函数公式归纳三角函数是高中数学中的重要内容,其公式是学习三角函数的基础。
在高中数学中,我们主要学习了正弦函数、余弦函数、正切函数以及其反函数。
这些函数都有一些常用的公式,下面我将对这些公式进行归纳整理。
1. 正弦函数的公式:(1)周期性: sin(x+2πk) = sin x,其中 k∈Z(2)奇偶性: sin(-x) = - sin x(3)值域范围: -1 ≤ sin x ≤ 1(4)正弦函数的平方等于余弦函数的平方与1的差值: sin²x + cos²x = 12. 余弦函数的公式:(1)周期性: cos(x+2πk) = cos x,其中 k∈Z(2)奇偶性: cos(-x) = cos x(3)值域范围: -1 ≤ cos x ≤ 1(4)余弦函数的平方等于正弦函数的平方与1的差值: sin²x + cos²x = 13. 正切函数的公式:(1)周期性: tan(x+πk) = tan x,其中 k∈Z(2)奇偶性:tan(-x) = - tan x(3)值域范围: -∞ < tan x < ∞4. 反正弦函数的反函数公式:(1)正弦函数的反函数: y = sin^(-1)(x) => x = sin(y)(2)值域范围: - π/2 ≤ y ≤ π/2(3)对称性: sin^(-1)(-x) = - sin^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/25. 反余弦函数的反函数公式:(1)余弦函数的反函数: y = cos^(-1)(x) => x = cos(y)(2)值域范围: 0 ≤ y ≤ π(3)对称性: cos^(-1)(-x) = π - cos^(-1)(x)(4)角度关系:sin^(-1)(x) + cos^(-1)(x) = π/26. 反正切函数的反函数公式:(1)正切函数的反函数: y = tan^(-1)(x) => x = tan(y)(2)值域范围: -π/2 < y < π/2以上是常用的三角函数公式,对于学习三角函数非常重要。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。
三角函数的图像与性质一、题型全归纳题型一 三角函数的定义域和值域【题型要点】1.三角函数定义域的求法(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); 形如y =a sin x +b cos x +c ,可通过引入辅助角φ⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2,将其转化为y =a 2+b 2sin(x +φ)+c .(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); 令t =sin x 或t =cos x ,进而将三角函数转化为关于t 的函数.形如y =a sin 2x +b sin x +c ,可设t =sin x ,将其转化为二次函数y =at 2+bt +c (t ∈[-1,1]);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).形如y =a sin x cos x +b (sin x ±cos x )+c ,可设t =sin x ±cos x ,则t 2=1±2sin x cosx ,即sin x cos x =±12(t 2-1),将其转化为二次函数y =±12a (t 2-1)+bt +c (t ∈[-2,2]).1.(2017·成都调研)函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A.2- 3 B.0 C.-1D.-1-32.函数y =-2sin x -1,x ∈⎣⎡⎭⎫76π,136π的值域是( )A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1] 3.(2016·全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为( )A.4 B.5C.6D.74.(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( )A.65B.1C.35D.155.函数y =sin x -cos x +sin x cos x 的值域为________..6.已知函数f (x )=(sin x +cos x )2+cos 2x .求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最7.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π4,x ∈⎝ ⎛⎭⎪⎫0,π6的值域是________..8当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的值域为________.9. .已知函数f (x )=3cos (2x -π4)在[0,π2]上的最大值为M ,最小值为m ,则M+m 等于( ).A.0B.3+3√22C.3-3√22D.3210. 函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1 D.⎣⎡⎦⎤12,1 11. 设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 12.当函数取得最大值时,的值是.13. 已知,则函数的值域是_________________ 14.(2020·长沙质检)函数y =sin x -cos x +sin x cos x 的值域为________. 15..求函数y =-tan 2x +4tan x +1,x ∈⎣⎡⎦⎤-π4,π4的值域. 题型二 三角函数的单调性类型一 求三角函数的单调区间【题型要点已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图象利用y =sin x 的单调性求解;(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.1.函数f (x )=4sin ⎝⎛⎭⎫π3-2x 的递减区间是 2函数f (x )=sin ⎝⎛⎭⎫-2x +π3的递减区间为 . 3.函数f (x )=tan ⎝⎛⎭⎫2x +π3的递增区间是 . 4.y =|cos x |的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[0,π]C.⎣⎢⎡⎦⎥⎤π,3π2 D.⎣⎢⎡⎦⎥⎤3π2,2π5.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________.()R x x x y ∈-=sin 3cos 2x tan _______x R ∈sin cos sin cos y x x x x =++6.2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛2,4ππ上单调递增的是( )A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |7..已知π3为函数f (x )=sin(2x +φ)⎪⎭⎫ ⎝⎛<<20πϕ的零点,则函数f (x )的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-122,1252ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡++1272,122ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12,125ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++127,12ππππ 类型二 根据单调性求参数【题型要点】已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.1.若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4B .π2 C.3π4D .π2.若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.3.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是________.4.. 已知ω>0,函数f (x )=12cos ωx -32sin(π-ωx )在⎝ ⎛⎭⎪⎫π3,π2上单调递增,则ω的取值范围是( )A.[2,6]B.(2,6)C.⎣⎢⎡⎦⎥⎤2,103D.⎝ ⎛⎭⎪⎫2,103 5..(2012新课标)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A .]45,21[B .]43,21[C .]21,0(D .]2,0(6.若函数f (x )=sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡2,3ππ上单调递减,则ω的取值范围是________类型一 三角函数的周期性【题型要点】(1)公式法:函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T =π|ω|;(2)图象法:利用三角函数图象的特征求周期. (3)函数y =|sin x |,y =|cos x |,y =|tan x |的周期为π,函数y =sin|x |,不是周期函数,y =tan |x |不是周期函数.2.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.1.(2020·南开区模拟)函数f (x )=tan x 1+tan 2x的最小正周期为( )A.π4 B.π2 C .π D .2π2.(2020·云南保山模拟)在函数:①y =cos|2x |,①y =|cos x |,①y =cos ⎪⎭⎫⎝⎛+62πx ,①y =tan ⎪⎭⎫ ⎝⎛-42πx 中,最小正周期为π的所有函数的序号为( )A .①①①B .①①①C .①①D .①①3.(2017·全国Ⅱ卷)函数f (x )=sin ⎝⎛⎭⎫2x +π3的最小正周期为( )A.4π B.2π C.πD.π24.函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π 5.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( )A .5 B .10 C .15 D .20 6.函数y =3tan(ωx +π6)的最小正周期是π2,则ω=____.类型二 三角函数的奇偶性1.奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.2.函数具有奇偶性的充要条件函数y =A sin(ωx +φ)(x ①R )是奇函数①φ=k π(k ①Z );函数y =A sin(ωx +φ)(x ①R )是偶函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是奇函数①φ=k π+π2(k ①Z );函数y =A cos(ωx +φ)(x ①R )是偶函数①φ=k π(k ①Z ). 【例3】已知函数f (x )=3sin(2x -π3+φ),φ①(0,π).1若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________. 2.若函数f (x )=sin(x +φ)+cos(x +φ)⎝⎛⎭⎫|φ|<π2为偶函数,则φ=__________. 3.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝ ⎛⎭⎪⎫π4+x =f ⎝ ⎛⎭⎪⎫π4-x ,则f (x )的解析式可以是()A .f (x )=cos x B .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π2C .f (x )=sin ⎝ ⎛⎭⎪⎫4x +π2 D .f (x )=cos6x4.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为 .5设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=()A.-π6 B.π6C.-π3 D.π36(2020·北京中关村中学月考)下列函数中,对任意的x ①R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( )A .f (x )=sin x B .f (x )=sin x cos x C .f (x )=cos x D .f (x )=cos 2x -sin 2x7.若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________类型三 三角函数的对称性【题型要点】(1)对于函数f (x )=A sin(ωx +φ),其图象的对称轴一定经过函数图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数图象的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.(2)函数图象的对称性与周期T 之间有如下结论:①若函数图象相邻的两条对称轴分别为x =a 与x =b ,则最小正周期T =2|b -a |;①若函数图象相邻的两个对称中心分别为(a ,0),(b ,0),则最小正周期T =2|b -a |;①若函数图象相邻的对称中心与对称轴分别为(a ,0)与x =b ,则最小正周期T =4|b -a |.1.已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称 D.关于直线x =π6对称2.若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是()A.2 B.4 C.6D.83..如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0对称,那么|φ|的最小值为( )A.π6 B.π4 C.π3 D.π2 4函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________. 5.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称C .关于直线x =π3对称 D .关于直线x =5π3对称 6. 若函数y =cos(ωx +π6)(ω∈N *)的图象的一个对称中心是(π6,0),则ω的最小值为( )A.1 B .2C.4D .87.(2020·广东七校联考)已知函数y =sin(2x +φ)在x =π6处取得最大值,则函数y =cos(2x +φ)的图象( )A .关于点⎪⎭⎫⎝⎛0,6π对称 B .关于点⎪⎭⎫⎝⎛0,3π对称C .关于直线x =π6对称 D .关于直线x =π3对称 8.(2020·辽宁辽阳一模)已知偶函数f (x )=2sin ⎝⎛⎭⎫ωx +φ-π6⎝⎛⎭⎫ω>0,π2<φ<π的图象的相邻两条对称轴间的距离为π2,则⎪⎭⎫⎝⎛83πf =( )A.22 B .- 2 C .- 3 D.2三角函数中ω值的求法已知函数f (x )=cos ⎪⎭⎫⎝⎛+3πωx (ω>0)的一条对称轴为x =π3,一个对称中心为点⎪⎭⎫⎝⎛0,12π,则ω有( ) A .最小值2B .最大值2C .最小值1D .最大值1【例4】已知函数f (x )=2sin ωx 在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值为-2,则ω的取值范围是________. 【例5】已知f (x )=sin(ωx +π3)(ω>0),⎪⎭⎫ ⎝⎛6πf =⎪⎭⎫ ⎝⎛3πf ,且f (x )在区间⎪⎭⎫⎝⎛3,6ππ内有最小值无最大值,则ω=________.练习题3.(2020·河北衡水第十三中学质检(四))同时满足f (x +π)=f (x )与⎪⎭⎫ ⎝⎛+x f 4π=⎪⎭⎫⎝⎛-x f 4π的函数f (x )的解析式可以是( )A .f (x )=cos 2xB .f (x )=tan xC .f (x )=sin xD .f (x )=sin 2x4.(2020·河南六市联考)已知函数f (x )=2sin ⎪⎭⎫⎝⎛+6πωx (ω>0)的图象与函数g (x )=cos(2x +φ)⎪⎭⎫ ⎝⎛<2πϕ的图象的对称中心完全相同,则φ为( )A.π6 B .-π6C.π3D .-π35.(2020·河南中原名校联盟联考)已知函数f (x )=4sin(ωx +φ)(ω>0).在同一周期内,当x =π6时取最大值,当x =-π3时取最小值,则φ的值可能为( )A.π12B .π3C.13π6 D .7π66.已知函数f (x )=tan2x ,则下列说法不正确的是( )A .y =f (x )的最小正周期是πB .y =f (x )在⎪⎭⎫ ⎝⎛-4,4ππ上单调递增 C .y =f (x )是奇函数D .y =f (x )的对称中心是⎪⎭⎫⎝⎛0,4πk (k ①Z ) 7.(2020·福建六校联考)若函数f (x )=2sin(ωx +φ)对任意x 都有⎪⎭⎫⎝⎛+x f 3π=f (-x ),则⎪⎭⎫⎝⎛6πf =( ) A .2或0 B .0C .-2或0D .-2或25. 已知函数f (x )=cos(x +φ)⎪⎭⎫⎝⎛<<20πϕ,⎪⎭⎫ ⎝⎛+x f 4π是奇函数,则( )A .f (x )在⎪⎭⎫⎝⎛ππ,4上单调递减 B .f (x )在⎪⎭⎫ ⎝⎛4,0π上单调递减C .f (x )在⎪⎭⎫ ⎝⎛ππ,4上单调递增D .f (x )在⎪⎭⎫⎝⎛4,0π上单调递增 9.(2020·衡水联考)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -13在区间(0,π)内的所有零点之和为( )A.π6 B.π3 C.7π6 D.4π3 10.函数f (x )=sin ⎪⎭⎫⎝⎛+-32πx 的单调递减区间为________. 11.已知函数f (x )=2sin(ωx -π6)+1(x ①R )的图象的一条对称轴为x =π,其中ω为常数,且ω①(1,2),则函数f (x )的最小正周期为________.12.已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πωx 的图象的一个对称中心为⎪⎭⎫⎝⎛0,3π,其中ω为常数,且ω①(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是________.13.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=________.14.(2020·江赣十四校第二次联考)如果圆x 2+(y -1)2=m 2至少覆盖函数f (x )=2sin 2⎪⎭⎫⎝⎛+125ππx m- 3 cos⎪⎭⎫⎝⎛+32ππx m(m >0)的一个最大值点和一个最小值点,则m 的取值范围是________. 15.(2020·赣州摸底)已知函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +12,ω>0,x ①R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则⎪⎭⎫⎝⎛43πf =________,函数f (x )的单调递增区间为________. 三、解答题 1.已知函数f (x )=(sin x +cos x )2+2cos 2x -2. (1)求f (x )的单调递增区间;(2)当x ①⎥⎦⎤⎢⎣⎡43,4ππ时,求函数f (x )的最大值和最小值. 2.已知函数f (x )=4sin(x -π3)cos x + 3.(1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在[0,π2]上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.3.已知函数f (x )=2sin ⎪⎭⎫⎝⎛-4πωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎥⎦⎤⎢⎣⎡2,0π上的单调性. 4.已知函数f (x )=2sin 2⎪⎭⎫⎝⎛+x 4π-3cos2x -1,x ①R . (1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎪⎭⎫⎝⎛-0,6π对称,且t ①(0,π),求t 的值; (3)当x ①⎥⎦⎤⎢⎣⎡2,4ππ时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围. 函数y =A sin(ωx +φ)18.函数y =A sin(ωx +φ)的有关概念19用五点法画函数y =A sin(ωx +φ)一个周期内的简图用五点法画函数y =A sin(ωx +φ)(A >0,ω>0)一个周期内的简图时,要找五个关键点,如下表所示:用“五点法”作函数y =A sin(ωx +φ)的简图,精髄是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象,其中相邻两点的横向距离均为T4.20.由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种方法联系:两种变换方法都是针对x 而言的,即x 本身加减多少,而不是ωx 加减多少.区别:先平移变换(左右平移)再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换(左右平移),平移的量是⎪⎪⎪⎪φω个单位题型一 函数y =A sin(ωx +φ)的图象及变换【题型要点】(1)y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标. (2)由y =sin ωx 到y =sin(ωx +φ)的变换:向左平移φω(ω>0,φ>0)个单位长度而非φ个单位长度.(3)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.[记结论]1.函数y =A sin(ωx +φ)+k 图象平移的规律:“左加右减,上加下减”.2.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.题型一 函数y =A sin(ωx +φ)的图象及变换1.(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12B .sin ⎝⎛⎭⎫x 2+π12C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 2.(2022·天津二中模拟)将函数y =sin 2x 的图象向左平移φ⎝⎛⎭⎫0≤φ<π2个单位长度后,得到函数y =cos ⎝⎛⎭⎫2x +π6的图象,则φ等于( )A.π12B.π6C.π3D.5π33.要得到函数y =cos ⎝⎛⎭⎫2x -π6的图象,可以把函数y =sin ⎝⎛⎭⎫2x +π6的图象( ) A .向右平移π6个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向左平移π12个单位长度4(2022·开封模拟)设ω>0,将函数y =sin ⎝⎛⎭⎫ωx +π6的图象向右平移π6个单位长度后,所得图象与原图象重合,则ω的最小值为( )A .3 B .6 C .9 D .125.将函数的图像沿轴向左平移个单位后,得到一个偶函数的图像,则的一个可能取值为 A .B .C .0D . 6.将函数f (x )=cos 2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于原点对称,则φ的一个取值为________.(答案不唯一)7.设ω>0,函数y=s in(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是8.若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于y 轴对称,则ϕ的最小值是 若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原点轴对称,则ϕ的最小值是()sin 2y x ϕ=+x 8πϕ34π4π4π-若将函数()sin 2cos 2f x x x =+图象向右平移ϕ(0ϕ>)个单位,所得图象关于原函数图像重合,则ϕ的最小值是题型二 求函数y =A sin(ωx +φ)的解析式【题型要点】确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .“)即图象上升时与x 轴的交点)为ωx +φ=0;“第二零点”⎪⎭⎫⎝⎛-0,ωϕπ(即图象下降时与x 轴的交点)为ωx +φ=π;(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间还是在下降区间)或把图象的最高点或最低点代入;①五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(第一零点”),(0-ωϕ即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(⎪⎭⎫⎝⎛-0,ωϕπ即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”(即图象上升时与x 轴的交点)为ωx +φ=2π.【例1】如图,函数f (x )=A sin(2x +φ)(A >0,|φ|<π2)的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin(2x -π3)B .f (x )=2sin(2x +π3)C .f (x )=2sin(2x +π6)B . D .f (x )=2sin(2x -π6)【例2】 函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0,0<φ<π2)的部分图象如图所示,则f (-π3)=________.3.知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的表达式为( )A .f (x )=sin ⎝⎛⎭⎫2x +π6B .f (x )=sin ⎝⎛⎭⎫2x -π6C .f (x )=sin ⎝⎛⎭⎫x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3 4.设函数)52sin(2)(ππ+=x x f ,若对任意x ∈R ,都有,f (x 1 )≤f (x )≤f (x 2 )成立,则|x 1—x 2|的最小值为 ( )5.已知函数)sin(2θω+=x y 为偶函数0(<θ<π),其图象与直线y =2的某两个交点横坐标为1x ,2x ,||12x x -的最小值为π,则( ) A.2=ω,2π=θ B.21=ω,2π=θ C.21=ω,4π=θ D.2=ω,4π=θ 6.已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是7.已知函数)0(tan >=w wx y 的图像与直线1y =的交点间的最小距离是3π,则w =______。
三角函数最值问题的几种常见类型
三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。
其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。
题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。
掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。
1.y=asinx+bcosx 型的函数
特点是含有正余弦函数,并且是一次式。
解决此类问题的指导思想是把正、余弦函数转
化为只有一种三角函数。
应用课本中现成的公式即可:φ),其中tan b a φ= 例1已知函数f (x )=2cos x sin(x +3
π)-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;
(2)求f (x )的最小值及取得最小值时相应的x 的值;
(3)若当x ∈[
12π,12
7π]时,f (x )的反函数为f -1(x ),求f --1(1)的值. 解:(1)f (x )=2cos x sin(x +3
π)-3sin 2x +sin x cos x =2cos x (sin x cos 3π+cos x sin 3
π)-3sin 2x +sin x cos x =2sin x cos x +3cos2x =2sin(2x +3
π) ∴f (x )的最小正周期T =π
(2)当2x +3π=2k π-2
π,即x =k π-125π (k ∈Z )时,f (x )取得最小值-2. (3)令2sin(2x +3
π)=1,又x ∈[27,2ππ], ∴2x +3π∈[3π,23π],∴2x +3
π=65π,则 x =4π,故f --1(1)= 4π. 2.y=asin 2x+bsinxcosx+cos 2x 型的函数。
特点是含有sinx, cosx 的二次式,处理方式是降幂,再化为型1的形式来解。
例2.求y=sin 2x+2sinxcosx+3cos 2x 的最小值,并求出y 取最小值时的x 的集合。
解:y=sin 2x+2sinxcosx+3cos 2x=(sin 2x+cos 2x)+sin2x+2cos 2x=1+sin2x+1+cos2x
sin(2x+
4π) 当sin(2x+4
π)=-1时,y 取最小值
,此时x 的集合{x|x=k π-38π, k ∈Z}. 3.y=asin 2x+bcosx+c 型的函数
特点是含有sinx, cosx ,并且其中一个是二次,处理方式是应用sin 2x+cos 2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。
例3 是否存在实数a ,使得函数y =sin 2x +a ·cos x +
85a -23在闭区间[0,2
π]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由. 22
2max 2max 5351.:1cos cos (cos ).8224820,0cos 1.2531,2,cos 1,1282
202(),13
5101,02,cos ,122482
340().2
0,0,cos 0,2a a y x a x a x a x x a a x y a a a a a a a x y a a a a a x y π=-++-=--++-≤≤
≤≤>>==+-=⇒=<≤≤≤≤==+-=⇒==-<<<=解当时若时即则当时舍去若即则当时或舍去若即则当时max 51121()825
a a =-=⇒=>舍去 综合上述知,存在2
3=a 符合题设 4.y=sin cos a x c b x d
++型的函数 特点是一个分式,分子、分母分别会有正、余弦的一次式。
几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。
例4.求函数y=2sin 2cos x x
--的最大值和最小值。
解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ
,
∵ |sin(x+φ)|≤1,
≤1,解出y 的范围即可。
解法2:2sin 2cos x x
--表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。
解法3:应用万能公式设t=tg(2
x ) 则y=2222231t t t -++,即(2-3y)t 2-2t+2-y=0 根据Δ≥0解出y 的最值即可。
5.y=sinxcos2x 型的函数。
它的特点是关于sinx ,cosx 的三次式(cos2x 是cosx 的二次式)。
因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。
但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。
例6如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平
方成反比,即I =k ·
2
sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?
解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , R R h R k I R
k R k I R
k R k r k I 22tan ,33sin ,39
2)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 注:本题的角和函数很难统一,并且还会出现次数太高的问题。
6.含有sinx 与cosx 的和与积型的函数式。
其特点是含有或经过化简整理后出现sinx+cosx与sinxcosx的式子,处理方式是应用(sinx+cosx)2=1+2sinxcosx进行转化,变成二次函数的问题。
例6.求y=2sinxcosx+sinx+cosx的最大值。
解:令sinx+cosx=t,(- t),则1+2sinxcosx=t2,所以2sinxcosx=t2-1,
所以y=t2-1+t=(t+1
2
)2-
5
4
.
根据二次函数的图象,解出y的最大值是。
相信通过这一归纳整理,大家对有
关三角函数最值的问题就不会陌生了。
并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题。
望同学们在做有关的问题时结合上面的知识。