平面图形面积计算练习题用
- 格式:doc
- 大小:35.50 KB
- 文档页数:7
平面图形面积练习题一、矩形1. 已知一个矩形的长为7米,宽为5米,求其面积。
答:这个矩形的面积可以通过长乘以宽来计算,即7米 × 5米 = 35平方米。
二、正方形2. 一个正方形的边长为9米,求其面积。
答:由于正方形的四条边长度相等,可以直接将边长乘以边长来计算面积,即9米 × 9米 = 81平方米。
三、三角形3. 已知一个三角形的底边长为12米,高为8米,求其面积。
答:三角形的面积可以通过底边乘以高再除以2来计算,即(12米 ×8米) ÷ 2 = 48平方米。
四、梯形4. 已知一个梯形的上底长为6米,下底长为10米,高为4米,求其面积。
答:梯形的面积可以通过上底与下底的和再乘以高再除以2来计算,即[(6米 + 10米) × 4米] ÷ 2 = 32平方米。
五、圆形5. 已知一个圆形的半径为5米,求其面积。
答:圆形的面积可以通过半径的平方再乘以π(取近似值3.14)来计算,即5米 × 5米× 3.14 ≈ 78.5平方米。
六、椭圆6. 已知一个椭圆的长轴长为6米,短轴长为4米,求其面积。
答:椭圆的面积可以通过长轴与短轴的乘积再乘以π来计算,即(6米 × 4米) × 3.14 ≈ 75.36平方米。
总结:在计算平面图形的面积时,可以根据图形的不同形状应用相应的公式来求解。
对于矩形和正方形,可以直接进行边长的计算;对于三角形和梯形,需要使用底边和高来计算;对于圆形和椭圆,需要使用半径或者长轴、短轴来计算。
在计算过程中,需要注意单位的统一,并且按照指定的格式进行结果的展示。
以上就是平面图形面积的练习题。
通过这些练习,我们可以加深对不同图形面积计算方法的理解,提升解决实际问题的能力。
希望这些练习题对你有所帮助!。
平面图形的面积计算练习题1、 如图,甲、乙两点分别为长方形宽的中点,那么图中面积相等的所有三角形是:(提示:等积变换,①②③相等) 2、如图,每个小方格的面积为1,那么△ABC 的面积是多少?(提示:采用补的方法比割容易,也可以用毕克定理。
答案:11.5)3、下图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积。
(提示:用毕克定理或割补成大平行四边形的方法。
答案:14)4、 下图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形。
(答案:12)5、正方形ABCD 的边长为8cm ,△BCF 的面积比DEF 的面积多16cm 2,求DE 的长度。
(提示:找到公共部分,用差不变原则,得到△ABE 的面积。
答案:4)② 甲③ ④⑤ ABC A B CDEF ①乙6、如图,已知长方形ABCD的长BC=12cm,宽DC=8cm,并且BF=CG,三角形EFC的面积是32平方厘米,那么线段HG的长度是多少厘米?(提示:连结AH,BH,找等积变换,得到FH的长。
答案:4)7、如图,△ABC中,D是BC的中点,且AD=3DE,那么△ABC的面积是△CDE的倍?(提示:由线段比得到面积比。
答案:6)8、如图,试求阴影部分的两个三角形的面积之和是。
(答案:15)第8题第9题9、如图,大正六边形的面积是24平方厘米,其中放了三个一样的小正六边形,那么阴影部分的面积是平方厘米。
(提示:把三个小正六边形分别切割成三个菱形。
答案:18)10、如图,正方形ABCD的边长为12,P是AB边上任意一点,M、N、I、H分别是BC、AD的三等分点,E、F、G分别是边CD的四等分点,求图中阴影部分的面积。
(提示:切割图形。
答案:60)AB CDFEGH11、如图,两条直线把长方形分成红、黄、绿、蓝四部分,红色部分三角形面积为4,黄色部分三角形为6。
试问:绿色部分四边形的面积为多少?(提示:把绿色部分分成两块,用蝴蝶模型。
平面图形的周长与面积图形计算(专项训练)-小学数学六年级下册人教版一、图形计算1.求阴影部分面积。
(单位:cm)2.求涂色部分的面积。
3.看图计算:求下图阴影部分的面积。
4.计算下边图形阴影部分的面积(单位:厘米)。
5.如图正方形的面积是40平方厘米,求阴影部分的面积。
6.求下图中阴影部分的面积。
(单位:厘米)7.求如图中阴影部分的周长。
(单位:厘米)8.求下图阴影部分的面积和周长。
9.计算下面黑色部分的面积。
10.求下图阴影部分的面积(单位:厘米)。
11.计算涂色部分的面积。
12.求下图中阴影部分的面积。
13.求阴影部分的面积。
(单位:厘米)14.求阴影部分的面积。
(单位:厘米)15.计算下图的周长和面积(单位:m)16.求阴影部分的面积。
17.计算下图的面积(单位:dm)。
18.求下图中阴影部分的面积。
19.计算下图中阴影部分的面积。
20.求阴影部分的周长和面积。
(单位:厘米)21.如果下图中的正方形的边长是4cm,求阴影部分的面积。
22.求阴影部分面积。
参考答案:1.9.42cm2【解析】【分析】根据图形的特点,可以通过平移转化为半径是2cm的圆面积减去直径是2cm的圆的面积,根据圆的面积公式:S=πr2,把数据代入公式解答。
【详解】3.14×22-3.14×(2÷2)2=3.14×4-3.14×1=12.56-3.14=9.42(cm2)2.15.44cm2【解析】【分析】根据梯形的面积公式:(上底+下底)×高÷2,上底为4cm,下底为10cm,高为4cm,代入求出梯形的面积,再利用圆的面积公式:S=2πr,求出14个圆的面积,用梯形的面积减去14个圆的面积即是阴影部分的面积。
【详解】(4+10)×4÷2-14×3.14×42=14×4÷2-14×16×3.14=56÷2-4×3.14=28-12.56=15.44(cm2)3.20.3m2【解析】【分析】根据正方形的边长计算出小圆的直径,进而算出半径,用正方形面积减去5个小圆的面积即可得到阴影部分的面积。
姓名:1、求下面图形的面积。
3、量出所需要的数据,再求图形的面积。
面积公式在生活中的运用。
1、有一块平行四边形菜地,底是240m,宽是125m,在这块地里共收油菜7.38吨。
这块菜地有多少公顷?平均每公顷收油菜多少吨?2、有一块麦田的形状是平行四边形。
它的底是250m,高是84m,共收小麦14.7吨。
这块菜地平均每公顷收小麦多少吨?3、一块玻璃的形状是一个三角形,它的底是12.5dm,高是7.8dm。
每平方米玻璃的价格是68元,买这块玻璃要用多少钱?4、小雨的书房需要用一些同样大小的平行四边形地砖铺地,每块砖的第是7dm,高是4dm,每平方米地砖的价格是0.25元,小雨带了200元钱去建材城买地砖,他最多能买多少块这样的地砖?5、一架滑翔机模型的尾翼是由两个完全相同的梯形组成的。
它的面积是多少?6、一个果园的形状是梯形。
它的上底是160米,下底是180米,高是50米。
如果每棵果树占地10平方米,这个果园共有多少棵果树?7、如图,靠墙围成一个花坛,围成花坛的篱笆长46米,求这个花坛的面积?8、有一块梯形地,上底长64米,比下底短16米,高50米。
平均每15平方米种一棵果树,这块地共种多少棵果树?基础题型三、已知周长,求平面图形的面积。
注:“已知周长,求图形的面积这一类题型”,我们先要根据“周长”,求出计算“面积”所需要的条件,再代入面积公式计算。
另外,在求计算面积所需要的条件时,列方程来求解可以降低出错率。
【例题】已知一个等边三角形的周长是15cm,高约是4.3cm。
求三角形的面积。
分析与解:等边三角形的周长是其边长的3倍,所以等边三角形的边长是:15÷3=5(cm),所以三角形的面积是:S=ah÷2=5×÷2=10.75(2cm)1、一个等腰直角三角形的两条直角边的和是8.4dm,求三角形的面积?2、一个等腰梯形的周长是34cm,一腰长度是5cm,等腰梯形的高是3cm。
平面图形面积计算练习题3(用)一.填空题1、一个三角形的底是18厘米,高是10厘米,它的面积是()。
2、一个三角形,它的面积是156平方厘米,底是4厘米,高是()厘米。
3、一个三角形,它的面积是200平方厘米,高是10厘米,底是()厘米。
4. 50公顷=()平方千米 7600平方米=()公顷85平方米=()平方厘米 9平方分米4平方厘米=()平方米5平方米8平方分米=()平方米 6.5小时=()小时()分5、一个三角形的底是60厘米,高是30厘米,那么和这个三角形等底等高的平行四边形的面积是()平方厘米。
6、一个平行四边形的面积比与它等底等高的三角形面积大48平方厘米,这个三角形的面积是()平方厘米。
7、两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底长为24厘米,高为20厘米。
每个梯形的面积是()平方厘米。
8、一块梯形菜地的面积是288平方米,它的上底是15米,下底是17米,高是()米。
9、长方形的长与宽都扩大5倍,它的周长扩大()倍,面积扩大()倍。
10、一块梯形菜地的面积是288平方米,它的上底是15米,下底是17米,高是()米。
10、一个梯形的面积是48平方米,它的高是8米,上底是4米,它的下底是()米。
11.把一个平行四边形任意分割成两个梯形,这两个梯形中()总是相等的.12.一个平行四边形,底扩大6倍,高缩小2倍,那么这个平行四边形的面积()。
13、两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底长为24厘米,高为20厘米。
每个梯形的面积是()平方厘米。
14.边长是()米的正方形的面积是1公顷,边长()的正方形面积是1平方千米。
15.一个等腰直角三角形的腰长是50分米,那么它的面积是( )平方分米.16.一个梯形的铁皮,上,下底之和是25厘米,高是22厘米,这个铁皮的面积是()17、两组对边分别平行的四边形叫做()。
18、平行四边形的两组对边分别();两组对角分别();四个内角的和是()。
五年级数学思维《平面图形面积计算》专题训练一、选择题(每小题6分,共60分)1 平行四边形的底扩大到原来的3倍,高扩大到原来的3倍,它的面积().(A)扩大到原来的3倍(B)扩大到原来的9倍(C)扩大到原来的6倍(D)不变2 一个梯形的上、下底各扩大到原来的5倍,它的面积扩大到原来的()倍.(A)5 (B)10 (C)25 (D)不一定3 如图,梯形中两个阴影部分的大小关系是().(A)①=②(B)①>②(C)①<②(D)无法比较4 一批钢管整齐地堆放在一起,最上层有5根,最下层有16根,每两层柜差1根.这批钢管共有()根.(A)120 (B)126 (C)231 (D)2525 一个梯形,高是4m,若上底和下底不变,高增加2m后,面积增加8㎡,那么原来梯形的面积是()㎡.(A)42 (B)16 (C)21 (D)326 如图,甲、乙两点分别为长方形宽的中点,那么图中面积相等的所有三角形是().(A)A、B和C (B)D和E (C)A和B (D)B和C7 如图,两个正方形的阴影部分的面积是26cm2,那么大正方形内的空白部分面积是()cm2.(A)25 (B)15 (C)12.5 (D)108 如图,平行线间的三个图形,比较它们的面积是().(A)平行四边形大(B)三角形大(C)梯形大(D)相等9 牧羊人用15段每段长2米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是()平方米.(A)100 (B)108 (C)112 (D)122 10 如图,每个小方格面积为1,那么△ABC面积为().(A)10(B)11(C)12(D)11.5二、解答题(每题12分,共60分)11 如图,正方形的一组对边中,一条边增加17cm,另一条边减少10cm,这样就变成梯形,这时梯形的下底长是上底长的4倍.问:这个梯形的面积是多少?12 如图,将一个长方形分成一个三角形和一个梯形,其中三角形的面积比梯形的面积小60cm2,问:梯形的面积是多少?13 如图,正方形ABCD的边长为4cm,△BCF的面积比△DEF的面积多2cm2,求DE的长度.14 如图,已知△ABC的面积等于梯形BCDE的面积,求BC的长.(单位:cm)15 如图,已知长方形ABCD的长BC=l2厘米,宽DC=8厘米,并且BF=CG,三角形EFC的面积是32平方厘米,那么线段HG的长度是多少厘米?。
人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷一、填空(每题3分)1. 一个平行四边形的底长8厘米,是高的2倍,它的面积是________,与它等底等高的三角形面积是________.2. 一个梯形的上底是16米,下底是24米,高30米,它的面积是________平方米。
3. 一堆钢管,最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有________根。
4. 一个直角三角形,三条边分别是10厘米、8厘米、6厘米,它的面积是________,用两个这样的三角形拼成的长方形面积是________.5. 一个三角形和一个平行四边形的底相等,面积也相等,已知三角形的高是32厘米,那么平行四边形的高是________厘米。
6. 一个平行四边形的面积是8平方分米,高是2分米,它的底是________分米。
7. 一个近似梯形的花坛,高10米,上下底之和是16米,面积是________.8. 一个三角形的面积是6平方分米,底3分米,高是________.9. 用四根硬纸条钉成一个长方形框架,将它拉成一个平行四边形后,周长________,面积________A.不变B.变大C.变小。
10. 三角形的底扩大3倍,高不变,面积会________.二、判断(每题3分)三角形面积是平行四边形的一半。
________(判断对错)两个面积相等的三角形一定可以拼成一个平行四边形。
________.(判断对错)面积相等的两个梯形,形状不一定相等。
________(判断对错)三、知识应用(每题5分)一个梯形广告牌,它的上底是8米,下底是12米,高是6米。
如果要给这个广告牌涂上油漆,按每平方米花费15元来计算,共要花多少元?张大伯靠一面墙用篱笆围成一个面积是72平方米的梯形养鸡场,至少需要多少米的篱笆?一种等腰直角三角形小旗,直角边长4分米。
现在有一块长12分米,宽6分米的长方形布料,用它最多可以剪成多少块这样的小旗?(小旗不能用边角料拼合)参考答案与试题解析人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷一、填空(每题3分)1.【答案】32平方厘米,16平方厘米【考点】平行四边形的面积三角形的周长和面积【解析】先求平行四边形的高是多少,再根据平行四边形的面积S=aℎ,三角形的面积S=aℎ÷2,据此代入数据即可求解。
七年级数学专题训练25 图形面积的计算阅读与思考计算图形的面积是平面几何中常见的基本问题之一,它包括两种主要类型: 1.常见图形面积的计算由于一些常见图形有计算面积的公式,所以,常见图形面积一般用公式来解. 2.非常规图形面积的计算非常规图形面积的计算通常转化为常见图形面积的计算,解题的关键是将非常规图形面积用常规图形面积的和或差来表示.计算图形的面积还常常用到以下知识:(1)等底等高的两个三角形面积相等.(2)等底的两个三角形面积的比等于对应高的比. (3)等高的两个三角形面积的比等于对应底的比. (4)等腰三角形底边上的高平分这个三角形的面积. (5)三角形一边上的中线平分这个三角形的面积. (6)平行四边形的对角线平分它的面积. 熟悉如下基本图形:S 3S 4S 3S 4S 1S 2S 1S 2S 1S 2S 1S 2S 1S 2S 2S 1l 2l 1例题与求解【例1】 如图,在直角△ABC 的两直角边AC ,BC 上分别作正方形ACDE 和CBFG .AF 交BC 于W ,连接GW ,若AC =14,BC =28,则S △AGW =______________.(2013年“希望杯”全国数学邀请赛试题)解题思路:△AGW 的面积可以看做△AGF 和△GWF 的面积之差.F【例2】 如图,已知△ABC 中的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF .四边形BDCE 是平行四边形,则图中阴影部分的面积为( )A .3B .4C .5D .6(2013年全国初中数学竞赛广东试题)解题思路:设△ABC 底边BC 上的高为h .本例关键是通过适当变形找出h 和DE 之间的关系.FC B【例3】 如图,平行四边形ABCD 的面积为30cm 2,E 为AD 边延长线上的一点,EB 与DC 交于F 点,已知三角形FBC 的面积比三角形DEF 的面积大9cm 2,AD =5cm ,求DE 长.(北京市“迎春杯”竞赛试题)解题思路:由面积求相关线段,是一个逆向思维的过程,解题的关键是把条件中图形面积用DE 及其它线段表示.BACFDE【例4】 如图,四边形ABCD 被AC 与DB 分成甲、乙、丙、丁4个三角形,已知BE =80 cm ,CE =60 cm ,DE =40 cm ,AE =30 cm ,问:丙、丁两个三角形面积之和是甲、乙两个三角形面积之和的多少倍?(“华罗庚杯”竞赛决赛试题)解题思路:甲、乙、丙、丁四个三角形面积可通过线段的比而建立联系,找出这种联系是解本例的突破口.丁乙丙甲E BCDA【例5】 如图,△ABC 的面积为1,D ,E 为BC 的三等分点,F ,G 为CA 的三等分点,求四边形PECF 的面积.解题思路:连CP ,设S △PFC =x ,S △PEC =y ,建立x ,y 的二元一次方程组.Q P FG ED CBA【例6】如图,E,F分别是四边形ABCD的边AB,BC的中点,DE与AF交于点P,点Q在线段DE 上,且AQ∥PC.求梯形APCQ的面积与平行四边形ABCD的面积的比值.(2013年”希望杯“数学邀请赛试题)解题思路:连接EF,DF,AC,PB,设S□ABCD=a,求得△APQ和△CPQ的面积.F DB能力训练A 级1.如图,边长为1的正方形ABCD的对角线相交于点O.过点O的直线分别交AD,BC于E,F,则阴影部分面积是______.F CB(海南省竞赛试题)2.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是_____________平方厘米.EFDCBA(“希望杯”邀请赛试题)3.如图,ABCD 是边长为a 的正方形,以AB ,BC ,CD ,DA 分别为直径画半圆,则这四个半圆弧所围成的阴影部分的面积是____________.C(安徽省中考试题)4.如图,已知AB ,CD 分别为梯形ABCD 的上底、下底,阴影部分总面积为5平方厘米,△AOB 的面积是0.625平方厘米,则梯形ABCD 的面积是_________平方厘米.C(“祖冲之杯”邀请赛试题)5.如图,长方形ABCD 中,E 是AB 的中点,F 是BC 上的一点,且CF =BC 31,则长方形ABCD 的面积是阴影部分面积的( )倍.A .2B . 3C . 4D .5F CBE6.如图,是一个长为a ,宽为b 的长方形,两个阴影图形都是一对长为c 的底边在长方形对边上的平行四边形,则长方形中未涂阴影部分的面积为( ).A .c b a ab )(+-B . c b a ab )(--C .))((c b c a --D .))((c b c a +-7.如图,线段AB =CD =10cm ,BC 和DA 是弧长与半径都相等的圆弧,曲边三角形BCD 的面积是以D 为圆心、DC 为半径的圆面积的41,则阴影部分的面积是( ). A .25π B . 100 C .50π D .200CD(“五羊杯”竞赛试题)8.如图,一个大长方形被两条线段AB 、CD 中分成四个小长方形,如果其中图形Ⅰ,Ⅱ,Ⅲ的面积分别为8,6,5,那么阴影部分的面积为( ). A .29 B .27 C .310 D .815BDA9.如图,长方形ABCD 中,E ,F 分别为AD ,BC 边上的任一点,△ABG ,△DCH 的面积分别为15和20,求阴影部分的面积.CF B(五城市联赛试题)10.如图,正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,已知正方形BEFG 的边长为4,求△DEK 的面积.KEB AD(广西壮族自治区省南宁市中考试题)B 级1.如果图中4个圆的半径都为a ,那么阴影部分的面积为_____________.(江苏省竞赛试题)2.如图,在长方形ABCD 中,E 是BC 上的一点,F 是CD 上的一点,若三角形ABE 的面积是长方形ABCD 面积的31,三角形ADF 的面积是长方形ABCD 面积的52,三角形CEF 的面积为4cm 2,那么长方形ABCD 的面积是_________cm 2.DCFE BA(北京市“迎春杯”邀请赛试题)3.如图,边长为3厘米与5厘米的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积为___________________.(“希望杯”邀请赛试题)4.如图,若正方形APHM ,BNHP ,CQHN 的面积分别为7,4,6,则阴影部分的面积是_____.CMNDQB A(“五羊杯”竞赛试题)5.如图,把等边三角形每边三等分,使其向外长出一个边长为原来的31的小等边三角形,称为一次“生长”,在得到的多边上类似“生长”,一共“生长”三次后,得到的多边形的边数=________,面积是原三角形面积的______倍.第2次生长第1次生长原图(“五羊杯”竞赛试题)6.如图,在长方形ABCD 中,AE =BG =BF =21AD =31AB =2,E ,H ,G 在同一条直线上,则阴影部分的面积等于( ).A .8B .12C .16D .20F BGCDA7.如图,边长分别为8cm 和6cm 的两个正方形,ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( ).A .48cm 2B .49cm 2C .50cm 2D .51cm 2FEB A(2013年“希望杯”邀请赛试题)8.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆经过的所有小方格的圆内部分的面积之和记为S 1,把圆周经过的所有小方格的圆外部分的面积之和记为S 2,则21S S 的整数部分是( ).A .0B .1C .2D .3(全国初中数学联赛试题)9.如图,△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( ).A .25B .30C .35D .40GFE CBDA10.已知O (0,0),A (2,2),B (1,a ),求a 为何值时,S △ABO =5?11.如图,已知正方形ABCD 的面积为1,M 为AB 的中点,求图中阴影部分的面积.CAD(湖北省武汉市竞赛试题)12.如图,△ABC中,21===FAFBECEADBDC.求的面积△的面积△ABCGHI的值.GIHEDCBFA(“华罗庚金杯”邀请赛试题)专题25 图形面积的计算例1 196 提示:×28×(28+14)-×28×28=×28×14=28×7=196.例2 D 提示:设△ABC 底边上的高为h ,则×BC ×h =24 故h====. 设△ABC 底边DE 上的高为,△BDE 底边DE 上的高为,则h =.∴=+=+)===6.例3 2cm .提示:设△ABE 的AE 边上的高为hcm ,DE 长为xcm ,则,解得DE =2.例4 54提示:2S CE S EA ==丙甲 , 2S BE S ED ==丙乙, 12S DE S BE ==丁甲,12S AE S EC ==丁乙. 例51133AECABCSS == ,1133BGFABCS S ==.设=x PECS ,=y PFCS则=3x PBCS,=3y PCAS于是133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①+②,得243x y +=(),∴16x y +=,即6=1PECF S .例6 设=a ABCD S,因为E,F 分别是AB,BC 的中点,所以a4ADEABFSS==. ∴APDBEPF SS =四边形.如图,连接EF,DF ,则a a==82AEF ADF S S ,.所以a 18=a 42EP PD =.设x AEP S=,则=4x ADP S.由APDBEPF SS =四边形得a x=4x 4-. ∴ ax=20. ∴a a4=205APDS =⨯. 连接AC ,又∵AQ ∥PC ,APQACQS S =, ∴a5ACQADQS S+=. ∴a a 3=a 2510CDQS =-.连接PB ,则a=20EBP AEP SS=. 由1=a 2ABPCDPS S+, 得a a a 3a a22101010CPQABPCDQS S S=--=--=.∴aPQ 110=3a 310CPQ CDQSDQ S==,从而PQ 1=4PD ,1a=420APQAPD S S =.于是a a 3a==201020APQCPQAPCQ S S S+=+梯形. ∴3=20APCQ ABCDS S梯形.A 级1.14 提示:POCAOES S=,14ABCD S S =阴影正方形.2. 48.3. ()22a 2π-4. 15.625. 5. B.6. C.7. B.8.C.9. 35 提示:连接EF ,EGFABGSS=,EFHDHCSS=.10. 解法一:将△DEK 的面积转化为规则图形的面积之和或差.如图,延长AE 交PK 的延长线于点H.设正方形ABCD ,正方形PKPF 的边长分别a , b.则DEKADECDGPKGFHKABCD BEFG EHPF SS S S SSSS=++----正方形正方形矩形=()()()()221111a 44b a a 4a a-4b b 4b 4-b 2222++-+--+-=222221111a 164b a 2a a 2a b 2b 2b+b 2222++---+---=16.解法二:运用等积变形转化问题,连接DB,GE,FK.则∠DBA=∠GEB=45°, ∴DB ∥GE,得GEDGEBS S=,同理GE ∥FK ,得GEKGEFS S=.∴16DEKGEDGEKGEBGEFBEFG SSSSSS =+=+==正方形.B 级1. 2212a 3a π-(或22.58a ).2. 120 提示:设AB=a ,AD=b ,CE=c ,CF=d.则BE=b-c-,DF=a-d ,c= 12b ,d= 15a ,cd=8. 3. 18.75(π≈3).4. 8.5 提示:连HD.5. 4812481提示:“生长”n 次后得到n 34⨯边形,面积为原面积的n 114293+-倍.6. B.7. B 提示:过点K 作KH ⊥AB. ∵AB=8,BE=6,∴AE=8+6=14.又∵∠KAE=∠KEA=45°, ∴KH=12AE=7. 111474922AKES AE KH =••=⨯⨯=. 8. B 提示:根据正方形的对称性,只需考虑它的14部分即可. 9. B.10. ⑴当a >1时,即B 在OA 上方时,如图. AOBCBOAODBCDA SSS S=+-梯形,∴()()11151a a 22122222=⨯⨯++⨯--⨯⨯,解得a=6.⑵当0≦a <1时,即B 在OA 于x 轴之间时,依题意,有()111221a-a 21=5222⨯⨯-⨯⨯⨯+⨯,解得a=-4(不合题意,舍去).⑶当a <0时,即B 在x 轴下方时,有()()()111122a 221a =5222+⨯-⨯-⨯⨯-⨯⨯-,解得a=-4.综上所述,当a=-4或a=6时,5ABOS =.11. 14AMD AMC SS==. ∵AMGS 为公共部分, ∴AGD CMGSS=.又因为△AMG 与△AMD 的高的高相等(以A 为顶点作高),△MCG 与△MCD 的高相等(以C 为顶点作高),∴AMG OMG AMDMCDSS MGSSMD==,即141142CMGCMG S S -=,解得:1=6CMGS.∴11=2=63S ⨯阴影. 连BG ,设ABCSS =,x DOGS=,y BGFS=.则1332233,,x y S x y S ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得12421x S y S⎧=⎪⎪⎨⎪=⎪⎩ 同理可得:121.EAHFBISSS == 又13ADCBEAS S== S ,得12532121=-=OCEH HAFIS S S S ⎛⎫= ⎪⎝⎭四形四形 .∴21011321217=--GHISS S ⎛⎫= ⎪⎝⎭ 故17GHI ABCS S =.。
平面图形面积计算课程目标:1.通过专题复习,加强对图形周长和面积计算的灵活运用。
2.培养学生观察能力,根据图形特点通过平移、割补将不规则图形转换为规则图形;熟练掌握从整体图形减局部法求不规则图形面积。
3.等积等比求面积,多角度审图,培养学生几何平面想象力。
4.等量代换、方程、整体法等数学思想与几何平面综合,激发学生思维,提升分析能力。
知识点一:巧算周长【例1】图中多边形的周长是______厘米。
【变式训练】1.求下图的周长(单位:厘米)2.如图,求阴影部分的周长。
3.如图,等边△ABC的边长是5,D,E分别是边AB,AC上的点,将△ADE沿直线DE折叠,点A落在处,且点在△ABC外部,则阴影图形的周长等于______【例2】如图,大半圆的直径6厘米,两个小半圆的周长之和是______;大半圆的周长______。
【变式训练】1.小华要从甲地到乙地,现有三种线路可供选择,小华走哪条路线最快到达乙地______(①;②;③;①②③都一样)2.如图,大圆的周长与两个小圆的周长和比较,大圆的周长______小圆周长。
3.如图是三个半圆,求阴影部分的周长.知识点二:整体法求阴影面积【例3】如图:一个三角形的三个顶点分别为三个半径为3厘米的圆的圆心,则图中阴影部分的面积是______【变式训练】1.下面四个圆的直径都是10cm,阴影部分的面积是______2.三个等圆周长均为18.84cm,则阴影部分面积为______平方厘米。
3.如图中三个圆的半径都是1厘米,三角形的三个顶点分别位于三个圆的圆心,三角形的两条直角边分别为4厘米、3厘米,阴影部分的面积和是多少平方厘米.(π取3.14)知识点三:割补法求阴影面积。
【例4】求下列图形阴影部分的面积.(单位:厘米)【变式训练】1.如图,OA、OB分别是小半圆的直径,且OA=OB=6厘米,角BOA为直角,阴影部分的面积是______平方厘米.2.图中空白部分占正方形面积的______分之______.3.如图,求阴影部分的面积是______.知识点四:整体减部分【例5】图中阴影部分的面积是______平方厘米.【变式训练】1.如图,在4×7的方格纸上画有如阴影所示的“9”字,阴影边缘是线段或圆弧,则阴影面积占纸板面积的______.2.如图中,两个正方形的边长分别为6cm和4cm,求阴影部分的面积.3.如图,在长方形ABCD中,M是CD边中点,DN是以点A为圆心的一段弧,KN是以点B为圆心的一段弧,AN=3厘米,BN=2厘米.则图中阴影部分的面积是多少平方厘米.(π取3.14)【例6】如图所示,两个相同的直角三角形部分叠在一起.求阴影部分的面积.(单位:厘米)【变式训练】1.如图正方形ABCD边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.阴影部分甲与阴影部分乙的面积差是多少平方厘米?2.两个相同的直角梯形形重叠,求阴影部分面积。
小学数学面积换算练习题面积是数学中一个重要的概念,常用于表示平面内某个图形所占的大小。
掌握面积的换算方法对小学生来说至关重要,因此本文将为大家提供一些练习题,以帮助小学生巩固和加深对面积换算的理解。
练习一:1. 小明画了一块长方形花坛,长为5米,宽为3米。
请计算花坛的面积。
练习二:2. 小红画了一个三角形,底边长为8厘米,高为6厘米。
请计算三角形的面积。
练习三:3. 小华的书桌是一个梯形,上底长为20厘米,下底长为30厘米,高为10厘米。
请计算书桌的面积。
练习四:4. 小杰的花园是一个正方形,周长为16米。
请计算花园的面积。
练习五:5. 小张想把一张圆形纸片剪成一个边长为6厘米的正方形。
请问这个圆形纸片的面积是多少?练习六:6. 小亮的房间是一个矩形,周长为18米,宽为4米。
请计算房间的面积。
练习七:7. 小丽画了一个直角梯形,上底长5厘米,下底长10厘米,高为8厘米。
请计算直角梯形的面积。
练习八:8. 小刚的花园是一个半径为6米的圆形。
请计算花园的面积。
以上就是本文为大家准备的小学数学面积换算练习题。
通过练习这些题目,相信大家对面积的换算方法有了更深入的理解。
希望大家能够多加练习,巩固所学知识。
谢谢!总结:练习一:花坛的面积为15平方米。
练习二:三角形的面积为24平方厘米。
练习三:书桌的面积为250平方厘米。
练习四:花园的面积为16平方米。
练习五:圆形纸片的面积为113.04平方厘米。
练习六:房间的面积为36平方米。
练习七:直角梯形的面积为72平方厘米。
练习八:花园的面积为113.04平方米。
一.填空题
1、一个三角形的底是18厘米,高是10厘米,它的面积是()。
2、一个三角形,它的面积是156平方厘米,底是4厘米,高是()厘米。
3、一个三角形,它的面积是200平方厘米,高是10厘米,底是()厘米。
4.50公顷=()平方千米7600平方米=()公顷
85平方米=()平方厘米9平方分米4平方厘米=()平方米
5平方米8平方分米=()平方米 6.5小时=()小时()分
5、一个三角形的底是60厘米,高是30厘米,那么和这个三角形等底等高的平行四边形的面积是()平方厘米。
6、一个平行四边形的面积比与它等底等高的三角形面积大48平方厘米,这个三角形的面积是()平方厘米。
7、两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底长为24厘米,高为20厘米。
每个梯形的面积是()平方厘米。
8、一块梯形菜地的面积是288平方米,它的上底是15米,下底是17米,高是()米。
9、长方形的长与宽都扩大5倍,它的周长扩大()倍,面积扩大()倍。
10、一块梯形菜地的面积是288平方米,它的上底是15米,下底是17米,高是()米。
10、一个梯形的面积是48平方米,它的高是8米,上底是4米,它的下底是()米。
11.把一个平行四边形任意分割成两个梯形,这两个梯形中()总是相等的.
12.一个平行四边形,底扩大6倍,高缩小2倍,那么这个平行四边形的面积()。
13、两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底长为24厘米,高为20厘米。
每个梯形的面积是()平方厘米。
14.边长是()米的正方形的面积是1公顷,边长()的正方形面积是1平方千米。
15.一个等腰直角三角形的腰长是50分米,那么它的面积是( )平方分米.
16.一个梯形的铁皮,上,下底之和是25厘米,高是22厘米,这个铁皮的面积是()
17、两组对边分别平行的四边形叫做()。
18、平行四边形的两组对边分别();两组对角分别();四个内角的和是()。
19、请把平行四边形与长方形、正方形的关系填入图中的集合圈内。
20、平行四边形的面积=()×();用字母公式表示为S=()。
21、一个四边形,它的两组对边分别平行,而且其中一个
角是直角,则这个四边形叫做(),也称为特殊的
()。
22、如图,三角形有()个,平行四边形有()个,梯形有()个。
23、在梯形里,互相平行的一组对边分别叫梯形的
()与();不平行的一组对边叫梯形的
()。
24、如图,用字母来表示,梯形的上底是(),下底是(),高是(),EF是梯形的()。
25、梯形的面积公式是S=(),当上底与下底相等时,梯形变成()形,这时面积S=();当上底等于0时,梯形变成()形,这时面积S=()。
26、梯形的上底是2.5厘米,下底是4.2厘米,高是3厘米。
求此
梯形的面积,算式是()。
二.解决问题
1.一个平行四边形和一个梯形的高都是6厘米,梯形上底与平行四边形的上底都是10厘米,梯形上底比下底多3厘米,梯形面积比平行四边形的面积少多少?
2.一块梯形地,上底是30米,下底减少10米变成一个平行四边形,它的面积就是1500平方米,原来梯形的面积是多少?
3.有一堆电线杆堆放成梯形,最底下一层有20根,以后每向上一层就减少1根,最上面一层有13根,这堆电线杆一共有多少根?
1.一个拦河坝的横截面是个梯形,它的面积是720平方米,它的上底是120米,下底是180米,这个拦河坝的高度是多少米?
2、一个等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,那么这个梯形的腰长是多少?
3、求面积(单位:厘米)
(1)(2)(3)
4、如图,已知长方形ABCD的面积是72平方厘
米,AC=6厘米,CE=4厘米。
求:三角形BED的面积。
5、如图,大正方形的边长是8厘米,小正方形的边长是4厘米,求阴影部分的面积。
6、如图,AD=20厘米,AB=12厘米,BC=10
厘米,求梯形ABCD的面积。
7、如图,已知:CD=20厘米,AC=10厘米,求:
阴影部分的面积。
8、如图,已知:四边形ABCD的面积使203平方厘米,DE垂直于AB,∠DBE=45°,ED=14cm。
求:梯形AECD的面积。
9、如图,已知:三角形ACD的面积是1400平方厘米,AB=20厘米,CD=56厘米,求:三角形ADB的面积。
10、如图,已知:AB=3.5cm,CD=3.2cm,BC=
4.48cm,AE垂直于BC,CD垂直于AB,求:AE
的长度。