当前位置:文档之家› 实验四-排序-实验报告

实验四-排序-实验报告

实验四-排序-实验报告
实验四-排序-实验报告

数据结构实验报告

实验名称:实验四排序

学生姓名:

班级:

班内序号:

学号:

日期:2012年12月21日

1、实验要求

题目2

使用链表实现下面各种排序算法,并进行比较。

排序算法:

1、插入排序

2、冒泡排序

3、快速排序

4、简单选择排序

5、其他

要求:

1、测试数据分成三类:正序、逆序、随机数据。

2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。

3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。

4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。编写测试main()函数测试线性表的正确性。

2、程序分析

存储结构

说明:本程序排序序列的存储由链表来完成。

其存储结构如下图所示。

(1)单链表存储结构:

(2)结点结构

struct Node

{

int data;

Node * next;

};

示意图:

关键算法分析

一:关键算法

(一)直接插入排序 void LinkSort::InsertSort()

直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。

(1)算法自然语言

1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录;

2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录;

3.重复执行2,直到无序区中没有记录为止。

(2)源代码

void

2.

3.

4.重复执行2和3

直接插入排序过程

(2)源代码

void LinkSort::BubbleSort()

{

Node * P = front->next;

while

较的基准)

2.

3.

(2)源代码

void LinkSort::Qsort()

{

Node * End = front;

while(End->next)

{

End = End->next;

}

Partion(front, End);

}

void LinkSort::Partion(Node * Start, Node * End)

{ Array

if

2.使得有序区扩展

了一个记录,而无序区减少了一个记录。 3.不断重复2,直到无序区之剩下一个记录为止。

(2)源代码

void LinkSort::SelectSort() { Node * S = front; while (S->next->next) { Node * P = S;

Node * Min = P;

while (P->next) 入。 比较次数:" << setw(3)

<< CompareCount << "; 移动次数:" << setw(3) << MoveCount << "; 时间: " << TimeCount <<"us"<< endl;

CompareCount = 0; MoveCount = 0; TimeCount = 0;

QueryPerformanceCounter(&time_start); 泡。 比较次数:" <<

setw(3) << CompareCount << "; 移动次数:" << setw(3) << MoveCount <<

"; 时间: " << TimeCount << "us"<

CompareCount = 0; MoveCount = 0; TimeCount = 0;

QueryPerformanceCounter(&time_start); 速。 比较次数:" << setw(3) << CompareCount << "; 移动次数:" << setw(3) << MoveCount << "; 时间: " << TimeCount << "us"<

初始键值序列 [49 27 65 97 76 13 38]

第一趟排序结果 13 [27 65 97 76 49 38]

第二趟排序结果 13 27 [65 97 76 49 38]

第三趟排序结果 13 27 38 [97 76 49 65]

第四趟排序结果 13 27 38 49 [76 97 65] 第五趟排序结果 13 27 38 49 65 [97 76]

CompareCount = 0; MoveCount = 0; TimeCount = 0;

QueryPerformanceCounter(&time_start); 择。比较次数:" << setw(3) << CompareCount << "; 移动次数:" << setw(3) << MoveCount << "; 时间: " << TimeCount << "us"<

}

(3)时间和空间复杂度

时间复杂度O(1)(因为不包含循环体)。

其他

3、程序运行结果

(1)程序流程图

(2)测试条件

规模为10个数字,在正序、逆序和乱序的条件下进行测试,未出现问题。(3)运行结果:

(4)说明:各函数运行正常,没有出现bug。

四、总结

1、调试时出现的问题及解决方法

由于经过一种排序后,原始数据改变,导致后面的排序所用的数据全为排好后的数据。将数据在排序前重新初始化后,该问题被排除。还有就是因为编程时没有注意格式,所以在调试错误时花费了不少时间。

2、心得体会

这是最后一次编程实验。这次试验,我觉得主要目的还是在掌握好课本知识的基础上,对代码进行相应的优化,以达到时间复杂度和空间复杂度的最佳。

其次,本次实验是经过借鉴课本上的程序进行编写,是基于课本完成的。考虑到若完全由自己编写,则又可能限于自己能力问题,将较简单的算法编写的过于麻烦,造成关键码的比较次数和移动次数比一些复杂算法还多,从而影响结果。

基于课本编写,最大好处是可以借鉴、仔细研读书上的优秀例子,开拓以后编写程序的思路。基于课本编写,最大坏处是自己独立思考、独立编写、修改程序的能力未得到锻炼。

对于正序序列,直接插入、起泡排序法有较高的效率。

对于逆序序列,简单选择排序效率较高。

对于在随机序列,快速排序法的效率比较高。

程序的优化是一个艰辛的过程,如果只是实现一般的功能,将变得容易很多,当加上优化,不论是效率还是结构优化,都需要精心设计。这次做优化的过程中,遇到不少阻力。由于优化中用到很多类的封装和访问控制方面的知识,而这部分知识恰好是大一一年学习的薄弱点。因而以后要多花力气学习C++编程语言,必须要加强这方面的训练,这样才能在将编程思想和数据结构转换为代码的时候能得心应手。

实验四-排序-实验报告

数据结构实验报告 实验名称:实验四排序 学生姓名: 班级: 班内序号: 学号: 日期:2012年12月21日 1、实验要求 题目2 使用链表实现下面各种排序算法,并进行比较。 排序算法: 1、插入排序 2、冒泡排序 3、快速排序 4、简单选择排序 5、其他 要求: 1、测试数据分成三类:正序、逆序、随机数据。 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)。

4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。编写测试main()函数测试线性表的正确性。 2、程序分析 存储结构 说明:本程序排序序列的存储由链表来完成。 其存储结构如下图所示。 (1)单链表存储结构: (2)结点结构 struct Node { int data;

Node * next; }; 示意图: 关键算法分析 一:关键算法 (一)直接插入排序 void LinkSort::InsertSort() 直接插入排序是插入排序中最简单的排序方法,其基本思想是:依次将待排序序列中的每一个记录插入到一个已排好的序列中,直到全部记录都排好序。 (1)算法自然语言 1.将整个待排序的记录序列划分成有序区和无序区,初始时有序区为待排序记录序列中的第一个记录,无序区包括所有剩余待排序的记录; 2.将无须去的第一个记录插入到有序区的合适位置中,从而使无序区减少一个记录,有序区增加一个记录; 3.重复执行2,直到无序区中没有记录为止。 (2)源代码 void 2. 3. 4.重复执行2和3 直接插入排序过程

《数据结构》实验报告——排序.docx

《数据结构》实验报告排序实验题目: 输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。 实验所使用的数据结构内容及编程思路: 1. 插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。 一般情况下,第i 趟直接插入排序的操作为:在含有i-1 个记录的有序子序列r[1..i-1 ]中插入一个记录r[i ]后,变成含有i 个记录的有序子序列r[1..i ];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r [0]处设置哨兵。在自i-1 起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1 趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2 个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。 2. 快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序的序列为{L.r[s] ,L.r[s+1],…L.r[t]}, 首先任意选取一个记录 (通常可选第一个记录L.r[s])作为枢轴(或支点)(PiVOt ),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。由此可以该“枢轴”记录最后所罗的位置i 作为界线,将序列{L.r[s] ,… ,L.r[t]} 分割成两个子序列{L.r[i+1],L.[i+2], …,L.r[t]}。这个过程称为一趟快速排序,或一次划分。 一趟快速排序的具体做法是:附设两个指针lOw 和high ,他们的初值分别为lOw 和high ,设枢轴记录的关键字为PiVOtkey ,则首先从high 所指位置起向前搜索找到第一个关键字小于PiVOtkey 的记录和枢轴记录互相交换,然后从lOw 所指位置起向后搜索,找到第一个关键字大于PiVOtkey 的记录和枢轴记录互相 交换,重复这两不直至low=high 为止。 具体实现上述算法是,每交换一对记录需进行3 次记录移动(赋值)的操作。而实际上,

排序操作实验报告

数据结构与算法设计 实验报告 (2016 — 2017 学年第1 学期) 实验名称: 年级: 专业: 班级: 学号: 姓名: 指导教师: 成都信息工程大学通信工程学院

一、实验目的 验证各种简单的排序算法。在调试中体会排序过程。 二、实验要求 (1)从键盘读入一组无序数据,按输入顺序先创建一个线性表。 (2)用带菜单的主函数任意选择一种排序算法将该表进行递增排序,并显示出每一趟排序过程。 三、实验步骤 1、创建工程(附带截图说明) 2、根据算法编写程序(参见第六部分源代码) 3、编译 4、调试 四、实验结果图 图1-直接输入排序

图2-冒泡排序 图3-直接选择排序 五、心得体会 与哈希表的操作实验相比,本次实验遇到的问题较大。由于此次实验中设计了三种排序方法导致我在设计算法时混淆了一些概念,设计思路特别混乱。虽然在理清思路后成功解决了直接输入和直接选择两种算法,但冒泡

排序的算法仍未设计成功。虽然在老师和同学的帮助下完成了冒泡排序的算法,但还需要多练习这方面的习题,平时也应多思考这方面的问题。而且,在直接输入和直接选择的算法设计上也有较为复杂的地方,对照书本做了精简纠正。 本次实验让我发现自己在算法设计上存在一些思虑不周的地方,思考问题过于片面,逻辑思维能力太过单薄,还需要继续练习。 六、源代码 要求:粘贴个人代码,以便检查。 #include #define MAXSIZE 100 typedef int KeyType; typedef int DataType; typedef struct{ KeyType key; DataType data; }SortItem,SqList[MAXSIZE]; /*******直接插入顺序表*******/ void InsertSort(SqList L,int n) { int i,j,x; SortItem p; for(i=1;i

算法排序问题实验报告

《排序问题求解》实验报告 一、算法的基本思想 1、直接插入排序算法思想 直接插入排序的基本思想是将一个记录插入到已排好序的序列中,从而得到一个新的, 记录数增1 的有序序列。 直接插入排序算法的伪代码称为InsertionSort,它的参数是一个数组A[1..n],包含了n 个待排序的数。用伪代码表示直接插入排序算法如下: InsertionSort (A) for i←2 to n do key←A[i] //key 表示待插入数 //Insert A[i] into the sorted sequence A[1..i-1] j←i-1 while j>0 and A[j]>key do A[j+1]←A[j] j←j-1 A[j+1]←key 2、快速排序算法思想 快速排序算法的基本思想是,通过一趟排序将待排序序列分割成独立的两部分,其中一 部分记录的关键字均比另一部分记录的关键字小,则可对这两部分记录继续进行排序,以达到整个序列有序。 假设待排序序列为数组A[1..n],首先选取第一个数A[0],作为枢轴(pivot),然后按照下述原则重新排列其余数:将所有比A[0]大的数都排在它的位置之前,将所有比A[0]小的数都排在它的位置之后,由此以A[0]最后所在的位置i 作为分界线,将数组A[1..n]分成两个子数组A[1..i-1]和A[i+1..n]。这个过程称作一趟快速排序。通过递归调用快速排序,对子数组A[1..i-1]和A[i+1..n]排序。 一趟快速排序算法的伪代码称为Partition,它的参数是一个数组A[1..n]和两个指针low、high,设枢轴为pivotkey,则首先从high 所指位置起向前搜索,找到第一个小于pivotkey 的数,并将其移到低端,然后从low 所指位置起向后搜索,找到第一个大于pivotkey 的数,并将其移到高端,重复这两步直至low=high。最后,将枢轴移到正确的位置上。用伪代码表示一趟快速排序算法如下: Partition ( A, low, high) A[0]←A[low] //用数组的第一个记录做枢轴记录 privotkey←A[low] //枢轴记录关键字 while low=privotkey do high←high-1 A[low]←A[high] //将比枢轴记录小的记录移到低端 while low

动态查找表实验报告材料

动态查找表实验报告 一. 1 、实验概要 实验项目名称: 抽象数据类型的实现 实验项目性质: 设计性实验 所属课程名称: 数据结构 实验计划学时: 6 2、实验目的 对某个具体的抽象数据类型,运用课程所学的知识和方法,设计合理的数据结构,并在此基础上实现该抽象数据类型的全部基本操作。通过本设计性实验,检验所学知识和能力,发现学习中存在的问题。进而达到熟练地运用本课程中的基础知识及技术的目的。 实验要求如下: 1.参加实验的学生应首先了解设计的任务,然后根据自己的基础和能力从中选择一题。一般来说,选择题目应以在规定的时间内能完成,并能得到应有的锻炼为原则。若学生对教材以外的相关题目较感兴趣,希望选作实验的题目时,应征得指导教师的认可,并写出明确的抽象数据类型定义及说明。 2. 实验前要作好充分准备,包括:理解实验要求,掌握辅助工具的使用,了解该抽象数据类型的定义及意义,以及其基本操作的算法并设计合理的存储结构。 3. 实验时严肃认真,要严格按照要求独立进行设计,不能随意更改。注意观察并记录各种错误现象,纠正错误,使程序满足预定的要求,实验记录应作为实验报告的一部分。 4. 实验后要及时总结,写出实验报告,并附所打印的问题解答、程序清单,所输入的数据及相应的运行结果。 所用软件环境或工具:DEV-C++5可视化编程环境. 3.动态查找表的抽象数据类型 ADT DynamicSearchTable { 数据对象D:D是具有相同特性的数据元素的集合。每个数据元素含有类型相同的关键字,可唯一 标识数据元素。 数据关系R:数据元素同属一个集合。 基本操作P: InitDSTable(&DT); 操作结果:构造一个空的动态查找表DT。 DestroyDSTable(&DT); 初始条件:动态查找表DT存在; 操作结果:销毁动态查找表DT。 SearchDSTable(DT, key); 初始条件:动态查找表DT存在,key为和关键字类型相同的给定值; 操作结果:若DT中存在其关键字等于key的数据元素,则函数值为该元素的值或在表中的

北京理工大学数据结构实验报告4

《数据结构与算法统计》 实验报告 ——实验四 学院: 班级: 学号: 姓名:

一、实验目的 1、熟悉VC 环境,学会使用C 语言利用顺序表解决实际问题。 2、通过上机、编程调试,加强对线性表的理解和运用的能力。 3、锻炼动手编程,独立思考的能力。 二、实验内容 从键盘输入10个数,编程实现分别用插入排序、交换排序、选择排序算法进行排序,输出排序后的序列。 三、程序设计 1、概要设计 为了实现排序的功能,需要将输入的数字放入线性表中,进行进一步的排序操作。 (1)抽象数据类型: ADT SqList{ 数据对象:D={|,1,2,,,0}i i a a Elem Set i n n ∈=≥ 数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈= 基本操作: InPut(SqList &L) 操作结果:构造一个线性表L 。 OutPut(SqList L) 初始条件:线性表L 已存在。 操作结果:按顺序在屏幕上输出L 的数据元素。 InsertSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行插入排序。 QuickSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行快速排序。 SelectSort(SqList &L) 初始条件:线性表L 已存在。 操作结果:对L 的数据元素进行选择排序。 }ADT SqList ⑵主程序流程 由主程序首先调用InPut(L)函数创建顺序表,调用InsertSort(L)函数进行插入排序,调用OutPut(L)函数显示排序结果。 再由主程序首先调用InPut(L)函数创建顺序表,调用QuickSort(L)函数进行交换排序,调用OutPut(L)函数显示排序结果。 再由主程序首先调用InPut(L)函数创建顺序表,调用SelectSort(L)函数进行选择排序,调用OutPut(L)函数显示排序结果。 ⑶模块调用关系

实验报告-排序与查找

电子科技大学实验报告 课程名称:数据结构与算法 学生姓名: 学号: 点名序号: 指导教师: 实验地点:基础实验大楼 实验时间: 5月20日 2014-2015-2学期 信息与软件工程学院

实验报告(二) 学生姓名学号:指导教师: 实验地点:基础实验大楼实验时间:5月20日 一、实验室名称:软件实验室 二、实验项目名称:数据结构与算法—排序与查找 三、实验学时:4 四、实验原理: 快速排序的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一躺快速排序的算法是: 1)设置两个变量I、J,排序开始的时候I:=1,J:=N 2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1]; 3)从J开始向前搜索,即(J:=J-1),找到第一个小于X的值,两者交换; 4)从I开始向后搜索,即(I:=I+1),找到第一个大于X的值,两者交换; 5)重复第3、4步,直到I=J。 二分法查找(折半查找)的基本思想: (1)确定该区间的中点位置:mid=(low+high)/2 min代表区间中间的结点的位置,low代表区间最左结点位置,high代表区间最右结点位置(2)将待查a值与结点mid的关键字(下面用R[mid].key)比较,若相等,则查找成功,否则确定新的查找区间: A)如果R[mid].key>a,则由表的有序性可知,R[mid].key右侧的值都大于a,所以等于a的关键字如果存在,必然在R[mid].key左边的表中,这时high=mid-1; B)如果R[mid].key

数据结构实验五-查找与排序的实现

实验报告 课程名称数据结构实验名称查找与排序的实现 系别专业班级指导教师11 学号姓名实验日期实验成绩 一、实验目的 (1)掌握交换排序算法(冒泡排序)的基本思想; (2)掌握交换排序算法(冒泡排序)的实现方法; (3)掌握折半查找算法的基本思想; (4)掌握折半查找算法的实现方法; 二、实验内容 1.对同一组数据分别进行冒泡排序,输出排序结果。要求: 1)设计三种输入数据序列:正序、反序、无序 2)修改程序: a)将序列采用手工输入的方式输入 b)增加记录比较次数、移动次数的变量并输出其值,分析三种序列状态的算法时间复杂 性 2.对给定的有序查找集合,通过折半查找与给定值k相等的元素。 3.在冒泡算法中若设置一个变量lastExchangeIndex来标记每趟排序时经过交换的最后位置, 算法如何改进? 三、设计与编码 1.本实验用到的理论知识 2.算法设计

3.编码 package sort_search;

import java.util.Scanner; public class Sort_Search { //冒泡排序算法 public void BubbleSort(int r[]){ int temp; int count=0,move=0; boolean flag=true; for(int i=1;ir[j+1]){ temp=r[j]; r[j]=r[j+1]; r[j+1]=temp; move++; flag=true; } } } System.out.println("排序后的数组为:"); for(int i=0;ikey){

(完整word版)查找、排序的应用 实验报告

实验七查找、排序的应用 一、实验目的 1、本实验可以使学生更进一步巩固各种查找和排序的基本知识。 2、学会比较各种排序与查找算法的优劣。 3、学会针对所给问题选用最适合的算法。 4、掌握利用常用的排序与选择算法的思想来解决一般问题的方法和技巧。 二、实验内容 [问题描述] 对学生的基本信息进行管理。 [基本要求] 设计一个学生信息管理系统,学生对象至少要包含:学号、姓名、性别、成绩1、成绩2、总成绩等信息。要求实现以下功能:1.总成绩要求自动计算; 2.查询:分别给定学生学号、姓名、性别,能够查找到学生的基本信息(要求至少用两种查找算法实现); 3.排序:分别按学生的学号、成绩1、成绩2、总成绩进行排序(要求至少用两种排序算法实现)。 [测试数据] 由学生依据软件工程的测试技术自己确定。 三、实验前的准备工作 1、掌握哈希表的定义,哈希函数的构造方法。 2、掌握一些常用的查找方法。 1、掌握几种常用的排序方法。 2、掌握直接排序方法。

四、实验报告要求 1、实验报告要按照实验报告格式规范书写。 2、实验上要写出多批测试数据的运行结果。 3、结合运行结果,对程序进行分析。 五、算法设计 a、折半查找 设表长为n,low、high和mid分别指向待查元素所在区间的下界、上界和中点,key为给定值。初始时,令low=1,high=n,mid=(low+high)/2,让key与mid指向的记录比较, 若key==r[mid].key,查找成功 若keyr[mid].key,则low=mid+1 重复上述操作,直至low>high时,查找失败 b、顺序查找 从表的一端开始逐个进行记录的关键字和给定值的比较。在这里从表尾开始并把下标为0的作为哨兵。 void chaxun(SqList &ST) //查询信息 { cout<<"\n************************"<=1;j--) if(ST.r[j].xuehao

各种排序实验报告

【一】需求分析 课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。 为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。 【二】概要设计 1.堆排序 ⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。 ⑵程序实现及核心代码的注释: for(j=2*i+1; j<=m; j=j*2+1) { if(j=su[j]) break; su[i]=su[j]; i=j; } su[i]=temp; } void dpx() //堆排序 { int i,temp; cout<<"排序之前的数组为:"<=0; i--) { head(i,N); } for(i=N-1; i>0; i--) {

temp=su[i]; su[i]=su[0]; su[0]=temp; head(0,i-1); } cout<<"排序之后的数组为:"<

顺序表的查找、插入与删除实验报告

《数据结构》实验报告一 学院:班级: 学号:姓名: 日期:程序名 一、上机实验的问题和要求: 顺序表的查找、插入与删除。设计算法,实现线性结构上的顺序表的产生以及元素的查找、插入与删除。具体实现要求: 1.从键盘输入10个整数,产生顺序表,并输入结点值。 2.从键盘输入1个整数,在顺序表中查找该结点的位置。若找到,输出结点的位置;若找 不到,则显示“找不到”。 3.从键盘输入2个整数,一个表示欲插入的位置i,另一个表示欲插入的数值x,将x插 入在对应位置上,输出顺序表所有结点值,观察输出结果。 4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。 二、源程序及注释: #include #include /*顺序表的定义:*/ #include #define ListSize 100 /*表空间大小可根据实际需要而定,这里假设为100*/ typedef int DataType; /*DataType可以是任何相应的数据类型如int, float或char*/ typedef struct { DataType data[ListSize]; /*向量data用于存放表结点*/ int length; /*当前的表长度*/ }SeqList; void main() { SeqList L; int i,x; int n=10; /*欲建立的顺序表长度*/ L.length=0; void CreateList(SeqList *L,int n); void PrintList(SeqList L,int n); int LocateList(SeqList L,DataType x); void InsertList(SeqList *L,DataType x,int i); void DeleteList(SeqList *L,int i);

微机原理实验报告冒泡排序

一、实验目的 (1)学习汇编语言循环结构语句的特点,重点掌握冒泡排序的方法。 (2)理解并掌握各种指令的功能,编写完整的汇编源程序。 (3)进一步熟悉DEBUG的调试命令,运用DEBUG进行调试汇编语言程序。 二、实验内容及要求 (1)实验内容:从键盘输入五个有符号数,用冒泡排序法将其按从小到大的顺序排序。 (2)实验要求: ①编制程序,对这组数进行排序并输出原数据及排序后的数据; ②利用DEBUG调试工具,用D0命令,查瞧排序前后内存数据的变化; ③去掉最大值与最小值,求出其余值的平均值,输出最大值、最小值与平均值; ④用压栈PUSH与出栈POP指令,将平均值按位逐个输出; ⑤将平均值转化为二进制串,并将这组二进制串输出; ⑥所有数据输出前要用字符串的输出指令进行输出提示,所有数据结果能清晰显示。 三、程序流程图Array (1)主程序:MAIN

(2)

就是 NAME BUBBLE_SORT DATA SEGMENT ARRAY DW 5 DUP(?) ;输入数据的存储单元 COUNT DW 5 TWO DW 2 FLAG1 DW 0 ;判断符号标志 FLAG2 DB 0 ;判断首位就是否为零的标志FAULT DW -1 ;判断出错标志 CR DB 0DH,0AH,'$' STR1 DB 'Please input five numbers seperated with space and finished with Enter:','$' STR2 DB 'The original numbers:','$' STR3 DB 'The sorted numbers:','$' STR4 DB 'The Min:','$' STR5 DB 'The Max:','$' STR6 DB 'The Average:','$' STR7 DB 'The binary system of the average :','$' STR8 DB 'Input error!Please input again!''$' DATA ENDS CODE SEGMENT MAIN PROC FAR ASSUME CS:CODE,DS:DATA,ES:DATA START: PUSH DS AND AX,0 PUSH AX MOV AX,DATA MOV DS,AX LEA DX,STR1 MOV AH,09H ;9号DOS功能调用,提示输入数据 INT 21H CALL CRLF ;回车换行 REIN: CALL INPUT ;调用INPUT子程序,输入原始数据CMP AX,FAULT ;判断就是否出错, JE REIN ;出错则重新输入

查找与排序实验报告

实验四:查找与排序 【实验目的】 1.掌握顺序查找算法的实现。 2.掌握折半查找算法的实现。 【实验内容】 1.编写顺序查找程序,对以下数据查找37所在的位置。 5,13,19,21,37,56,64,75,80,88,92 2.编写折半查找程序,对以下数据查找37所在的位置。 5,13,19,21,37,56,64,75,80,88,92 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。 至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。 4.写好代码 5.编译->链接->调试 #include "stdio.h" #include "malloc.h" #define OVERFLOW -1 #define OK 1 #define MAXNUM 100 typedef int Elemtype; typedef int Status; typedef struct {

Elemtype *elem; int length; }SSTable; Status InitList(SSTable &ST ) { int i,n; ST.elem = (Elemtype*) malloc (MAXNUM*sizeof (Elemtype)); if (!ST.elem) return(OVERFLOW); printf("输入元素个数和各元素的值:"); scanf("%d\n",&n); for(i=1;i<=n;i++) { scanf("%d",&ST.elem[i]); } ST.length = n; return OK; } int Seq_Search(SSTable ST,Elemtype key) { int i; ST.elem[0]=key; for(i=ST.length;ST.elem[i]!=key;--i); return i; } int BinarySearch(SSTable ST,Elemtype key) { int low,high,mid; low=1; high=ST.length;

大数据结构实验四题目一排序实验报告材料

数据结构实验报告 实验名称:实验四——排序 学生姓名:XX 班级: 班内序号: 学号: 日期: 1.实验要求 实验目的: 通过选择实验内容中的两个题目之一,学习、实现、对比、各种排序的算法,掌握各种排序算法的优劣,以及各种算法使用的情况。 题目1: 使用简单数组实现下面各种排序算法,并进行比较。 排序算法如下: 1、插入排序; 2、希尔排序; 3、冒泡排序; 4、快速排序; 5、简单选择排序; 6、堆排序; 7、归并排序; 8、基数排序(选作); 9、其他。 具体要求如下: 1、测试数据分成三类:正序、逆序、随机数据。 2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关 键字交换记为3次移动)。 3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微妙。 4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。 5、编写main()函数测试各种排序算法的正确性。 2. 程序分析 2.1 存储结构

存储结构:数组 2.2 关键算法分析 一、关键算法: 1、插入排序 a、取排序的第二个数据与前一个比较 b、若比前一个小,则赋值给哨兵 c、从后向前比较,将其插入在比其小的元素后 d、循环排序 2、希尔排序 a、将数组分成两份 b、将第一份数组的元素与哨兵比较 c、若其大与哨兵,其值赋给哨兵 d、哨兵与第二份数组元素比较,将较大的值赋给第二份数组 e、循环进行数组拆分 3、对数据进行编码 a、取数组元素与下一个元素比较 b、若比下一个元素大,则与其交换 c、后移,重复 d、改变总元素值,并重复上述代码 4、快速排序 a、选取标准值 b、比较高低指针指向元素,若指针保持前后顺序,且后指针元素大于标准值,后 指针前移,重新比较 c、否则后面元素赋给前面元素 d、若后指针元素小于标准值,前指针后移,重新比较 e、否则前面元素赋给后面元素 5、简单选择排序 a、从数组中选择出最小元素 b、若不为当前元素,则交换 c、后移将当前元素设为下一个元素 6、堆排序 a、生成小顶堆 b、将堆的根节点移至数组的最后 c、去掉已做过根节点的元素继续生成小顶堆

离散数学实验报告--四个实验!!!

《离散数学》 课程设计 学院计算机学院 学生姓名 学号 指导教师 评阅意见 提交日期 2011 年 11 月 25 日

引言 《离散数学》是现代数学的一个重要分支,也是计算机科学与技术,电子信息技术,生物技术等的核心基础课程。它是研究离散量(如整数、有理数、有限字母表等)的数学结构、性质及关系的学问。它一方面充分地描述了计算机科学离散性的特点,为学生进一步学习算法与数据结构、程序设计语言、操作系统、编译原理、电路设计、软件工程与方法学、数据库与信息检索系统、人工智能、网络、计算机图形学等专业课打好数学基础;另一方面,通过学习离散数学课程,学生在获得离散问题建模、离散数学理论、计算机求解方法和技术知识的同时,还可以培养和提高抽象思维能力和严密的逻辑推理能力,为今后爱念族皮及用计算机处理大量的日常事务和科研项目、从事计算机科学和应用打下坚实基础。特别是对于那些从事计算机科学与理论研究的高层次计算机人员来说,离散数学更是必不可少的基础理论工具。 实验一、编程判断一个二元关系的性质(是否具有自反性、反自反性、对称性、反对称性和传递性) 一、前言引语:二元关系是离散数学中重要的内容。因为事物之间总是可以 根据需要确定相应的关系。从数学的角度来看,这类联系就是某个集合中元素之间存在的关系。 二、数学原理:自反、对称、传递关系 设A和B都是已知的集合,R是A到B的一个确定的二元关系,那么集合R 就是A×B的一个合于R={(x,y)∈A×B|xRy}的子集合 设R是集合A上的二元关系: 自反关系:对任意的x∈A,都满足∈R,则称R是自反的,或称R具有自反性,即R在A上是自反的?(?x)((x∈A)→(∈R))=1 对称关系:对任意的x,y∈A,如果∈R,那么∈R,则称关系R是对称的,或称R具有对称性,即R在A上是对称的? (?x)(?y)((x∈A)∧(y∈A)∧(∈R)→(∈R))=1 传递关系:对任意的x,y,z∈A,如果∈R且∈R,那么∈R,则称关系R是传递的,或称R具有传递性,即R在A上是传递的? (?x)(?y)(?z)[(x∈A)∧(y∈A)∧(z∈A)∧((∈R)∧(∈R)→(∈R))]=1 三、实验原理:通过二元关系与关系矩阵的联系,可以引入N维数组,以数 组的运算来实现二元关系的判断。 图示:

《数据结构》实验报告查找

实验四——查找 一、实验目的 1.掌握顺序表的查找方法,尤其是折半查找方法; 2.掌握二叉排序树的查找算法。 二、实验内容 1.建立一个顺序表,用顺序查找的方法对其实施查找; 2.建立一个有序表,用折半查找的方法对其实施查找; 3.建立一个二叉排序树,根据给定值对其实施查找; 4.对同一组数据,试用三种方法查找某一相同数据,并尝试进行性能分析。 三、实验预习内容 实验一包括的函数有:typedef struct ,创建函数void create(seqlist & L),输出函数void print(seqlist L),顺序查找int find(seqlist L,int number),折半查找int halffind(seqlist L,int number) 主函数main(). 实验二包括的函数有:结构体typedef struct,插入函数void insert(bnode * & T,bnode * S),void insert1(bnode * & T),创建函数void create(bnode * & T),查找函数bnode * search(bnode * T,int number),主函数main(). 四、上机实验 实验一: 1.实验源程序。 #include<> #define N 80 typedef struct { int number; umber; for(i=1;[i].number!=0;) { cin>>[i].name>>[i].sex>>[i].age; ++; cout<>[++i].number; } } umber<<"\t"<<[i].name<<"\t"<<[i].sex<<"\t"<<[i].age<

二叉排序树实验报告

二叉排序树的实现 实验内容与要求 1) 实现二叉排序树,包括生成、插入,删除; 2) 对二叉排序树进行先根、中根、和后根非递归遍历; 3) 每次对树的修改操作和遍历操作的显示结果都需要在屏 幕上用树的形状表示出来。 实验方案 1. 选择链表的方式来构造节点,存储二叉排序树的节点。// 树的结构struct BSTNode { // 定义左右孩子指针 struct BSTNode *lchild,*rchild; // 节点的关键字 TElemType key; }; int depth=0; // 定义一个struct BSTNode 类型的指针typedef BSTNode *Tree; 2. 对树的操作有如下方法: // 创建二叉排序树 Tree CreatTree(Tree T) ; // 二叉树的深度,返回一个int 值为该树的深度 int TreeDepth(Tree T) // 树状输出二叉树,竖向输出 void PrintTree(Tree T , int layer) ; // 查找关键字,如果关键字存在则返回所在节点的父节点,如果关键字不存在则返回叶子所在的节点 Status SearchBST(Tree T , TElemType key , Tree f,Tree &p) ; // 向树中插入节点 Status InsertBST(Tree &T , TElemType e) ; // 删除节点 Status Delete(Tree &T) ;

// 删除指定节点,调用Delete(Tree &T) 方法 Status DeleteData(Tree &T , TElemType key) ; // 非递归先序遍历void x_print(Tree T); // 非递归中序遍历 Void z_print(Tree T ); // 非递归后序遍历 void h_print(Tree T); 3. 对二叉排序树非递归先根、中根、后根遍历,采用栈来存储一次遍历过的节点的形式来辅助实现 // 自定义类型以SElemType 作为栈中指针返回的值的类型 // 也就是要返回一个节点的指针 typedef Tree SElemType; // 栈的结构 struct Stack { // 栈底指针SElemType *base; // 栈顶指针SElemType *top; // 栈的容量 int stacksize; }; 4. 栈的操作方法: // 创建一个空栈 Status InitStack(Stack &S) // 获取栈顶元素并删除栈中该位置的元素SElemType Pop(Stack &S,SElemType &elem) // 获取栈顶元素返回栈顶元素不对栈做任何修改SElemType getTop(Stack S,SElemType &elem) // 删除栈顶元素 Status DeleteTop(Stack &S) // 往栈中压入数据 Status Push(Stack &S,SElemType elem) // 判断栈是否为空 Status IsEmpty(Stack S) 三、代码实现 #include #include using namespace std;

查询与排序 实验报告

学院专业班学号 协作者_____________教师评定_________________ 实验题目查询与排序 综合实验评分表

实验报告 一、实验目的与要求 1、掌握散列表的构造及实现散列查找; 2、掌握堆排序的算法; 3、综合比较各类排序算法的性能。 二、实验容 #include"stdio.h" #include"stdlib.h" #include"string.h" #include"windows.h" #define MAX 20 typedef struct{ unsigned long key; int result; char name[30];}RNode; RNode t[MAX],r[MAX]; int h(unsigned long k) /*散列函数*/ { return((k-3109005700)%11); } void insert(RNode t[],RNode x) /*插入函数,以线性探查方法解决冲突*/ {

int i,j=0; i=h(x.key); while((j0)) j++; if(j==MAX) printf("full\n"); i=(i+j)%MAX; if(t[i].key==0) {t[i]=x;} else { if(t[i].key==x.key) printf("记录已存在!\n"); } } int search(RNode t[],unsigned long k) /*插入函数,以线性探查方法解决冲突*/ { int i,j=0; i=h(k); while((j

数据结构各种排序实验报告

目录 1.引言............................................................................................................................ 错误!未定义书签。 2.需求分析 (2) 3.详细设计 (2) 3.1 直接插入排序 (2) 3.2折半排序 (2) 3.3 希尔排序 (4) 3.4简单选择排序 (4) 3.5堆排序 (4) 3.6归并排序 (5) 3.7冒泡排序 (7) 4.调试 (8) 5.调试及检验 (9) 5.1 直接插入排序 (9) 5.2折半插入排序 (9) 5.3 希尔排序 (10) 5.4简单选择排序 (10) 5.5堆排序 (11) 5.6归并排序 (12) 5.7冒泡排序 (12) 6.测试与比较................................................................................................................ 错误!未定义书签。 6.1调试步骤......................................................................................................... 错误!未定义书签。 6.2结论 (13) 7.实验心得与分析 (13) 8.附录 (15) 8.1直接插入排序 (15) 8.2折半插入排序 (16) 8.3希尔排序 (18) 8.4简单选择排序 (20) 8.5堆排序 (21) 8.6归并排序 (24) 8.7冒泡排序 (27) 8.8主程序 (28)

相关主题
文本预览
相关文档 最新文档