人教版初三数学中心对称
- 格式:ppt
- 大小:480.00 KB
- 文档页数:10
初三数学全册基本知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺。
下面是小编为大家整理的关于初三数学基本知识点总结,希望对您有所帮助!初三数学知识总结圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的.距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。
过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
初三数学轴对称知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
第5讲图形的旋转和中心对称图形的旋转和中心对称1、旋转的定义:在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2、中心对称的定义:把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.3、旋转的特点:旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.4、中心对称的特点:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.5、中心对称图形:把一个图形绕着某一个点旋转______,如果旋转后的图形能够与原来的图形______,那么这个图形叫做中心对称图形,这个点就是它的______.1、旋转的定义和性质;2、中心对称的定义和性质;3、会画旋转后的图形和中心对称图形;例1、下图中,不是旋转对称图形的是( ).答案:B解析:根据旋转的定义;例2、有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个答案:D解析:利用旋转的特征;例3、下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形答案:D解析:中心对称的定义;例4、以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个答案:B解析:旋转和中心对称的定义结合。
中心对称和中心对称图形知识点一中心对称与中心对称图形中心对称概念:把一个图形绕着某一点旋转180︒,如图它能够与另一个图形重合,那么就说这两个U 形关于这个点对称或中心对称,这个点叫作对称中心(简称中心).这两个图形再旋转后能重合的对应点叫作关于对称中心的对称点.如图,ABO ∆绕着点O 旋转180︒后,与CDO ∆完全重合,则称CDO ∆和ABO ∆关于点O 对称,点C 是点A 关于点O 的对称点.中心对称图形概念:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心.中心对称与中心对称图形的区别与联系:OD AB C典例1下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【详解】A. 不是轴对称图形,是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C. 是轴对称图形,不是中心对称图形,故不符合题意;D. 是轴对称图形,不是中心对称图形,故不符合题意;故选B.典例2下列所给图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】D【详解】解:A. 是轴对称图形,不是中心对称图形,不符合题意;B. 是轴对称图形,不是中心对称图形,不符合题意;C. 不是轴对称图形,是中心对称图形,不符合题意;D. 既是轴对称图形,又是中心对称图形,符合题意,故选:D.典例3如图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【详解】A、是中心对称图形,不是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、不是中心对称图形,不是轴对称图形,故此选项错误;故选:C.知识点二作中心对称图形的方法中心对称图形的性质:➢中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;➢中心对称的两个图形是全等图形.作中心对称图形的一般步骤(重点):➢作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长一倍确定关键的对称点.➢把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形.找对称中心的方法和步骤:对于中心对称图形和关于某一点对称的两个图形,它们的对称中心非常重要,找不对称中心是解决先关问题的关键.由中心对称的特征可知,对称中心为对应点连线的中点或两组相对应点连线的交点,因此找对称中心的步骤如下:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.典例1如图,在小正方形组成的网格中,每个小正方形的边长均为1个单位(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.(2)若连接AA1、CC1,则这两条线段之间的关系是_______.(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.【答案】(1)见解析;(2)平行且相等;(3)见解析.【详解】(1)见图:(2)平行且相等;(3)见图.典例2如图,在边长为1个单位长度的88 的小正方形网格中.(1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C ''';(2)请画出A B C '''''△,使A B C '''''△和A B C '''关于点C '成中心对称; (3)直接写出A A B '''''△的面积.【答案】(1)详见解析;(2)详见解析;(3)3.【详解】(1)如图所示:(2)如图所示:(3)13232A AB S '''''=⨯⨯=△. 知识点三关于原点对称的点的坐标规律两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点P’(-x ,-y)典例1在平面直角坐标系中,点A 的坐标为(﹣3,4),那么下列说法正确的是( )A .点A 与点B (﹣3,﹣4)关于y 轴对称B .点A 与点C (3,﹣4)关于x 轴对称C .点A 与点E (﹣3,4)关于第二象限的平分线对称D .点A 与点F (3,﹣4)关于原点对称【答案】D【详解】解:A 、点A 的坐标为(-3,4),∴则点A 与点B (-3,-4)关于x 轴对称,故此选项错误;B 、点A 的坐标为(-3,4),∴点A 与点C (3,-4)关于原点对称,故此选项错误;C 、点A 的坐标为(-3,4),∴点A 与点E (-3,4)重合,故此选项错误;D 、点A 的坐标为(-3,4),∴点A 与点F (3,-4)关于原点对称,故此选项正确;故选:D .典例2若点P (m ,2)与点Q (3,n )关于原点对称,则m ,n 的值分别为( )A .3-,2B .3,2-C .3-,2-D .3,2【答案】C【详解】点P (m ,2)与点Q (3,n )关于原点对称,得m=-3,n=-2,故选:C .典例3若P(x ,3)与点Q(4,y)关于原点对称,则xy 的值是( )A .12B .﹣12C .64D .﹣64 【答案】A【详解】∵()P x,3与点()Q 4,y 关于原点对称,∴x 4=-,y 3=-,∴xy 12=.故选:A .巩固训练一、单选题(共10小题)1.下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .【答案】C【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选:C .【名师点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为()A .(4,5)--B .(5,4)--C .(3,4)--D .(4,3)--【答案】A 【解析】详解:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形,∴A (4,3),设直线AB 解析式为y=kx+b ,则4321k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩, ∴直线AB 解析式为y=x ﹣1,令x=0,则y=﹣1,∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称,∴点P 为AA'的中点,设A'(m ,n ),则42m +=0,32n +=﹣1, ∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A .3.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)【答案】B【解析】试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.5.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( )A.B B.J C.4 D.0【答案】D【解析】选项A是轴对称图形,不是中心对称图形,故此选项错误;选项B不是轴对称图形,不是中心对称图形,故此选项错误;选项C不是轴对称图形,不是中心对称图形,故此选项错误;选项D是轴对称图形,又是中心对称图形,故此选项正确,故选D.6.已知点A(a+b,4)与点B(-2,a-b)关于原点对称,则a2-b2等于( ) A.8 B.-8 C.5 D.-5【答案】B【详解】∵点A(a+b,4)与点B(-2,a-b)关于原点对称,24a b a b +⎧⎨--⎩==, ∴a 2-b 2=(a+b )(a-b )=2×(-4)=-8.故选:B .【名师点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.7.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )A .2种B .3种C .4种D .5种【答案】C 【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形, 则这个格点正方形的作法共有4种.故选:C .8.已知点()11,1p a -和()22,1p b -关于原点对称,则()2008a b +的值为() A .1 B .0 C .-1 D .()20053-【答案】A【解析】试题解析:根据题意得:a-1=-2,b-1=-1,解得:a=-1 b=0.则(a+b)2008=1.故选A.9.如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A.20cm2 B.15cm2 C.10cm2 D.25cm2【答案】A【解析】由图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得,图中阴影部分的面积即是长方形面积的一半,则图中阴影部分的面积×40=20cm2,故选A.=1210.将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)【答案】C【解析】点P(-2,3)向右平移3个单位得到点P1,则P1(1,3),点P2与点P1关于原点对称,则P2(−1,−3).故选C.二、填空题(共5小题)11.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.【答案】12【详解】∵点A 的坐标为(a ,3),点B 的坐标是(4,b ),点A 与点B 关于原点O 对称,∴a=﹣4,b=﹣3,则ab=12,故答案为:12.【名师点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.12.若点(a ,1)与(﹣2,b )关于原点对称,则a b =_______.【答案】12. 【解析】试题分析:∵点(a ,1)与(﹣2,b )关于原点对称,∴b=﹣1,a=2,∴a b =2−1=12.故答案为:12. 13.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.【答案】1【解析】∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=. 14.点()2,3M -关于x 轴对称的点A 的坐标是________,点M 关于y 轴对称的C 的坐标是________,点M 关于原点对称的点B 的坐标是________.【答案】(-2,-3), (2,3), (2,-3)【详解】点A (-2,3)关于x 轴对称的点的坐标是(-2,-3),关于y 轴对称的点的坐标是(2,3),关于原点对称的点是(2,-3).故答案为(-2,-3),(2,3),(2,-3).【名师点睛】本题考查了关于坐标轴对称的点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标和纵坐标都为互为相反数.15.抛物线y =2x 2-4x +5绕它的坐标原点O 旋转180°后的二次函数表达式为________.【答案】y =-2(x +1)2-3【解析】详解:y =2x 2-4x +5=2(x -1)2+3,顶点坐标是(1,3),二次项系数是2,绕原点旋转180°后的二次函数的顶点是(-1,-3),二次项系数是-2,所以表示式为y =-2(x +1)2-3.故答案为y =-2(x +1)2-3.三、解答题(共2小题)16.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C .(1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .【答案】(1)画图见解析;(2)(2,-1).【解析】试题解析:(1)、△A 1B 1C 如图所示,△A 2B 2C 2如图所示; (2)、如图,对称中心为(2,﹣1).17.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见解析;(2)(0,2).【解析】详解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.。
旋转和中心对称单元试题一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有( )A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知点、点关于原点对称,则的值为( )A.1B.3C.-1D.-3 6.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形 7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形8. 如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕点C 顺时针旋转至△A ′B ′C ,使得点A ′恰好落在AB 上,则旋转角度为( )9.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .410.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45° 二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.13.如图所示,ABC △与DEF△关于O点成中心对称.则AB _______DE , ∥______,AC =________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三、解答题(共46分) 19.如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.20.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合?22.如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23. 如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;平移△ABC 若点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得P A+PB 的值最小,请直接写出点P 的坐标.24、在平面直角坐标系中,如图所示,△AOB 是边长为2的等边三角形,将△AOB 绕着点B 按顺时针方向旋转得到△DCB ,使得点D 落在x 轴的正半轴上,连接OC ,AD .(1)求证:OC =AD ;(2)求OC 的长;(3)求过A 、D 两点的直线的解析式.25、如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△GBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.26、数学是丰富多彩的,想学好数学,就要学会探究、思考。
人教课标版初中数学初三上册第二十三章23【教材分析】本节课是九年级上册第23章“23.2中心对称”的第三课时,是在学生差不多学习中心对称和中心对称图形的基础,在平面直角坐标系中研究两个点关于原点对称时的坐标关系,并进一步探究运用这种规律作关于原点对称的图形的方法。
【学情分析】学生差不多在第十二章“轴对称”的学习中,积存了一定在坐标系中探究图形变换的学习体会。
能够通过类比学习,具体的例子,让学生经历动手操作,观看猜想,验证归纳,得出两个点关于原点对称时的坐标关系。
在利用坐标作中心对称中强化明白得.【教学目标】明白得P与点P′点关于原点对称时,它们的横纵坐标的关系,把握运用关于原点的对称点的坐标规律作关于原点对称的图形的方法.经历操作——猜想——验证的实践过程,从专门到一样,归纳两个点关于原点对称时的坐标关系。
通过用坐标关系找对称点的方法,探究作关于原点对称的图形的一样步骤。
情感态度与价值观目标:体会数与形之间的联系,培养学生学习善于观看、勤于摸索、大胆猜想、勇于实践、合作交流学习适应.【教学重难点】1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.【教学过程】(一)复习引入1 、什么叫中心对称?2、点P(-1,2)关于x轴对称的点的坐标为,点P到x轴的距离为,点P 到y轴的距离为3、 点P (-3,- 4)关于y 轴对称的点的坐标为 ,点P 到x 轴的距离为 ,点P 到y 轴的距离为(二)合作交流、探究规律1、如图,在直角坐标系中,已知A (4,0)、B (0,-3)、C (2,1)、D (-1,2)、E (-3,-4),作出A 、B 、C 、D 、E 点关于原点O 的中心对称点,并写它们的坐标,并回答:这些点与已知点的坐标有什么关系?分组讨论:(每四人一组):讨论的内容:关于原点作中心对称时,•它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?(让每组派代表发表本组的结论,并利用三角形全等证明规律。
初三数学家庭作业(005)中心对称图形(二)复习(一)一、知识要点(一)圆的有关性质1、直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2、圆是轴对称图形,其对称轴是任意一条过_______,圆是中心对称图形,对称中心为_____.3、垂直于弦的直径平分_______,并且_______弦所对的弧。
4、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量________,那么它们所对应的其余各组量分别________.5、在同圆或等圆中,同弧或等弧所对的圆周角______,直径所对的圆周角是_________,90°的圆周角所对的弦是_______.6、不在同一条直线上的________个点确定一个圆.(二)与圆有关的位置关系及切线的性质与判定1、点与圆的位置关系:若圆的为r,点到圆心的距离为d,则(1)点在____⇔d >r;(2)点在圆______⇔d=r;(3)点在圆_____⇔d<r.2、直线与圆的位置关系有:若圆的半径为r,圆心到直线的距离为d,(1)直线与圆_____⇔d>r;(2)直线与圆____⇔d=r;(3)直线与圆_____⇔d<r.3、圆的切线________于过切点的半径.4、经过半径的______,并且______于这条半径的直线是圆的切线.5、圆与圆的位置关系有:若两圆的半径分别为R、r,(d>r),两圆的圆心距为d,则(1)两圆______⇔d>R+r;(2)两圆_____⇔d=R+r;(3)两圆______⇔R-r<d<R+r;(4)两圆______⇔d=R-r;(5)两圆______⇔d <R-r.(三)与圆有关的计算1、圆的周长C=_______;弧长l=_______.2、圆面积S圆=______;扇形面积S扇形=_______=______.3、S圆柱侧=______,圆柱的全面积=2S底+S侧,S圆锥侧=________,圆锥的全面积=S底+S侧.二、基础训练1、圆弧形蔬菜大棚的剖面如图所示,AB=8m,∠OAD=30°,则大棚高度CD约为().A、2.0mB、2.3mC、4.6mD、6.9m2、下列命题中假命题有()①直径是圆的对称轴;②垂直于弦的直线必经过圆心;③平分弦的直径必平分弦所对的两条弧;④相等的圆周角所对的弧相等A、1个B、2个C、3个D、4个3、如图,A、B、C、D四点在⊙O上,若它的一个外角∠DCE=70°,则∠BOD等于()A、35°B、70°C、110°D、140°4、已知平面内两圆的半径分别为4和6,圆心距是2,则这两个圆的位置是()A、内切B、相交C、外切D、外离5、在△ABC中,∠ACB=90°,AC=2cm,BC=4cm,CM是中线,以C为圆心,5cm长为半径画圆,则A、B、M三点在圆外的是____,在圆上的是_______.6、如图,在⊙O中,已知∠ACB=∠CDB=60°,AC=5,则△ABC的周长是_____7、半径分别为1cm和5cm的两圆相交,则圆心距d的取值范围是_____8、如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,则∠APB=_____9、若一个圆锥的母线长是它的底面半径的4倍,则它的侧面展开图的圆心角是()A、90°B、120°C、135°D、180°10、如图,等腰梯形ABCD的上底BC长为1,、、的半径相等,、所在圆的圆心分别为A、O,则图中阴影部分的面积是()11、如图,已知AB、CD是⊙O的两条直径,AP是⊙O的弦,且AP∥CD,求证:=.12、如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,求两圆组成的圆环的面积.三、能力提升1、、如图,△ABC 中,AB =AC ,D 是BC 边上的一点,E 是直线AD 和△ABC 外接圆的交点,(1)证明:AB 2=AD ·AE ;(2)当D 为BC 延长线上一点时,(1)的结论成立吗?如果成立,请证明;不成立,请说明理由.2、如图,△ABC 内接于⊙O ,且∠ABC =∠C ,点D 在弧BC 上运动,过点D 作DE ∥BC ,DE 交直线AB 于点E ,连结BD 。
中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。