大气污染控制工程实验
- 格式:doc
- 大小:543.50 KB
- 文档页数:16
实验1 粉尘真密度的测定 【实验目的】1.了解测定粉尘真密度的原理并掌握真空法测定粉尘真密度的方法。
2.了解引起真密度测量误差的因素及消除方法。
【实验原理】粉尘的真密度是指将粉尘颗粒表面及其内部的空气排出后测得的粉尘自身的密度。
真密度是粉尘的一个基本物理性质,是进行除尘理论汁算和除尘器选型的重要参数。
在自然状态下,粉尘颗粒之间存在着空隙,有的粉尘尘粒具有微孔,由于吸附作用,使得尘粒表面被一层空气所包围。
在此状态下测量出的粉尘体积,空气体积占了相当的比例,因而并不是粉尘本身的真实体积,根据这个体积数值计算出来的密度也不是粉尘的真密度,而是堆积密度。
为了排除空气,测量出粉尘的真实体积,可以采用比重瓶液相置换法。
比重瓶液相置换法是将一定质量的粉尘装入比重瓶中,并向瓶中加入液体浸润来粉尘,然后抽真空以排除尘粒表面及间隙中空气,使这些部分被液体所占据,从而求出粉尘的真实体积。
根据质量和体积即可算出粉尘的真密度。
粉尘真密度测定原理如图2-1所示。
图1 测定粉尘真密度原理示意图若比重瓶质量为m 0,容积为Vs ,瓶内充满已知密度为s ρ的液体,则总质量m 1为:s s V m m ρ+=01当瓶内加入质量为m c 、体积为V c 的粉尘试样后,瓶中减少了V c 体积的液体,故比重瓶的总质量m 2为:c c s s m V V m m +-+=)(02ρ根据上述两式可得到粉尘试样真实体积V c 为:scc m m m V ρ+-=21所以粉尘试样的真密度c ρ为:sc s c s c c c c m m m m m m V m ρρρ=-+==21 式中:m c -粉尘质量,gV c -粉尘真实体积,cm 3 m 1-比重瓶+液体的质量,g m 2-比重瓶+液体+粉尘的质量,g m s -排出液体的质量,g s ρ-液体的密度,g/cm 3【主要仪器及试剂】1.比重瓶:25ml ,3只 2.分析天平:0.1mg ,1台 3.真空干燥器:300mm ,1个 4.真空泵:真空度 > 0.9×105Pa ,1台 5.烘箱:0~150℃,1台 6.滴管:1支 7.烧杯:250ml ,1只8.滑石粉试样,蒸馏水,滤纸若干。
大气污染控制工程实验指导书实验一雷诺实验一、实验目的1、观察液体在不同流动状态时的流体质点的运动规律。
2、观察液体由层流变紊流及由紊流变层流的过渡过程。
3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。
二、实验要求1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。
2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。
3、仔细观察实验现象,记录实验数据。
4、分析计算实验数据,提交实验报告。
三、实验仪器1、雷诺实验装置(套),2、蓝、红墨水各一瓶,3、秒表、温度计各一只,4、卷尺。
四、实验原理流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u ,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。
此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。
雷诺数:γdu ⋅=Re 连续性方程:A •u=Q u=Q/A流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。
t VQ ∆= 42d A ⋅=π式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度五、实验步骤1、连接水管,将下水箱注满水。
2、连接电源,启动潜水泵向上水箱注水至水位恒定。
3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。
4、通过计量水箱,记录30秒内流体的体积,测试记录水温。
5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。
实验一粉尘粒径分布的测定一、实验的目的及意义通风与除尘中所研究的粉尘都是由许多大小不同粉尘粒子所组成的聚合体。
粉尘的粒径分布也叫分散度。
一般所指的分散度有计重分散度和计数分散度。
粉尘的分散度不同,它对人体到的危害以及除尘的机理也都不同,掌握粉尘的粒径分布是进行除尘器设计和研究的基本条件。
本实验要求使用粉尘计重分散度测定的方法来分析粉尘的粒径分布,并且通过实验掌握巴柯离心式粉尘分级仪的原理及操作方法。
二、实验测定的原理实验采用离心沉降法(Bahco分级仪),离心沉降法的工作原理是利用不同粉尘粒径的尘粒在高速旋转时,受到的惯性离心力不同,使尘粒分级。
实验图1-1巴柯(Bahco)离心式分级仪结构见实验图1—l。
试验粉尘放入容器1中,由其金属筛网阻留0.4(mm)以上的较大尘粒后,均匀进入加尘漏斗3,再经小孔4进入旋转通道5。
所谓旋转通道是依靠下部电动机10转旋时,在壳体和保护圈15的内部,除供料漏斗该部分不转动外,均发生转旋。
通道5上下圆盘均转动,故名旋转通道。
在离心力作用下,粉尘向外侧移动。
同时,在电动机10带动风机的辐射叶片l3旋转而要吸风与排风。
吸风空气由下部吸入口进入,经过节流装置8、均流片12、分级室7,再经风机的辐射叶斤13,而由气流出口6通过上部挡圈l4排出。
因此,尘粒由旋转通道5到达分级室7。
既要受到惯性离心力的作用向外流动,又要受到向内流入风机气流作用力的影响。
在粉尘的大小、形状及其密度不同时,粉尘所受到这两方面作用力大小也不同。
当粉尘的离心力大于空气向内流动作用力时,粉尘落到分级室7的下部储尘容器中成为筛留物。
另一部分粉尘其离心力小于空气向内流动作用力,则由风机叶轮13排出成为筛去物,其中部分粉尘沉积在上部挡圈14上。
尘粒在旋转通道和分级室处运动情况见实验图1—2。
气流细粒子实验图1-2 尘粒在旋转通道和分级室处运动情况吸入口宽度在圆柱状芯子11附近,由节流装置(风挡螺母)8的位置决定,利用节流片9的厚度大小可以变动节流装置8的位置,从而调整进入仪器的空气量。
大气污染控制工程实验指导书环境工程实验室第一部分粉尘性质的测定实验一、粉尘真密度测定一、 目的粉尘真密度是指密实粉尘单位体积的重量,即设法将吸附在尘粒表面及间隙中的空气排除后测的的粉尘自身密度P D .测定粉尘真密度一般采用比重瓶法,粉尘试样的质量可用天平称量,而粉尘物体的体积测量则由于粉尘吸附的气体及粒子间的空隙占据大量体积,故用简单的浸润排液的方法不能直接量得粉尘体积,而应对粉尘进行排气处理,使浸液充分充填各空隙及粉尘的空洞。
才能测得粉尘物质的真实体积。
二、 测试仪器和实验粉尘比重瓶、三通开关、分液漏斗、缓冲瓶、真空表、干燥瓶、温度计、抽气泵、被测粉尘、蒸馏水三、 测试步骤1.称量干净烘干的比重瓶mO 。
然后装入约1/3之一体积的粉尘,称得连瓶带尘重量mS 。
2.接好各仪器,组成真空抽气系统,将比重瓶接入抽气系统中,打开三通开关使比重瓶与抽气泵联通,启动抽气泵抽气约30分钟。
3.轻轻转动三通开关使分液漏斗与比重瓶联通。
(注意:不能将分液漏斗与抽气系统联通以免水进入抽气泵中)此时由于比重瓶中真空度很高,分液漏斗中的水会迅速地流入比重瓶中,注意只能让水注入瓶内2/3处,不能注满。
4.转动三通开关,再使比重瓶与抽气泵联通,启动抽气泵,轻轻振动比重瓶,这时可以看见粉尘中有残留气泡冒出,待气泡冒完后,停止抽气。
5.取下比重瓶,加满蒸馏水至刻度线,将瓶外檫干净后称其重量mSe 。
6.洗净比重瓶中粉尘,装满蒸馏水称其重量me 。
Pe mm m m mm P seeOSOSD •-+--=)(` g/cm3式中:mO 比重瓶自重g ; mS (比重瓶+粉尘)重g;mSe (比重瓶+粉尘+水)重g ; me (比重瓶+水)重g; Pe 测定温度下水的密度; Pp 粉尘的真密度 g/cm3四、 测定记录粉尘名称 电厂锅炉飞灰 粉尘来源 电厂 液体名称 自来水液体密度 1 g/cm3 测定温度 16o C 测定日期 2010/5/21平均真密度 g/cm3五、思考题:1.此法与先加水后抽气测真密度相比有什么不同,为什么?答:先加水后抽气测定真密度的结果会略小于该法。
粉尘粒径分布测定实验意义和目的:1、熟悉激光粒度分析仪的原理、操作和应用技术;2、掌握粉尘粒度的激光粒度分析方法。
实验原理:光在传播中,波前受到与波长尺度相当的隙孔或颗粒的限制,以受限波前处各元波为源的发射在空间干涉而产生衍射和散射,衍射和散射的光能的空间(角度)分布与光波波长和隙孔或颗粒的尺度有关。
用激光做光源,光为波长一定的单色光后,衍射和散射的光能的空间(角度)分布就只与粒径有关。
对颗粒群的衍射,各颗粒级的多少决定着对应各特定角处获得的光能量的大小,各特定角光能量在总光能量中的比例,应反映着各颗粒级的分布丰度。
按照这一思路可建立表征粒度级丰度与各特定角处获取的光能量的数学物理模型,进而研制仪器,测量光能,由特定角度测得的光能与总光能的比较推出颗粒群相应粒径级的丰度比例量。
采用湿法分散技术,机械搅拌使样品均匀散开,超声高频震荡使团聚的颗粒充分分散,电磁循环泵使大小颗粒在整个循环系统中均匀分布,从而在根本上保证了宽分布样品测试的准确重复。
实验设备1.标准筛(40至200目);2.Rise-2008型激光粒度分析仪。
主要技术参数1、测量范围:0.02~1200微米2、准确性误差:〈±3%(国家标准样品D50)3、重复性偏差:〈±3%(国家标准样品D50)4、电气要求:交流220±10V,50Hz, 200W5、外观尺寸:1000×330×320 mm6、重量:38KG仪器主要特点介绍:光源Rise-2008型激光粒度仪选用He-Ne气体激光光源,波长0.6328微米,波长短,线宽窄,稳定性好,使用寿命大于15000小时,能够很好的为系统提供稳定的激光源信号。
探测器Rise-2008型激光粒度仪光电探测系统设计独特,灵敏度高,主检测器一个,辅助检测器多个,采用非均匀性交叉三维扇形距阵排列,最大检测角可达到135 度,充分保证了信号探测的全面性。
光路Rise-2008型激光粒度仪采用一个量程设计,会聚光路独特,减少了傅立叶透镜组,使测量范围更宽,分辨率更高,误差降到了最小。
实验一总悬浮颗粒物TSP的测定实验一总悬浮颗粒物TSP的测定一、目的和要求1. 学习和掌握质量法测定大气中颗粒物的方法;2. 掌握大流量TSP采样器基本技术及采样方法。
二、原理测定总悬浮颗粒物的方法是基于重力原理制定的,国内外广泛采用称量法,即通过具有一定切割特性的采样器,以恒速抽取一定体积的空气,通过已恒重的滤膜,空气中粒径小于100 µm的悬浮颗粒物被阻留在滤膜上,根据采样前、后滤膜质量之差及采样体积,计算总悬浮颗粒物的质量浓度。
滤膜经处理后,可进行组分分析。
三、仪器与材料1.大流量TSP(PM10)采样器(流量1.05m3/min) 1台;2.X光看片机 1台,用于检查滤膜有无破损;3.温度计 1个;4.气压计 1个;5.滤膜储存袋若干,用于存放采样后对折的滤膜;6.滤膜保存盒若干,用于保存运送滤膜,保证滤膜在采样前处于平展、不受折状态;7.恒温恒湿箱一个,要求温度在15~30℃之间,温度变化±1℃,相对湿度应控制在(50±5)%;8.镊子 1把;9.分析天平1台;称量范围≥10g,感量 0.1 mg,再现性(标准差)≤0.2mg;10.超细玻璃纤维滤膜,根据采样器托盘大小选择合适的滤膜,不允许过大或过小。
四、实验步骤1.采样(1)每张滤膜使用前均需检查,不得使用有针孔或有任何缺陷的滤膜采样。
(2)采样滤膜在称量前需在恒温恒湿箱内平衡24h,然后在规定条件下迅速称量,读数准确至0.0001g,记下滤膜的编号和质量,将滤膜平展地放在光滑洁净的滤膜保存盒内备用。
采样前,滤膜不能弯曲或折叠。
(3)采样时,将已恒重的滤膜用小镊子取出,“毛”面向上.将其放在采样夹的网托上(网托事先用纸擦净),放上滤膜夹,对正,拧紧,使不漏气,安好采样器顶盖,然后开机采样,调节采样流量为1.05m3/min。
(4)采样开始后 5 min 和采样结束前 5 min 记录一次流量。
采样时间45min。
大气污染控制工程实验
大气污染已成为世界范围内的一个严重问题,对环境的破坏和人类健康的危害越来越严重。
因此,对大气污染的监测和控制已成为保护环境和人类健康的紧迫任务。
本次实验旨在介绍大气污染控制技术和方法,并通过实验课程使学生掌握各种污染控制技术的原理和应用,提高学生的实践操作能力和解决实际问题的能力。
本实验教学采用了综合性实验,包括污染源监测、大气污染控制技术实验、大气污染分析实验等方面内容,旨在通过手工测量、仪器监测、软件计算等方式来掌握大气污染物的测量方法和控制技术,理解污染物在大气中的传输和扩散规律,了解各种大气污染控制器的工作原理、结构和工作经验。
本次实验的主要内容包括(一)空气污染分析实验(二)空气污染监测实验(三)空气污染控制技术实验等方面。
实验过程中,学生们不仅能够了解到大气污染的危害和污染源的种类,还能够亲自实验体验到大气污染控制技术的应用效果,提高学生们在环境保护领域的综合素质和实践操作能力。
根据本实验教学的特点,我们需要具备以下的技能人才:
1. 具备污染源监测和大气污染控制技术实验的基本操作技能;
2. 熟悉大气污染物的主要来源和传输机理,掌握大气污染物的分析和监测方法;
3. 具备分析和评估大气污染治理技术和措施的能力,并掌握大气污染控制器的工作原理和结构。
正如实验教学的主旨所在,“实践出真知”,在本次实验中,同学们将深入了解到大气污染治理技术的应用与发展,全方位、多角度地提高学生成才率、就业竞争力。
大气污染控制工程实验三颗粒活性炭吸附净化气体中的乙酸乙酯1、实验目的和意义活性炭吸附广泛用于大气污染、水质污染和有毒气体的净化领域。
通常情况下,吸附法净化气态污染物系利用活性炭巨大比表面积所形成的良好物理吸附性能将废气中的污染气体分子吸附在活性炭表面,从而达到净化气体的目的。
通过变温吸附操作,可实现吸附剂的再生并可得到浓集污染物的气体以利于后续的回收或进一步处理。
本实验采用固定床吸附器,用颗粒活性炭作为吸附剂、吸附净化浓度约为3000~5000mg/m3的模拟乙酸乙酯废气,通过一定工况条件下的吸附穿透曲线的测定可计算出动态吸附量、不同床层高度下的保护作用时间、传质区高度和不饱和度等参数,增加对吸附放热过程的认识。
同时,通过热空气吹脱脱附实验可加深同学对变温吸附过程的认识。
通过实验应达到以下目的:1)深入理解吸附法净化有害废气的原理和特点。
2)加深对吸附传质过程和穿透曲线的理解。
3)掌握通过实验手段获得吸附床设计参数的方法。
4)加深对热脱附过程的理解。
2、实验原理活性炭通常是基于其较大的比表面积所形成的物理吸附性能来吸附气体中的乙酸乙酯的,产生物理吸附作用的力主要是分子间的引力。
含污染物气流通过颗粒活性炭床层后,由于吸附速率的因素,形成一个传质吸附区,在形成相对稳定的传质区后,传质区基本上沿气流方向向前恒速推进。
床尾出口气流浓度一开始保持不变,达到破点后,逐渐升高直到接近进口浓度。
本实验通过穿透曲线的测定和数据处理可加深对吸附传质过程的理解,通过对吸附床温度监测可增加对吸附放热的认识,同时,通过对床层热气体脱附过程的观察,加深对变温脱附过程的认识。
3实验装置、流程3.1实验流程实验流程及装置如图3.1 所示。
包括气体发生和计量系统,吸附柱(含底部加热)系统,采样及分析系统等。
1.主气流流量计2,3. 配气流量计;4. 配气混合装置;5.鼓泡气体发生器;6. 混合缓冲器;7.吸附塔;8. 再生加热器;9. 配气气泵;10主气泵;a, b, c, d,e,f ,g阀门;T1,T2,T3.T4,T5温度传感器系统不同阶段的阀门开闭状态情况:起始阶段配气(为方式配气过程中的气体发生吸附作用,设置旁路):关闭阀门a,d,f打开b,c,e,g吸附阶段:打开阀门b,d,e,f,g;关闭阀门a,c脱附阶段:打开阀门a,c,d,g;关闭阀门b,e,f图3.1 乙酸乙酯吸附台架实验装置本实验采用鼓泡法配制一定浓度的乙酸乙酯气体。
大气污染控制工程实验实验指导书实验一旋风除尘器性能测定一、实验意义和目的通过实验掌握旋风除尘器性能测定的主要内容和方法,并且对影响旋风除尘器性能的主要因素有较全面的了解,同时掌握旋风除尘器入口风速与阻力、全效率、分级效率之间的关系以及入口浓度对除尘器除尘效率的影响。
通过对分级效率的测定与计算,进一步了解粉尘粒径大小等因素对旋风除尘器效率的影响和熟悉除尘器的应用条件.二、实验原理(一)采样位置的选择正确地选择采样位置和确定采样点的数目对采集有代表性的并符合测定要求的样品是非常重要的。
采样位置应取气流平稳的管段,原则上避免弯头部分和断面形状急剧变化的部分,与其距离至少是烟道直径的1.5倍,同时要求烟道中气流速度在5m/s以上。
而采样孔和采样点的位置主要根据烟道的大小及断面的形状而定。
下面说明不同形状烟道采样点的布置。
1.圆形烟道采样点分布如图1(a)。
将烟道的断面划分为适当数目的等面积同心圆环,各采样点均在等面积的中心在线,所分的等面积圆环数由烟道的直径大小而定。
2.矩形烟道将烟道断面分为等面积的矩形小块,各块中心即采样点,见图1(b)。
不同面积矩形烟道等面积小块数见表1。
表1 矩形烟道的分块和测点数烟道断面面积(m2)等面积分块数测点数<1 2⨯2 41~4 3⨯3 94~9 4⨯3 123.拱形烟道分别按圆形烟道和矩形烟道采样点布置原则,见图1(c)。
(a)圆形烟道(b)矩形烟道(c)拱形烟道图1 烟道采样点分布图(二)空气状态参数的测定旋风除尘器的性能通常是以标准状态(P =l.013⨯l05Pa ,T =273K )来表示的。
空气状态参数决定了空气所处的状态,因此可以通过测定烟气状态参数,将实际运行状态的空气换算成标准状态的空气,以便于互相比较。
烟气状态参数包括空气的温度、密度、相对湿度和大气压力。
烟气的温度和相对湿度可用干湿球温度计直接测的;大气压力由大气压力计测得;干烟气密度由下式计算:TPT R P g ⋅=⋅=287ρ (1) 式中:ρg 一一烟气密度,kg/m ; P —一大气压力,Pa ; T —一烟气温度,K 。
实验过程中,要求烟气相对湿度不大于75%。
(三)除尘器处理风量的测定和计算 1.烟气进口流速的计算测量烟气流量的仪器利用S 型毕托管和倾斜压力计。
S 型毕托管使用于含尘浓度较大的烟道中。
毕托管是由两根不锈钢管组成,测端作成方向相反的两个相互平行的开口,如图2所示,测定时,一个开口面向气流,测得全压,另一个背向气流,测得静压;两者之间便是动压。
图2 毕托管的构造示意图 1-开口;2-接橡皮管由于背向气流的开口上吸力影响,所得静压与实际值有一定误差,因而事先要加以校正,方法是与标准风速管在气流速度为2~60m/s 的气流中进行比较,S 型毕托管和标准风速管测得的速度值之比,称为毕托管的校正系数。
当流速在5~30m/s 的范围内,其校正系数值约为0.84。
S 型毕托管可在厚壁烟道中使用,且开口较大,不易被尘粒堵住。
当干烟气组分同空气近似,露点温度在35~55︒C 之间,烟气绝对压力在0.99~1.03⨯105Pa 时,可用下列公式计算烟气入口流速:P T K v p 1 77.2= (2)式中:K p ——毕托管的校正系数,K p =0.84; T ——烟气底部温度,︒C ;P ——各动压方根平均值,Pa ;nP P P P n+⋅⋅⋅++=21 (3)P n —一任一点的动压值,Pa ;n —一动压的测点数,本实验取9。
测压时将毕托管与倾斜压力计用橡皮管连好,动压测值由水平放置的倾斜压力计读出。
倾斜压力计测得动压值按下式计算:P =L ⋅K ⋅υ (4)式中:L ——斜管压力计读数;K ——斜度修正系数,在斜管压力标出,0.2,0.3,0.4,0.6,0.8; υ——酒精比重,υ=0.81。
2.除尘器处理风量计算处理风量: Q = F 1⋅v 1 m 2/s (5) 式中:v 1——烟气进口流速,m/s ;F 1———一烟气管道截面积,m 2。
3.除尘器入口流速计算入口流速: v 2 = Q /F 2 (6) 式中:Q 一一处理风量,m 3/s ;F 2——除尘器入口面积,m 2。
(四)烟气含尘浓度的测定对污染源排放的烟气颗粒浓度的测定,一般采用从烟道中抽取一定量的含尘烟气,由滤筒收集烟气中颗粒后,根据收集尘粒的质量和抽取烟气的体积求出烟气中尘粒浓度。
为取得有代表性的样品,必须进行等动力采样,即指尘粒进入采样嘴的速度等于该点的气流速度,因而要预测烟气流速再换算成实际控制的采样流量。
图3为采样装置。
图3 烟尘采样装置1-采样嘴;2—采样管(内装滤筒);3—手柄; 4—橡皮管接尘粒采样仪(流量计+抽气泵)(五)除尘器阻力的测定和计算由于实验装置中除尘器进出口管径相同,故除尘器阻力可用B 、C 两点(见实验装置图,图12-4)静压差(扣除管道沿程阻力与局部阻力)求得。
∆P =∆H 一∑∆h =∆H 一(R L ⋅l +∆P m ) (7)式中:∆P ——除尘器阻力,Pa ;∆H ——前后测量断面上的静压差,Pa ; ∑∆h ——测点断面之间系统阻力,Pa ; R L ——比摩阻,Pa/m ; l ——管道长度,m ;∆P m ——异形接头的局部阻力,Pa 。
将∆P 换算成标准状态下的阻力∆P NPP T T P P NN N ⋅⋅∆=∆ (8)式中:T N 和T ——标准和试验状态下的空气温度,K ; P N 和P ——标准和试验状态下的空气压力,Pa ;除尘器阻力系数按下式计算:dlNP P ∆=ξ (9) 式中:ξ—一除尘器阻力系数,无因次; ∆P N ——除尘器阻力,Pa ;P dl ——除尘器内入口截面处动压,Pa 。
(六)除尘器进、出口浓度计算τ⋅=j j j Q G C (10)τ⋅-=z s j z Q G G C (11)式中:C j 和C z ——除尘器进口、出口的气体含尘浓度,g/m 3; G j 和G s —一发尘量与除尘量,g ;Q j 和Q z ——除尘器进口、出口烟气量,m 3/s ; τ ——发尘时间,s 。
(七)除尘效率计算:%100⨯=jsQ G η (12) 式中:η——除尘效率,%。
(八)分级效率计算:%100⨯=jisii g g ηη (13) 式中:ηi ——粉尘某一粒径范围的分级效率,%;g si ——收尘中某一粒径范围的质量百分数,%; g ji ——发尘中某一粒径范围的质量百分数,%;三、实验装置、流程和仪器 (一)实验装置、流程本实验装置如图4所示。
含尘气体通过旋风除尘器将粉尘从气体中分离,净化后的气体由风机经过排气管排入大气。
所需含尘气体浓度由发尘装置配置。
图4 旋风除尘器性能测定实验装置1-发尘装置;2—进气口;3-进气管;4-旋风除尘器;5-灰斗;6-排气管;图5:旋风除尘器实验系统(二)仪器1.倾斜微压计YYT-2000型2台2.U型压差计500-1000mm 2个3.毕托管2支4.烟尘采样管2支5.烟尘浓度测试仪2台6.干湿球温度计1支7.空盒气压计DYM-3 1台8.分析天平分度值0.0001g l台9.托盘天平分度值1g l台10.秒表2块11.钢卷尺2个四.实验方法和步骤(一)除尘器处理风量的测定1.测定室内空气干、湿球温度和相对湿度及空气压力,按式(l)计算管内的气体密度。
2.启动风机,在管道断面A处,利用毕托管和Y Y T-2000倾斜微压计测定该断面的静压,并从倾斜微压计中读出静压值(Ps),按式(5)计算管内的气体流量(即除尘器的处理风量),并计算断面的平均动压值(P d )。
(二)除尘器阻力的测定1.用U型压差计测量B、C断面间的静压差(△H)。
2.量出B、C断面间的直管长度(l)和异形接头的尺寸,求出B、C断面间的沿程阻力和局部阻力.3.按式(7)、(8)计算除尘器的阻力。
(三)除尘效率的测定滤筒的预处理。
测试前先将滤筒编号,然后在105︒C烘箱中烘2小时,取出后置于干燥器内冷却20分钟,再用分析天平测得初重并记录。
把预先干燥、恒重、编号的滤筒用镊子小心装在采样管的采样头内,再把选定好的采样嘴装到采样头上。
调节流量计使其流量为某采样点的控制流量,将采样管插入采样孔,找准采样点位置,使采样嘴背对气流预热10分钟后转动180︒,即采样嘴正对气流方向,同时打开抽气泵的开关进行采样。
按各点的流量和采样时间逐点采集尘样。
各点采样完毕后,关掉仪器开关,抽出采样管,待温度降下后,小心取出滤筒保存好。
采尘后的滤筒称重。
将采集尘样的滤筒放在l05℃烘箱中烘两小时,取出置于玻璃干燥器内冷却20分钟后,用分析天平称重。
将结果记录在表12-4中。
1.用托盘天平称出发尘量(Gj)。
2.通过发尘装置均匀地加人发尘量(Gj),记下发尘时间(τ),按式(10)计算出除尘器入口气体的含尘浓度(Cj)。
3.称出收尘量(Gs),按式(11)计算出除尘器出口气体的含尘浓度(Cz)。
4.按式(12)计算除尘器的全效率(η).(四)改变调节阀开启程度、重复以上实验步骤,确定除尘器各种不同的工况下的性能。
五、实验数据的计算和处理(一)除尘器处理风量的测定实验时间年月日空气干球温度(t d)℃;空气湿球温度(t w)℃;空气相对湿度(中)%;空气压力(P)__一Pa;空气密度(Pg)一一Kg/m。
将测定结果整理成表(见表2)(二)除尘器效率的测定(见表3)表3 除尘器效率测定结果记录表六、实验结果讨论1.通过实验,你对旋风除尘器全效率(η)和阻力(△P)随入口气速变化规律得出什么结论?它对除尘器的选择和运行使用有何意义?2.实验装置对除尘器的运行使用有何意义?实验二 袋式除尘器性能测定一、实验意义和目的 通过本实验,进一步提高对袋式除尘器结构形式和除尘机理的认识;掌握袋式除尘器主要性能的实验方法;了解过滤速度对袋式除尘器压力损失及除尘效率的影响。
二、实验原理袋式除尘器性能与其结构形式、滤料种类、清灰方式、粉尘特性及其运行参数等因子有关。
本实验是在其结构形式、滤料种类、清灰方式和粉尘特性已定的前提下,测定袋式除尘器主要性能指针,并在此基础上,测定运行参数Q 、v F 对袋式除尘器压力损失(∆P )和除尘效率(η)的影响。
(一)处理气体流量和过滤速度的测定和计算 1.处理气体流量的测定和计算(1)动压法测定:测定袋式除尘器处理气体流量(Q ),应同时测出除尘器进出口连接管道中的气体流量,取其平均值作为除尘器的处理气体量:)(2121Q Q Q +=(m 3/s ) (1) 式中:Q 1、Q 2——分别为袋式除尘器进、出口连接管道中的气体流量,m 3/s 。
除尘器漏风率(δ)按下式计算:100121⨯-=Q Q Q δ (%) (2) 一般要求除尘器的漏风率小于±5%。