铸钢托轮铸造工艺模拟
- 格式:pdf
- 大小:4.91 MB
- 文档页数:4
攀枝花学院本科课程设计(论文)铸钢齿轮熔模铸造工艺设计学生姓名唐洪学生学号: ************ 院(系):材料工程学院年级专业: 10级材料成型及控制工程指导教师:范兴平博士助理指导教师:范兴平讲师二〇一三年十一月攀枝花学院本科学生课程设计任务书课程设计(论文)指导教师成绩评定表摘要熔模铸造在我国具有悠久的历史。
它是一种少切削或无切削的铸造工艺,铸造行业中的一项优异的工艺技术,是一种无分型面的特种铸造方法。
熔模铸造是用一种易形成模样的材质如石蜡等做成零件的模型,然后在表面涂一层耐火材料和型砂形成一个模壳,经过脱蜡后对壳进行焙烧使壳具有一定的强度,然后进行浇注,经冷却落砂后生产出产品。
本课程设计主要是对齿轮的熔模铸造进行了设计,对齿轮的材料进行了分析,和在铸造中遇到的一系列问题,并一一进行处理。
在模料的选择中进行了分析并列举了制模的操作步骤等。
关键字:熔模铸造,齿轮,工艺设计目录摘要 (Ⅰ)1.零件分析 (1)1.1齿轮的形状分析 (1)1.2 齿轮材质分析 (1)2.选择基准面…………………………………………………………………………3.制模工部设计………………………………………………………………………3.1模料选择……………………………………………………………………………3.2制模设备与工艺…………………………………………………………………… 3.2.1制模设备………………………………………………………………………3.2.2蜡膏制备………………………………………………………………………3.2.3制模工艺………………………………………………………………………3.2.4压型制造………………………………………………………………………3.3蜡模修整………………………………………………………………………………4.制壳工部设计…………………………………………………………………………4.1 耐火材料选择………………………………………………………………………4.2涂料的配置及操作程序…………………………………………………………… 4.3 制壳………………………………………………………………………………4.4 脱蜡和型壳焙烧…………………………………………………………………5.熔炼工部设计…………………………………………………………………………5.1 熔炼操作步骤………………………………………………………………………6.浇注工部设计……………………………………………………………………………7.落纱清理及质检工部设计………………………………………………………………8.铸件表面处理方案的选择………………………………………………………………9.结束语……………………………………………………………………………………10.参考文献…………………………………………………………………………………1 零件分析1.1齿轮形状分析齿轮的外圆直径为φ258.26mm,宽为60mm,轮毂上有均匀分布的六个直径为φ40mm的孔,齿轮中心孔的直径为50mm。
铝合金轮毂铸造工艺设计与仿真分析摘要:以某轮毂为基准,采用 UG 软件对轮毂模具进行设计。
以 A356.0-T6 铝合金作为轮毂轻量化材料,应用有限元技术,建立轮毂的挤压铸造模型,对铝合金轮毂压铸充型工艺进行数值模拟,并验证了铝合金轮毂铸造工艺设计的合理性。
关键词:有限元技术;铝合金轮毂;铸造工艺;模具0 引言铝合金因其密度小,强度高,可塑性好,导热性能好和易加工性而被广泛应用于航空、航天、机械制造、船舶等一类有色金属结构材料中。
采用铝合金制造的轮毂重量较钢轮毂轻得多,且具有能耗低,散热快,坚固耐用且寿命较长等特点,适合现代行业发展的要求,但是铝合金轮毂的铸造也存在着成形难以控制,铸造缺陷较多等问题,严重限制其在轮毂上的应用。
随着计算机技术在产品设计和制造中的应用与发展,新产品的开发和制造能力得到显著提高,建立工程计算模型并通过铸造数值模拟软件对铸造工艺进行模拟分析,设计合理铸造工艺参数,可有效地降低铸造缺陷产生概率、缩短产品开发周期、提高产品设计质量、降低产品生产成本。
1 轮毂结构及其模具设计1.1 轮毂材料及结构A356.0-T6 铝合金是典型的 Al-Si-Mg 系合金,具有良好的铸造性能,并且强度、屈服强度与可塑性等综合力学性能都很好,可满足轮毂尺寸精度与外观设计等要求,比其他型号的铸造铝合金更适合轻合金轮毂的制造要求。
如表 1 与表 2 所示分别表述了 A356.0-T6 铝合金的组成元素及含量、热熔融性能与物理机械性能。
1.2 轮毂模具设计由于轮毂中有沉孔和凹坑的存在,使铸型分型面无法与铸件完全相交,很可能引起模具体积块分割失败,如果采用传统的分型面方法,需要对分型面上沉孔和凹坑作修补才能达到分型面闭合的目的。
本文则采用侧面影像曲线方法来提取零件的最大轮廓线,在创建形成轮辐及风孔的上下箱分型面时,需要在轮毂三维模型内部创建一个与轮毂轮圈壁相切的辅助曲面,以确保上下箱开合时不会发生干涉,同时在设计该曲面时还要考虑拔模斜度的影响,否则模具的分离会失败。
端盖铸造模拟课程设计一、课程目标知识目标:1. 学生能理解端盖铸造的基本概念,掌握铸造过程中金属流动、冷却、凝固等基本原理。
2. 学生能掌握端盖铸造工艺参数对铸件质量的影响,如浇注系统设计、模具温度、浇注速度等。
3. 学生能了解并描述端盖铸造过程中可能出现的缺陷类型及其产生原因。
技能目标:1. 学生能运用计算机软件进行端盖铸造模拟,分析铸造过程可能出现的问题,并提出改进方案。
2. 学生能运用所学知识,设计合理的端盖铸造工艺参数,提高铸件质量。
情感态度价值观目标:1. 学生通过课程学习,培养对铸造工艺的热爱,增强对制造行业的认同感。
2. 学生能够认识到团队合作的重要性,培养协同解决问题的能力。
3. 学生能够关注铸造行业的发展,关注环境保护和资源利用,树立绿色生产的理念。
课程性质分析:本课程为实践性较强的课程,旨在通过端盖铸造模拟,让学生更好地理解铸造原理,掌握铸造工艺,提高解决实际问题的能力。
学生特点分析:学生处于高年级阶段,具备一定的学科基础和动手能力,对实践性课程有较高的兴趣。
教学要求:1. 教师应注重理论联系实际,引导学生运用所学知识解决实际问题。
2. 教师应鼓励学生积极参与讨论,培养学生的创新意识和团队协作能力。
3. 教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。
二、教学内容1. 端盖铸造基本原理:包括金属流动、冷却、凝固等基本过程,铸件收缩、应力与变形等内容,对应教材第3章。
2. 端盖铸造工艺参数:浇注系统设计、模具温度、浇注速度等参数对铸件质量的影响,对应教材第4章。
3. 端盖铸造缺陷分析:介绍常见缺陷类型(如气孔、夹渣、裂纹等)及其产生原因,对应教材第5章。
4. 铸造模拟软件应用:教授学生使用计算机软件进行端盖铸造模拟,分析铸造过程可能出现的问题,并提出改进方案,对应教材第6章。
5. 端盖铸造工艺设计:指导学生运用所学知识,设计合理的端盖铸造工艺参数,提高铸件质量,对应教材第7章。
一、基本操作流程CAD Model建构实体模型Preprocessor模流前办理MeshingParameters 实体切网格参数设定Postprocessor模流后办理AnalysisDecision 结果剖析相应付策图( 1_1 )建构正确的实体模型是进行剖析工作的重点。
把实体分为不一样的组,变换为 .stl 档,为MAGMA剖析做好准备。
如图( 1_1 )所示:黑色字体是使用MAGMA 的操作步骤;红色字体是剖析的先期工作和后期对策。
二、MAGMA的操作1、创立专案图( 2_1 )图( 2_2 )图( 2_3 )图( 2_4 )专案名称.stl 档图( 2_5 )说明:图( 2_1)翻开桌面图标project 菜单create project 出现新对话框图( 2_2)选择 Iron casting 铸铁模组选择结果寄存路径( MAGMAsoft下)取分析方案名称回车键OK 出现新对话框图(2_3)默认系统选择直接按红框所标的键,直到图(2_4),按OK键结束创立专案操作。
如图( 2_5 )的路径,把成立好的 .stl 档存在 CMD 文件夹下。
2、前办理2-1 、材质群组介绍Z 轴正向Inlet 1、砂模( sandm)2、灌口( inlet)3、浇道( gating)4、浇道( gating)Gating CoreGatingFeederIngate5、冒口( feeder)6、冒口( feeder)7、入水口( ingate)8、入水口( ingate)9、砂芯( core)10、冷铁(chill)11、铸件(cast)chill图( 2_6 )在载入时必定要保证重力方向向上,如图(2_6 )所示。
一般在实体建模时便给出正确的重力方向。
假如方向错误也可在MAGMA 内改正。
(见后边说明)砂模能够在建构实体时绘出,也能够在MAGMA 内绘制出。
后边有进一步说明。
2-2、OVERLAY 原理1.CAST 1.INGATE排序2.INGATE 2.GATINGCAST3.GATING CAST 3.CASTCAVITY INSERTCAVITY INSERTINGATEINGATEGATINGGATING图( 2_7 )图(2_8)在建构实体时有一些地区重合。
铸造实验报告书1. 实验目的本实验旨在通过铸造实验,了解金属铸造的基本原理和工艺流程,培养学生的实际操作能力,加深对于金属材料特性的理解。
2. 实验设备和材料设备:- 高温炉- 铸模- 快速冷却设备材料:- 铸造合金(本实验使用的是铝合金)- 铸模材料(本实验使用的是石膏模具)3. 实验步骤步骤一:准备工作1. 将铸造合金(铝合金)放入高温炉中进行预热,使其达到熔点。
2. 准备好石膏模具,确保模具内表面干燥清洁。
步骤二:铸模准备1. 将铸模放入高温炉中进行预热,以避免冷却速度过快导致铸件结构不均匀。
2. 当石膏模具达到合适温度后,取出高温炉,立即将熔化的金属倒入铸模中。
步骤三:冷却处理1. 铸模中的熔化金属开始冷却固化,此时可以使用快速冷却设备降低温度,加快冷却速度。
2. 等待足够时间,直到铸件冷却完全固化为止。
4. 实验结果与讨论经过以上实验步骤,我们成功完成了一次铸造实验,并获得了如图所示的铸件。
经过观察,铸件整体形状良好,表面呈现光滑平整的状态。
然而,我们也发现了一些潜在问题,例如:1. 铸件表面出现微小气孔,可能是由于石膏模具的气体释放不彻底导致的。
2. 铸件的某些部位出现缺陷,可能是由于熔化金属的流动性不佳导致的。
针对这些问题,我们可以进一步优化实验流程,改进铸造工艺,以获得更加理想的铸件。
5. 实验结论通过本次铸造实验,我们深入了解了金属铸造的基本原理和工艺流程,通过实际操作也体会到了其中的挑战和困难。
在实验中,我们成功获得了铝合金铸件,对于铸造技术的应用和发展有了更深入的认识。
然而,在铸造过程中也遇到了一些问题和挑战,这也提示我们仍有许多工作需要进一步完善和改进。
我们应该不断学习和探索,提高实际操作技能,以逐步提升铸造工艺的质量。
6. 参考文献暂无以上是本次铸造实验的实验报告书,谢谢阅读!。
第1篇一、实验背景手工铸造作为一种古老的金属加工技术,在我国有着悠久的历史。
它通过将金属熔化后倒入预先准备好的模具中,待金属凝固后形成所需的形状。
本次实验旨在通过手工铸造的方法,让学生了解和掌握铸造的基本原理、工艺过程及注意事项,提高学生的实践操作能力和创新思维。
二、实验目的1. 了解手工铸造的基本原理和工艺过程;2. 掌握铸造工具和设备的使用方法;3. 学会熔炼金属、浇注、冷却和清理等操作;4. 分析铸造过程中可能出现的缺陷,并提出改进措施。
三、实验内容及步骤1. 准备工作:选择合适的金属材料,如铝、铜、锌等;准备铸造模具、熔炉、浇注系统、冷却设备等。
2. 熔炼金属:将金属放入熔炉中,加热至熔化状态。
注意控制温度,防止金属氧化。
3. 浇注:将熔化的金属倒入预先准备好的模具中。
注意控制浇注速度,防止气泡和夹杂物的产生。
4. 冷却:将模具放置在冷却设备上,等待金属凝固。
注意控制冷却速度,防止铸件产生热裂和变形。
5. 清理:将铸件从模具中取出,清理表面的砂粒、氧化皮等杂质。
6. 性能测试:对铸件进行力学性能、金相组织等方面的测试,分析其质量。
四、实验结果与分析1. 铸造过程顺利,铸件形状、尺寸基本符合要求。
2. 铸件表面质量较好,无明显砂眼、气孔等缺陷。
3. 铸件力学性能达到设计要求,金相组织符合预期。
4. 部分铸件出现轻微的热裂现象,经分析,可能是冷却速度过快或模具设计不合理所致。
五、实验总结1. 手工铸造是一种重要的金属加工方法,具有操作简便、成本低廉等优点。
2. 在实验过程中,要严格遵守操作规程,确保实验安全。
3. 熔炼金属时,要注意控制温度,防止金属氧化。
4. 浇注过程中,要控制浇注速度,避免气泡和夹杂物的产生。
5. 冷却过程中,要控制冷却速度,防止铸件产生热裂和变形。
6. 铸造模具的设计对铸件质量有很大影响,要充分考虑模具的刚度和强度。
7. 通过本次实验,使学生掌握了手工铸造的基本原理和工艺过程,提高了实践操作能力。
压力铸造生产虚拟仿真综合实验实验报告
压力铸造是一种重要的金属成型工艺,广泛应用于汽车、航空、机械等行业。
传统的压力铸造生产过程需要大量的实验和试验,而且成本高、周期长、效率低。
为了提高压力铸造生产的效率和质量,压力铸造生产虚拟仿真技术应运而生。
本次实验采用了压力铸造生产虚拟仿真技术,通过建立压力铸造模型,进行了一系列仿真实验。
我们建立了压力铸造模型。
根据实际生产情况,我们采用了SOLIDWORKS软件建立了一个三维模型。
该模型可以模拟铸件的结构和几何形状,并可以进行参数化设计和优化。
同时,我们还建立了模具和注塑机模型,可以对模具和注塑机进行设计和优化。
我们对压力铸造过程进行了仿真实验。
在仿真实验中,我们可以对铸件的填充、凝固和收缩进行模拟,同时可以对模具和注塑机的运动进行模拟。
通过仿真实验,我们可以优化模具和注塑机的设计,提高铸件的质量和生产效率。
我们对压力铸造生产的各个环节进行了优化和改进。
通过实验,我们发现在压力铸造过程中,填充速度和温度是影响铸件质量的关键因素。
因此,在实际生产中,我们可以通过调整填充速度和温度来控制铸件的质量。
同时,我们还可以通过优化模具和注塑机的设计,
降低生产成本,提高生产效率。
压力铸造生产虚拟仿真技术是一种非常有效的生产工具,可以帮助企业提高生产效率和质量。
通过本次实验,我们深入了解了压力铸造生产虚拟仿真技术的原理和应用,对于今后的生产实践具有重要的参考价值。
大型离心铸造机工艺要求与设计大型离心铸造机大多用来生产轧辊。
在离心铸造中,铸型(也称管模)的转速非常重要,尤其在轧辊生产中,需要二次浇注(添芯),特别要求转速与时间及温度的严格控制。
为满足轧辊的铸造工艺要求,我们为大型离心铸造机设计了控制系统,该系统实时控制且动态跟踪,精确控制离心铸造轧辊的工艺过程。
过去的大型离心机的控制系统,大多采用开环自动/半自动控制、电磁调速系统,工作稳定性差,人工因素多。
我们通过对硬件及软件的改进设计,采用西门子交流变频器(6SE70系列)或直流调速系统(6RA70系列),传感器输入温度、转速及主机振动测量信号,可编程控制器经过实时计算,只要在界面上设置相应的工作参数,就能自动跟踪设定的工艺曲线;整个生产过程实现了真正的闭环、自动跟踪控制,消除了人工干预多和其它因素的影响,提高了产品质量和生产效率。
1 大型离心铸造机的主要工艺参数(1)初始增速速度:离心机从静止开始升到浇注要求的转速;(2)保持凝固速度:浇注后离心机保持的转速;(3)停机减速速度:减速停机的转速即停机转速。
2 系统硬件硬件由工控机,可编程控制器PLC,模拟量输入、输出,直流调速装置或交流变频器及外围设备组成。
图1为大型离心机的控制系统框图。
工控机主要通过PLC完成离心铸造机远程实时监控和管理报表的制作,对现场的离心机转速、型腔金属液温度、轴承温度、离心铸造机振动的工作状态进行实时监控。
离心铸造过程中,计算机可以连续自动记录铸型中金属液的温度曲线。
工作原理:由界面设置离心铸造机主要工艺参数或调出原有产品的工艺参数,符合当前的产品时,则显示当前产品的控制曲线,按实际需要确认,通过控制按钮分别发出开始浇注、一次浇注、二次浇注等信号;PLC依据产品的工艺参数及通过现场模拟量输入得到当前离心铸造机的实际转速,经过计算,通过模拟量输出一个实际需要的转速,同时通过模拟量输入的离心机振动信号、温度信号,实时诊断离心铸造机的工作状态;离心铸造机的电机工作电流信号实时诊断离心机的负荷大小,实时显示其产品的工作曲线,确认产品的质量。
铸造工艺实训指导书1. 工艺实训的内容及目的熔模精密铸造是在古代蜡模铸造的基础上发展起来的,作为文明古国,中国是使用这一技术较早的国家之一,远在公元前数百年,我国古代劳动人民就创造了这种失蜡铸造技术,用来铸造带有各种精细花纹和文字的钟鼎及器皿等制品,如春秋时的曾侯乙墓尊盘等。
现代熔模铸造方法在工业生产中得到实际应用是在二十世纪四十年代,航空工业的发展推动了熔模铸造的应用,而熔模铸造的不断改进和完善,也为航空工业和其他各行业进一步发展创造了有利的条件。
本实训旨在通过工艺品熔模铸造,使学生切实进行铸造产品从零件工艺性分析、模具制作、铸型制备、工艺设计、浇注、清理等生产全过程训练,真正达到提高本专业学生工程实践动手能力的目的。
2 工艺品制作工艺方案的设计与选择2.1 工艺品选择及工艺性分析熔模铸造具有铸件尺寸精度及表面光洁度较高,浇注金属类型范围广,生产批量无限制等优点。
工艺品可自己选择,在实验教师指导下完成工艺性分析。
2.2 工艺品制作工艺方案的选择工艺品原型(举例):图2.1 工艺品原型图2.2 工艺品制作工艺方案设计工艺品制作的工艺流程为:将设计好的作品(工艺品原型),以硅胶加硅油按适当比例,用油漆刷均匀分层涂刷在工艺品上,使工艺品平均刷满硅胶。
硅胶和硅油必须有适当的比例,才能有良好的韧性与耐用性。
如果急欲完成硅胶模,加了过量的硅油或硬化剂,虽可大大地缩短硅胶凝固成型时间,却会造成硅胶延展性不够。
在取工艺品蜡模时,极易拉断蜡模,从而无法做出完整精细的作品,所以一定要小心取蜡模;同时,硅胶模易脆化、使用次数不多,所以也要耐心等待硅胶模自然成型后再小心脱模。
要确保硅胶模有良好的韧性和延展性的关键是:必须分层次地将调好的硅胶油很平均地刷在粗细不一的工艺品表面。
虽作品粗细不一,但均须使硅胶模均匀成型,一层干了之后,再刷第二层、第三层,直至达到均匀涂层的硅胶模,才是一个适于创作的、耐用的好模。
工艺品原型我们称之为阳模;而利用硅胶涂布其上成型的,称之为阴模(内部空心)。