数字信号处理实验二报告
- 格式:doc
- 大小:156.00 KB
- 文档页数:8
数字信号处理实验报告实验二应用快速傅立叶变换对信号进行频谱分析2011年12月7日一、实验目的1、通过本实验,进一步加深对DFT 算法原理合基本性质的理解,熟悉FFT 算法 原理和FFT 子程序的应用。
2、掌握应用FFT 对信号进行频谱分析的方法。
3、通过本实验进一步掌握频域采样定理。
4、了解应用FFT 进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT 。
二、实验原理与方法1、一个连续时间信号)(t x a 的频谱可以用它的傅立叶变换表示()()j t a a X j x t e dt +∞-Ω-∞Ω=⎰2、对信号进行理想采样,得到采样序列()()a x n x nT =3、以T 为采样周期,对)(n x 进行Z 变换()()n X z x n z +∞--∞=∑4、当ωj ez =时,得到序列傅立叶变换SFT()()j j n X e x n e ωω+∞--∞=∑5、ω为数字角频率sT F ωΩ=Ω=6、已经知道:12()[()]j a m X e X j T T Tωωπ+∞-∞=-∑ ( 2-6 )7、序列的频谱是原模拟信号的周期延拓,即可以通过分析序列的频谱,得到相应连续信号的频谱。
(信号为有限带宽,采样满足Nyquist 定理)8、无线长序列可以用有限长序列来逼近,对于有限长序列可以使用离散傅立叶变换(DFT )。
可以很好的反映序列的频域特性,且易于快速算法在计算机上实现。
当序列()x n 的长度为N 时,它的离散傅里叶变换为:1()[()]()N knN n X k DFT x n x n W-===∑ 其中2jNN W eπ-=,它的反变换定义为:101()[()]()N knN k x n IDFT X k X k W N --===∑比较Z 变换式 ( 2-3 ) 和DFT 式 ( 2-7 ),令kN z W -=则1()()[()]|kNN nkN N Z W X z x n W DFT x n ---====∑ 因此有()()|kNz W X k X z -==k N W -是Z 平面单位圆上幅角为2kNπω=的点,也即是将单位圆N 等分后的第k 点。
实验二 时域采样与频域采样1. 实验目的:(1) 掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息。
(2) 掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
(3) 会用MATLAB 语言进行时域抽样与信号重建的方法,以及频域抽样与恢复时程序的编写方法。
2. 实验原理:了解时域采样定理的要点,理解理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系,了解频域采样定理的要点,掌握这两个采样理论的结论:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。
3. 实验内容:(1)时域采样理论的验证。
给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A=444.128,α=502π,0Ω=502πrad/s(2)用DFT(FFT)求该模拟信号的幅频特性,选取三种采样频率,以验证时域采样理论。
(3)编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。
观察分析频谱混叠失真。
(4)频域采样理论的验证。
给定信号如下:⎪⎩⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x(5)编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和,再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和。
(6)分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x(n)、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论。
4. 思考题:如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时, 如何用一次最少点数的DFT 得到该频谱采样?答:将长序列分段分段计算,这种分段处理方法有重叠相加法和重叠保留法两种。
实验一信号、系统及系统响应一、实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定的理解。
2、熟悉时域离散系统的时域特性。
3、利用卷积方法观察分析系统的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二、实验原理采样的的过程既是连续信号离散化的过程。
采用单位冲击串进行采样,为使采样信号能不失真的还原为采样前的信号,根据奈奎斯特采样率,采样频率应该大于信号最高频率的2倍。
因为时域的采样既是对时域的离散化处理,时域离散频域会进行周期延拓,为了防止频域频谱混叠,必须满足奈奎斯特采样定律。
线性卷积的过程为:反褶,移位,相乘,相加。
设一个N1点的序列与一个N2的序列进行卷积则得到N1+N2-1点的序列。
时域卷积,对应频域的相乘。
序列的傅里叶变换即DTFT 。
具有的性质有: 线性,移位性,对偶性,等等。
三、实验内容及步骤1)分析采样序列的特性。
产生采样序列()a x n ,A 444.128=,a =,0Ω=。
a 、 取采样频率s f 1kHz =,即T 1ms =。
观察所采样()a x n 的幅频特性()j X e ω和)(t x a 的幅频特性()X j Ω在折叠频率处有无明显差别。
应当注意,实验中所得频谱是用序列的傅立叶变换公式求得的,所以在频率量度上存在关系:T ω=Ω。
b 、改变采样频率,s f 300Hz =,观察()j X eω的变化并做记录。
c 、 进一步降低采样频率,s f 200Hz =,观察频谱混叠是否明显存在,说明原因,并记录()j X e ω的幅频曲线。
上图是采用不同采样频率时所得到的序列及其对应的傅里叶变换,从图中可以看到,当采样频率比较低时,频谱会发生混叠,且频率越低,混叠现象越明显。
增大采样频率可以有效地防止混叠。
2) 离散信号、系统和系统响应分析。
a 、观察信号()b x n 和系统h ()b n 的时域和频域持性;利用线形卷积求信号()b x n 通过系统h ()b n 的响应y(n),比较所求响应y(n)和h ()b n 的时域及频域特性,注意它们之间有无差异,绘图说明,并用所学结论解释所得结果。
数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
塔里木大学计算机基础课程实验报告1、 掌握matlab 的使用方法; 2、 掌握环境变量的配置;3、 能写出一个最简单的matlab 程序,并运行。
二、实验内容1.完成146-150设计实例程序,分析对比五种滤波器的幅度特点、滤波性能。
1)、巴特沃斯滤波器 wp=2*pi*1000; ws=2*pi*5000; Rp=1;As=40;[N,wc]=buttord(wp,ws,Rp,As,'s') [B,A]=butter(N,wc,'s') Freqs(B,A)103104105-200-1000100200Frequency (rad/s)P h a s e (d e g r e e s )10310410510-510Frequency (rad/s)M a g n i t u d e2)、切比雪夫I 、II 型滤波器 clearwp=2*pi*1000;ws=2*pi*5000;Rp=1;As=40;[N1,wp1]=cheb1ord(wp,ws,Rp,As,'s');[B1,A1]=cheby1(N1,Rp,wp1,'s');[N2,ws2]=cheb2ord(wp,ws,Rp,As,'s');[B2,A2]=cheby2(N2,As,ws2,'s');input('切比雪夫I型模拟低通滤波器阶数:')N1input('切比雪夫I型模拟低通滤波器通带边界频率:')wp1input('切比雪夫I型模拟低通滤波器系统函数分子分母多项式系数:') B1A1input('切比雪夫II型模拟低通滤波器阶数:')N2input('切比雪夫II型模拟低通滤波器通带边界频率:')ws2input('切比雪夫II型模拟低通滤波器系统函数分子分母多项式系数:') B2A2freqs(B1,A1)切比雪夫I型模拟低通滤波器阶数:N1 =3切比雪夫I型模拟低通滤波器通带边界频率:wp1 =6.2832e+003切比雪夫I型模拟低通滤波器系统函数分子分母多项式系数:B1 =1.0e+011 *0 0 0 1.2187A1 =1.0e+011 *0.0000 0.0000 0.0005 1.2187切比雪夫II型模拟低通滤波器阶数:N2 =3切比雪夫II型模拟低通滤波器通带边界频率:ws2 =2.3441e+004切比雪夫II型模拟低通滤波器系统函数分子分母多项式系数:B2 =1.0e+011 *0 0.0000 -0.0000 5.1524 A2 =1.0e+011 *0.0000 0.0000 0.0012 5.1524102103104105-200-1000100200Frequency (rad/s)P h a s e (d e g r e e s )10210310410510-410-210Frequency (rad/s)M a g n i t u d e102103104105-200-1000100200Frequency (rad/s)P h a s e (d e g r e e s )10210310410510-410-210Frequency (rad/s)M a g n i t u d e3)、椭圆滤波器 clearwp=2*pi*1000;ws=2*pi*5000;Rp=1;As=40; [N,wpo]=ellipord(wp,ws,Rp,As,'s'); [B,A]=ellip(N,Rp,As,wpo,'s') freqs(B,A)102103104105-200-1000100200Frequency (rad/s)P h a s e (d e g r e e s )10210310410510-410-210Frequency (rad/s)M a g n i t u d e4)、贝塞尔滤波器 clearN=3;wp=2*pi*1000; [B,A]=besself(N,wp) freqs(B,A)102103104105-200-1000100200Frequency (rad/s)P h a s e (d e g r e e s )10210310410510-410-210Frequency (rad/s)M a g n i t u d e分析:2.完成153-158设计实例程序分别分析幅频特性及滤波性能。
本科学生实验报告学号124090314 姓名何胜金学院物电学院专业、班级12电子实验课程名称数字信号处理(实验)教师及职称杨卫平开课学期第三至第四学年下学期填报时间2015 年 3 月 1 9 日云南师范大学教务处编印2.产生幅度调制信号x[t]=cos(2t)cos(200t),推导其频率特性,确定抽样频率,并会出波形。
程序: clc,clear,close all t=[0:0.01:5];x=cos(2*pi*t).*cos(200*pi*t); plot(t,x);clc,clear,close allt0=0:0.001:0.1;x0=0.5*(cos(202*pi*t0)+cos(198*pi*t0)); plot(t0,x0,'r') hold on fs=202;t=0:1/fs:0.1;x=0.5*(cos(202*pi*t)+cos(198*pi*t)); stem(t,x);3.对连续信号x[t]=cos(4t)进行抽样以得到离散序列,并进行重建。
(1)生成信号x(t),时间为t=0:0.001:4,画出x(t)的波形。
程序clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0 ,x0,'r');(2)以faam=10HZ对信号进行抽样,画出在0≤t≤1范围内的抽样序列,x[k],利用抽样内插函数恢复连续时间信号,画出重逢信号的波形。
程序:clc,clear,close all t0=0:0.001:3; x0=cos(4*pi*t0); plot(t0,x0); hold onfs=10;t=0:1/fs:3; x=cos(4*pi*t); stem(t,x);4.若x[k]是对连续信号x(t)=cos(0.5t)以samf=2Hz抽样得到的离散序列,如何通过在抽样点之间内插,恢复原连续时间信号x(t)?程序:clc,clear,close all t=0:0.0001:4; x=cos(0.5*pi*t); plot(t,x); Figure1:clc,clear,close allt=0:0.0001:4; x=cos(0.5*pi*t); subplot(2,1,1); plot(t,x);t0=0:0.5:4;x0=cos(0.5*pi*t0); subplot(2,1,2); stem(t0,x0);5.已知序列x[k]={1,3,2,-5;k=0,1,2,3},分别取N=2,3,4,5对其频谱X(e j)进行抽样,再由频域抽样点恢复时域序列,观察时域序列是否存在混叠,有何规律?k=[0,1,2,3]; x=[1,3,2,-5]; n=100;omega=[0:n-1]*2*pi/n;X0=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,1);stem(k,x);title('原序列');subplot(3,4,2);plot(omega./pi,abs(X0));title('序列的频谱 N=100');N=2;omega=[0:N-1]*2*pi/N;X1=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,5);stem(omega./pi,abs(X1));title('频域抽样 N=2');rx1=real(ifft(X1)); subplot(3,4,9);stem(rx1);title('时域恢复');N=3;omega=[0:N-1]*2*pi/N;X2=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,6);stem(omega./pi,abs(X2));title('频域抽样 N=3');rx2=real(ifft(X2)); subplot(3,4,10);stem(rx2);title('时域恢复');N=4;omega=[0:N-1]*2*pi/N;X3=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega); subplot(3,4,7);stem(omega./pi,abs(X3));title('频域抽样 N=4');rx3=real(ifft(X3)); subplot(3,4,11);stem(rx3);title('时域恢复');。
实验报告课程:数字信号处理专业班级:学生姓名:学号:年月日2.1对M=2,运行上述程序,生成输入x[n]=s1[n]+s2[n]的输出信号。
输入x[n]的哪个分量被该离散时间系统抑制?% 程序 P2_1% 一个M点滑动平均滤波器的仿真% 产生输入信号n = 0:100;s1 = cos(2*pi*0.05*n); % 一个低频正弦s2 = cos(2*pi*0.47*n); % 一个高频正弦x = s1+s2;% M点滑动平均滤波器的实现M = input('滤波器所需的长度 = '); num = ones(1,M);y = filter(num,1,x)/M;clf;subplot(2,2,1);plot(n, s1);axis([0, 100, -2, 2]);xlabel('时间序号n'); ylabel('振幅'); title('低频正弦');subplot(2,2,2);plot(n, s2);axis([0, 100, -2, 2]);xlabel('时间序号n'); ylabel('振幅'); title('高频正弦');subplot(2,2,3);plot(n, x);axis([0, 100, -2, 2]);xlabel('时间序号n'); ylabel('振幅'); title('输入信号');subplot(2,2,4);plot(n, y);axis([0, 100, -2, 2]);xlabel('时间序号n'); ylabel('振幅'); title('输出信号');axis;图形显示如下:答:输入部分的高频成分成分被抑制了。
2.3对滤波器长度M和正弦信号s1[n]和s2[n]的频率取其他值,运行程序P2.1,算出结果。
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
实验二 IIR数字滤波器设计及软件实现1.实验目的(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。
(3)掌握IIR数字滤波器的MATLAB实现方法。
(3)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。
2.实验原理设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。
基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。
第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。
本实验要求读者调用如上函数直接设计IIR数字滤波器。
本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图1所示。
由图可见,三路信号时域混叠无法在时域分离。
但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。
图1 三路调幅信号st的时域波形和幅频特性曲线(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。
要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。
提示:抑制载波单频调幅信号的数学表示式为0001()cos(2)cos(2)[cos(2())cos(2())]2c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。
由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。
所以,1路抑制载波单频调幅信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。
容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。
如果调制信号m(t)具有带限连续频谱,无直流成分,则()()cos(2)c s t m t f t π=就是一般的抑制载波调幅信号。
其频谱图是关于载波频率f c 对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。
如果调制信号m(t)有直流成分,则()()cos(2)c s t m t f t π=就是一般的双边带调幅信号。
其频谱图是关于载波频率f c 对称的2个边带(上下边带),并包含载频成分。
(3)编程序调用MATLAB 滤波器设计函数ellipord 和ellip 分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。
(4)调用滤波器实现函数filter ,用三个滤波器分别对信号产生函数mstg 产生的信号st 进行滤波,分离出st 中的三路不同载波频率的调幅信号y 1(n)、y 2(n)和y 3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。
4.信号产生函数mstg 清单function st=mstg%产生信号序列向量st,并显示st 的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N 为信号st 的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st 的频谱%====以下为绘图部分,绘制st 的时域波形和幅频特性曲线====================subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')5.实验程序框图如图2所示。
图2 实验二程序框图6.思考题(1)请阅读信号产生函数mstg ,确定三路调幅信号的载波频率和调制信号频率。
答:三路调幅信号再载波频率分别为:1000HZ ,500HZ ,250HZ 。
三路调制信号频率分别为:100HZ,50HZ,25HZ .(2)信号产生函数mstg 中采样点数N=800,对st 进行N 点FFT 可以得到6根理想谱线。
如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N 的值,观察频谱图验证您的判断是否正确。
答:分析发现,st 的每个频率成分都是25HZ 的整数倍。
采样频率fs=10KHZ=25*400Hz即在25Hz 的正弦波的一个周期中采样400点,所以,当N 为400的整数倍时一定为st 的整数周期。
因此,采样点数N=800和N=2000时,对st 进行N 点FFT 可以得到6根理想频谱线,如果N=1000,不是400的整倍数,不能得到6根理想频谱线。
(3)修改信号产生函数mstg ,给每路调幅信号加入载波成分,产生调幅(AM )信号,重复本实验,观察AM 信号与抑制载波调幅信号的时域波形及其频谱的差别。
提示:AM 信号表示式:0()[1cos(2)]cos(2)c s t f t f t ππ=+。
修改程序如下:st=mstg %·µ»ØÈý·µ÷·ùÐźÅÏà¼ÓÐγɵĻìºÏÐźţ¬³¤¶ÈN=1600N=1600 %NΪÐźÅstµÄ³¤¶È¡£Fs=10000;T=1/Fs;Tp=N*T; %²ÉÑùƵÂÊFs=10kHz£¬TpΪ²ÉÑùʱ¼ät=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %µÚ1·µ÷·ùÐźŵÄÔØ²¨ÆµÂÊfc1=1000Hz,fm1=fc1/10; %µÚ1·µ÷·ùÐźŵĵ÷ÖÆÐÅºÅÆµÂÊfm1=100Hzfc2=Fs/20; %µÚ2·µ÷·ùÐźŵÄÔØ²¨ÆµÂÊfc2=500Hzfm2=fc2/10; %µÚ2·µ÷·ùÐźŵĵ÷ÖÆÐÅºÅÆµÂÊfm2=50Hzfc3=Fs/40; %µÚ3·µ÷·ùÐźŵÄÔØ²¨ÆµÂÊfc3=250Hz,fm3=fc3/10; %µÚ3·µ÷·ùÐźŵĵ÷ÖÆÐÅºÅÆµÂÊfm3=25Hzxt1=(1+cos(2*pi*fm1*t)).*cos(2*pi*fc1*t); %²úÉúµÚ1·µ÷·ùÐźÅxt2=(1+cos(2*pi*fm2*t)).*cos(2*pi*fc2*t); %²úÉúµÚ2·µ÷·ùÐźÅxt3=(1+cos(2*pi*fm3*t)).*cos(2*pi*fc3*t); %²úÉúµÚ3·µ÷·ùÐźÅst=xt1+xt2+xt3; %Èý·µ÷·ùÐźÅÏà¼Ófxt=fft(st,N); %¼ÆËãÐźÅstµÄƵÆ×figuresubplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的波形')axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅值');波形图如下:答:从AM信号与抑制载波调幅信号的时域波形来看:它们的幅值不一样,即抑制载波调幅信号各点得幅值加3可以得到对应AM信号各点得幅值。