高中数学概率测试试题
- 格式:pdf
- 大小:3.74 MB
- 文档页数:24
高中数学概率练习题及答案一、选择题1. 给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使x?0”是不可能事件③“明天广州要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件,其中正确命题的个数是A.0 B. 1C. D.2. 某人在比赛中赢的概率为0.6,那么他输的概率是 A.0.4B. 0. C. 0.3 D. 0.163. 下列说法一定正确的是A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是21,那么掷两次一定会出现一次正面的情况C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关4.某个班级内有40名学生,抽10名同学去参加某项活动,每个同学被抽到的概率是其中解释正确的是A.4个人中必有一个被抽到B. 每个人被抽到的可能性是C.由于抽到与不被抽到有两种情况,不被抽到的概率为1,411D.以上说话都不正确5.投掷两粒均匀的骰子,则出现两个5点的概率为A.1115B. C.D. 18612363211 B.C.D. 5486.从{a,b,c,d,e}的所有子集中任取一个,这个集合恰是集合{a,b,c}的子集的概率是 A.7.若A与B是互斥事件,其发生的概率分别为p1,p2,则A、B同时发生的概率为A.p1?p B. p1?pC. 1?p1?pD. 08.在等腰直角三角形ABC中,在斜边AB上任取一点D,则AD的长小于AC的长的概率为A.12 B. 1? C.D.222二、填空题9.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心的概率是方片的概率是1,取到41,则取到黑色牌的概率是_____________10.同时抛掷3枚硬币,恰好有两枚正面向上的概率为_______________11.10件产品中有两件次品,从中任取两件检验,则至少有1件次品的概率为_________12.已知集合A?{|x2?y2?1},集合B?{|x?y?a?0},若A?B??的概率为1,则a的取值范围是______________三、解答题13.由数据1,2,3组成可重复数字的三位数,试求三位数中至多出现两个不同数字的概率.14.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P=0.7,P=0.1,P=0.05,求下列事件的概率事件D=“抽到的是一等品或二等品”事件E=“抽到的是二等品或三等品”15.从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率 .每次取出不放回;每次取出后放回.16.在某次数学考试中,甲、乙、丙三人及格的概率0.4、0.2、0.5,考试结束后,最容易出现几个人及格?17.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球相同”,事件B:“两球异色”,试比较P与P的大小.高一数学概率测试题及参考答案1.选2.选3.选4.选5.选6.选7.选8.选1310.答案:1711.答案:59.答案:12:答案:a?[?2,2]13.“三位数中至多出现两个不同数字”事件包含三位数中“恰好出现两个不同的数字”与“三个数全相同”两个互斥事件,故所求概率为2?3?337??727914.由题知A、B、C彼此互斥,且D=A+B,E=B+C P=P=P+P=0.7+0.1=0.8P=P=P+P=0.1+0.05=0.1515. 每次取出不放回的所有结果有每次取出后放回的所有结果:三人都及格的概率p1?0.4?0.2?0.5?0.04 三个人都不及格的概率p2?0.6?0.8?0.5?0.24恰有两人及格的概率p3?0.4?0.2?0.5?0.4?0.8?0.5?0.6?0.2?0.5?0.26 恰有1人及格的概率p4?1?0.04?0.24?0.26?0.46由此可知,最容易出现的是恰有1人及格的情况17.基本事件总数为2,“两球同色”可分为“两球皆白”或“两球皆黑”则P?mnmn2mn,“两球异色”可分为“一白一黑”或“一黑??222m2一白”则P?2?n2m2?n22?2,显然P≤P,当且仅当“m=n”时取等号第三章检测题班级学号一、选择题:1.下列说法正确的是.A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生2.从一个不透明的口袋中摸出红球的概率为1/5,已知袋中红球有3个,则袋中共有除颜色外完全相同的球的个数为.A.5个 B.8个 C.10个 D.15个.下列事件为确定事件的有.在一标准大气压下,20℃的纯水结冰平时的百分制考试中,小白的考试成绩为105分抛一枚硬币,落下后正面朝上边长为a,b的长方形面积为abA.1个B.2个 C.3个 D.4个4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是.A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球5.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是.A.2/5B、2/3C.2/7D.3/.从一副扑克牌中抽取一张牌,抽到牌“K”的概率是. A.1/5 B.1/C.1/1 D.2/27.同时掷两枚骰子,所得点数之和为5的概率为.A.1/B.1/C.1/D.1/128.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是.A.5/B.4/C.2/D.1/29.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.A.60%B.30% C.10%D.50%10.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为.A.0.6B.0.5 C.0.35D.0.75二、填空题:11.对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为。
高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。
高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。
高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).23 22∴m 2=6, ∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。
高中数学概率论测试题在高中数学的学习中,概率论是一个充满趣味和挑战的领域。
它不仅能帮助我们理解生活中的各种随机现象,还能培养我们的逻辑思维和数学应用能力。
接下来,让我们一起通过一些测试题来深入探索概率论的奇妙世界。
一、选择题1、从装有 2 个红球和 2 个黑球的口袋内任取 2 个球,那么互斥而不对立的两个事件是()A 至少有一个黑球与都是黑球B 至少有一个黑球与至少有一个红球C 恰有一个黑球与恰有两个黑球D 至少有一个黑球与都是红球答案:C解析:A 选项中,“至少有一个黑球”包含“都是黑球”,不是互斥事件;B 选项中,“至少有一个黑球”和“至少有一个红球”都包含“一个黑球一个红球”的情况,不是互斥事件;C 选项中,“恰有一个黑球”和“恰有两个黑球”不能同时发生,是互斥事件,且不是对立事件;D 选项中,“至少有一个黑球”与“都是红球”不能同时发生,是互斥事件,且是对立事件。
2、已知随机变量 X 服从正态分布 N(3,1),且P(2≤X≤4) = 06826,则 P(X > 4) =()A 01588B 01587C 01586D 01585答案:B解析:因为随机变量 X 服从正态分布 N(3,1),所以图象关于 x = 3对称。
P(2≤X≤4) = 06826,所以 P(X > 4) = 05 05×06826 = 01587 。
3、甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这个问题的概率是 p2,那么恰好有 1 人解决这个问题的概率是()A p1p2B p1(1 p2) + p2(1 p1)C 1 p1p2D 1 (1 p1)(1 p2)答案:B解析:恰好有1 人解决这个问题,分两种情况:甲解决,乙没解决,概率为 p1(1 p2);乙解决,甲没解决,概率为 p2(1 p1)。
所以恰好有 1 人解决这个问题的概率是 p1(1 p2) + p2(1 p1) 。
二、填空题1、从 1,2,3,4,5 这 5 个数字中,随机抽取 3 个数字组成一个三位数,其中奇数的个数为_____。
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。
高中数学概率大题(经典一)一.解答题(共10小题)1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:1 2 3 4 5办理业务所需的时间(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.8.2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.9.在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.10.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.参考答案与试题解析一.解答题(共10小题)1.(2016•南通模拟)在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?【解答】解:(1)由题意知随机变量X的取值是0、1、2、3、4、5,∵当X=0时,表示主力队员参加比赛的人数为0,以此类推,∴P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=;P(X=5)=.∴随机变量X的概率分布如下表:E(X)=0×+1×+2×+3×+4×+5×=≈2.73(2)由题意知①上场队员有3名主力,方案有:(C63﹣C41)(C52﹣C22)=144(种)②上场队员有4名主力,方案有:(C64﹣C42)C51=45(种)③上场队员有5名主力,方案有:(C65﹣C43)C50=C44C21=2(种)教练员组队方案共有144+45+2=191种.2.(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:1 2 3 4 5办理业务所需的时间(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.【解答】解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.3.(2012•海安县校级模拟)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.【解答】解:(1)记至少一人获奖事件为A,则都不获奖的事件,设“海宝”卡n张,则任一人获奖的概率,∴,由题意:,∴n≥7.至少7张“海宝”卡,(2)ξ~的分布列为;,.4.(2011•江苏模拟)一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从9个球中任取2个,共有C92=36种结果,满足条件的事件是取出的2个球的颜色相同,包括三种情况,共有C42+C32+C22=10设“取出的2个球颜色相同”为事件A,∴P(A)==.(2)由题意知黑球的个数可能是0,1,2P(ξ=0)=P(ξ=1)=,P(ξ=2)=∴ξ的分布列是∴Eξ=0×+1×+2×=.(3)由题意知本题是一个等可能事件的概率,事件发生所包含的事件数C x+52,满足条件的事件是C x1C31+C x1C21+C31C21,设“取出的2个球中颜色不相同”为事件B,则P(B)=<,∴x2﹣6x+2>0,∴x>3+或x<3﹣,x的最小值为6.5.(2010•鼓楼区校级模拟)某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生的所有事件是从6个球中取三个,共有C63种结果,而满足条件的事件是摸到一个红球或摸到两个红球,共有C21C42+C22C41设“一次抽奖中奖”为事件A,∴即一次抽奖中奖的概率为;(2)X可取0,10,20,P(X=0)=(0.2)2=0.04,P(X=10)=C21×0.8×0.2=0.32,P(X=20)=(0.8)2=0.64,∴X的概率分布列为∴E(X)=0×0.04+10×0.32+20×0.64=16.6.(2010•盐城三模)将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.【解答】解:(Ⅰ)抛硬币一次正面向上的概率为,∴正面向上的次数为奇数次的概率为P1=P15(1)+P15(3)+…+P15(15)=∴(Ⅱ)∵P1=C151p1(1﹣p)14+C153p3(1﹣p)12+…+C1515p15,P2=C150p0(1﹣p)15+C152p2(1﹣p)13+…+C1514p14(1﹣p)1则P2﹣P1=C150p0(1﹣p)15﹣C151p1(1﹣p)14+C152p2(1﹣p)13+…+C1514p14(1﹣p)1﹣C1515p15 =[(1﹣p)﹣p]15=(1﹣2p)15,而,∴1﹣2p>0,∴P2>P17.(2010•南通模拟)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.【解答】解:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A•+•B)=P(A)•P()+P()•P(B)=0.34,两河流同时发生洪水的概率为P(A•B)=0.045,都不发生洪水的概率为P(•)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:ξ10000 60000 0P 0.34 0.045 0.615(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.8.(2010•海安县校级模拟)2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.【解答】解:(1)记“至少一名北京大学志愿者被分到运送矿泉水岗位”为事件A,则A的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”设有北京大学志愿者x个,1≤x<6,那么P(A)=,解得x=2,即来自北京大学的志愿者有2人,来自清华大学志愿者4人;(2)记“清扫卫生岗位恰好北京大学、清华大学志愿者各有一人”为事件E,那么P(E)=,所以清扫卫生岗位恰好北京大学、清华大学志愿者各一人的概率是;(3)ξ的所有可能值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,所以ξ的分布列为Eξ=9.(2010•苏州模拟)在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生所包含的事件数C93,满足条件的事件3个数中至少有1个是偶数,包含三种情况一个偶数,两个偶数,三个偶数,这三种情况是互斥的,根据等可能和互斥事件的概率公式得到;(2)记“这3个数之和为18”为事件B,考虑三数由大到小排列后的中间数只有可能为5、6、7、8,分别为459,567,468,369,279,378,189七种情况,∴;(3)随机变量ξ的取值为0,1,2,P(ξ=0)=P(ξ=1)=P(ξ=2)=∴ξ的分布列为∴ξ的数学期望为.10.(2005•湖南)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.【解答】解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C42=6种分法,每组选择不同的景区,共有3!种选法,∴3个景区都有部门选择可能出现的结果数为C42•3!记“3个景区都有部门选择”为事件A1,∴事件A1的概率为P(A1)==.(II)先从3个景区任意选定2个,共有C32=3种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有C41•2!种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有C42种不同选法,∴恰有2个景区有部门选择可能的结果为3(C41•2!+C42).∴P(A2)==.。
(名师选题)(精选试题附答案)高中数学第十章概率真题单选题1、已知某运动员每次射击击中目标的概率为80%.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率.先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947761042811417469803716233261680456011366195977424根据以上数据估计该射击运动员射击4次,至少击中3次的概率为( ) A .0.852B .0.8192C .0.8D .0.75 答案:D分析:由题设模拟数据确定击中目标至少3次的随机数组,应用古典概型的概率求法求概率.在20组随机数中含{2,3,4,5,6,7,8,9}中的数至少3个(含3个或4个),共有15组,即模拟结果中射击4次,至少击中3次的频率为1520=0.75.据此估计该运动员射击4次,至少击中3次的概率为0.75. 故选:D2、已知集合M ={−1,0,1,−2},从集合M 中有放回地任取两元素作为点P 的坐标,则点P 落在坐标轴上的概率为( )A .516B .716C .38D .58 答案:B分析:利用古典概型的概率求解.由已知得,基本事件共有4×4= 16个,其中落在坐标轴上的点为:(−1,0),(0,−1),(0,0),(1,0),(0,1),(−2,0),(0,−2),共7个, ∴所求的概率P =716, 故选:B .3、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是 A .1999B .11000C .9991000D .12答案:D每一次出现正面朝上的概率相等都是12,故选D.4、接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为( ) A .512625B .256625C .113625D .1625答案:A分析:最多1人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率和互斥事件的概率求解.由题得最多1人被感染的概率为C 40(45)4+C 41(15)(45)3=256+256625=512625.故选:A小提示:方法点睛:求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.5、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( ) A .13B .14 C .15D .16 答案:D分析:将齐王与田忌的上、中、下等马编号,列出双方各出上、中、下等马各一匹分组分别进行一场比赛的基本事件即可利用古典概率计算作答.齐王的上等马、中等马、下等马分别记为A ,B ,C ,田忌的上等马、中等马、下等马分别记为a ,b ,c , 双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,依题意,共赛3场,所有基本事件为:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Bb,Ca),(Ac,Ba,Cb),共6个基本事件,它们等可能, 田忌获胜包含的基本事件为:(Ac,Ba,Cb),仅只1个, 所以田忌获胜的概率p =16. 故选:D6、甲、乙、丙三人独立地去译一个密码,译出的概率分别15,13,14,则此密码能被译出的概率是A .160B .25C .35D .5960 答案:C解析:先计算出不能被译出的概率,由此求得被译出的概率.用事件A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P(A)=15,P(B)=13,P(C)=14,且P(ABC)=P(A)P(B)⋅P(C )=45×23×34=25.∴此密码能被译出的概率为1−25=35.故选:C小提示:本小题主要考查相互独立事件概率计算,考查对立事件概率计算,属于基础题. 7、分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6答案:C分析:结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C8、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解. 由题意,知{0<P(A)<10<P(B)<1P(A)+P(B)≤1 ,即{0<2−a <10<3a −4<12a −2≤1 ,解得43<a ≤32,所以实数a 的取值范围为(43,32].故选:A.9、在一次试验中,随机事件A ,B 满足P(A)=P(B)=23,则( ) A .事件A ,B 一定互斥B .事件A ,B 一定不互斥C .事件A ,B 一定互相独立D .事件A ,B 一定不互相独立 答案:B分析:根据互斥事件和独立事件的概率的定义进行判断即可若事件A ,B 为互斥事件,则P(A +B)=P(A)+P(B)=43>1,与0≤P(A +B)≤1矛盾,所以P(A +B)≠P(A)+P(B),所以事件A ,B 一定不互斥,所以B 正确,A 错误,由题意无法判断P(AB)=P(A)P(B)是否成立,所以不能判断事件A ,B 是否互相独立,所以CD 错误, 故选:B10、10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( ) A .35B .23C .34D .415 答案:B分析:根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券, 则在甲中奖条件下,乙没有中奖的概率P =69=23. 故选:B. 填空题11、甲、乙两人下棋,甲获胜的概率为15,和棋的概率为12,则乙不输的概率为___________. 答案:45分析:乙不输即是乙获胜或甲乙和棋,由互斥事件概率加法公式可求. 解:记“甲获胜”为事件A ,记“和棋”为事件B ,记“乙获胜”为事件C , 则P (A )=15,P (B )=12,P (C )=1−P (A )−P (B )=1−15−12=310,所以,乙不输的概率为:P =P (B ∪C )=P (B )+P (C )=12+310=45. 所以答案是:45.12、从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两位数是5的倍数的概率为_____. 答案:14##0.25分析:列举出基本事件,利用古典概型的概率公式直接求解.从1,3,5,7这四个数中随机地取两个数组成一个两位数,可以组成:13,31,17,71,15,51,35,53,37,73,57,75一共12个.其中是5的倍数的数有:15,35,75一共3个, 所以组成的两位数是5的倍数的概率为312=14. 所以答案是:1413、某医院某科室有5名医护人员,其中有医生2名,护士3名.现要抽调2人前往新冠肺炎疫情高风险地区进行支援,则抽调的2人中恰好为1名医生和1名护士的概率是______. 答案:35##0.6分析:根据条件列举出所有的情况和满足条件的情况,利用古典概型的概率公式进行求解. 设2名医生为a,b,3名护士为c,d,e,则抽调2人的情况有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种不同结果,其中恰好为1名医生和1名护士的情况有ac,ad,ae,bc,bd,be共6种不同结果,则所求概率为610=35.所以答案是:35.14、现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m不放回,再从余下的卡片中取一张记作n.则点P(m,n)在第二象限的概率为______.答案:16分析:列出所有可能的情况,根据古典概型的方法求解即可由题,点P(m,n)所有可能的情况为(−1,0),(−1,−2),(−1,3),(0,−1),(0,−2),(0,3),(−2,−1),(−2,0),(−2,3),(3,−1),(3,0),(3,−2)共12种情况,其中在第二象限的为(−2,3),(−1,3),故点P(m,n)在第二象限的概率为212=16所以答案是:1615、商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9,若第5组表示的是尺码为40∼42的皮鞋,则售出的这300双皮鞋中尺码为40∼42的皮鞋约为______双.答案:60分析:先计算这周内某天第1,2,4组的频率,根据频率之和等于1可得第5组的频率,再由该频率乘以300即可得解.因为第1,2,4组的频数分别为6,7,9,所以第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225,又因为第3组的频率为0.25,所以第5组的频率为1−0.25−0.15−0.175−0.225=0.2,所以售出的这300双皮鞋中尺码为40∼42的皮鞋约为300×0.2=60双,所以答案是:60.解答题16、判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.答案:(1)是互斥事件,不是对立事件,理由见解析;(2)既是互斥事件,又是对立事件,理由见解析;(3)不是互斥事件,也不是对立事件,理由见解析.分析:本题可根据互斥事件与对立事件的定义得出结果.(1)是互斥事件,不是对立事件.理由:“抽出红桃”与“抽出黑桃”不可能同时发生的,是互斥事件,不能保证其中必有一个发生,还可能抽出“方块”或者“梅花”,不是对立事件.(2)既是互斥事件,又是对立事件.理由:“抽出红色牌”与“抽出黑色牌”不可能同时发生,且其中必有一个发生,则它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.理由:“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”可能同时发生,如抽得点数为10,故不是互斥事件,也不可能是对立事件.17、某射击队统计了甲、乙两名运动员在平日训练中击中10环的次数,如下表:(1)分别计算出甲、乙两名运动员击中10环的频率,补全表格; (2)根据(1)中的数据估计两名运动员击中10环的概率. 答案:(1)答案见解析 (2)0.9分析:(1)根据频率、频数和总数之间的关系完善表格; (2)利用频率与概率之间的关系即可得出结论. (1)两名运动员击中10环的频率如下表:(2)由(1)中的数据可知两名运动员击中10环的频率都集中在0.9附近,所以两人击中10环的概率均约为0.9. 18、甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮猜对的概率为23·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率; (2) “星队”在两轮活动中猜对3个成语的概率; (3) “星队”在两轮活动至少中猜对1个成语的概率; 答案:(1)37144;(2)512;(3)143144.分析:令{M 0,M 1,M 2}、{N 0,N 1,N 2}表示第一轮、第二轮猜对0个、1个、2个成语的事件,{D 0,D 1,D 2,D 3,D 4}表示两轮猜对0个、1个、2个、3个、4个成语的事件,应用独立事件乘法公式、互斥事件加法公式求P (M 0)=P (N 0)、P (M 1)=P (N 1)、P (M 2)=P (N 2).(1)(2)应用独立事件乘法、互斥事件加法求两轮活动中猜对2个成语的概率; (3)对立事件的概率求法求两轮活动至少中猜对1个成语的概率.设A ,B 分别表示甲乙每轮猜对成语的事件,M 0,M 1,M 2表示第一轮甲乙猜对0个、1个、2个成语的事件,N 0,N 1,N 2表示第二轮甲乙猜对0个、1个、2个成语的事件,D 0,D 1,D 2,D 3,D 4表示两轮猜对0个、1个、2个、3个、4个成语的事件.∵P(A )=34,P (A )=1-34=14,P (B )=23,P (B ̅)=1-23=13, ∴根据独立性的假定得:P (M 0)=P (N 0)=P (A B ̅)= P (A ) P (B ̅)= 14 13=112, P (M 1)=P (N 1)=P (AB ̅+A B )= P (AB ̅)+P (A B ) = 34 × 13+14×23=512, P (M 2)=P (N 2)=P (AB )=P (A )P (B )= 34× 23=612=12,(1)P (D 2)=P (M 2N 0+M 1N 1+M 0N 2)= P (M 2N 0)+P (M 1N 1)+P (M 0N 2)=12.112+512.512+112.12=37144.(2)P (D 3)=P (M 1N 2+M 2N 1)= P (M 1N 2)+P (M 2N 1)= 512.12+12.512=512. (3)P (D 1+D 2+D 3+D 4)=1-P (D 0)=1-1144=143144.19、某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中(每名同学只获得一个奖项)选出2名志愿者,参加运动会的服务工作.求: (1)选出的2名志愿者都是获得书法比赛一等奖的同学的概率;(2)选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率. 答案:(1)25 (2)815分析:(1)(2)根据题意,列举中该实验的所有情况和符合题意的情况,根据古典概型的公式,可得答案. (1)把4名获得书法比赛一等奖的同学编号为1,2,3,4; 2名获得绘画比赛一等奖的同学编号为5,6.从6名同学中任选2名的所有可能结果有{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个.从6名同学中任选2名,都是获得书法比赛一等奖的同学的所有可能结果有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.所以选出的2名志愿者都是获得书法比赛一等奖的同学的概率P1=615=25.(2)从6名同学中任选2名,1名是获得书法比赛一等奖,另1名是获得绘画比赛一等奖的同学的所有可能结果有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个.所以选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率P2=815.。
高中数学概率大题(经典一)一.解答题(共10小题)1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间1 2 3 4 5(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.8.2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.9.在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.10.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.参考答案与试题解析一.解答题(共10小题)1.(2016•南通模拟)在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?【解答】解:(1)由题意知随机变量X的取值是0、1、2、3、4、5,∵当X=0时,表示主力队员参加比赛的人数为0,以此类推,∴P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=;P(X=5)=.∴随机变量X的概率分布如下表:E(X)=0×+1×+2×+3×+4×+5×=≈2.73(2)由题意知①上场队员有3名主力,方案有:(C63﹣C41)(C52﹣C22)=144(种)②上场队员有4名主力,方案有:(C64﹣C42)C51=45(种)③上场队员有5名主力,方案有:(C65﹣C43)C50=C44C21=2(种)教练员组队方案共有144+45+2=191种.2.(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:1 2 3 4 5办理业务所需的时间(分)频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.【解答】解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以 P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.3.(2012•海安县校级模拟)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.【解答】解:(1)记至少一人获奖事件为A,则都不获奖的事件,设“海宝”卡n张,则任一人获奖的概率,∴,由题意:,∴n≥7.至少7张“海宝”卡,(2)ξ~的分布列为;,.4.(2011•江苏模拟)一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从9个球中任取2个,共有C92=36种结果,满足条件的事件是取出的2个球的颜色相同,包括三种情况,共有C42+C32+C22=10设“取出的2个球颜色相同”为事件A,∴P(A)==.(2)由题意知黑球的个数可能是0,1,2P(ξ=0)=P(ξ=1)=,P(ξ=2)=∴ξ的分布列是∴Eξ=0×+1×+2×=.(3)由题意知本题是一个等可能事件的概率,事件发生所包含的事件数C x+52,满足条件的事件是C x1C31+C x1C21+C31C21,设“取出的2个球中颜色不相同”为事件B,则P(B)=<,∴x2﹣6x+2>0,∴x>3+或x<3﹣,x的最小值为6.5.(2010•鼓楼区校级模拟)某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生的所有事件是从6个球中取三个,共有C63种结果,而满足条件的事件是摸到一个红球或摸到两个红球,共有C21C42+C22C41设“一次抽奖中奖”为事件A,∴即一次抽奖中奖的概率为;(2)X可取0,10,20,P(X=0)=(0.2)2=0.04,P(X=10)=C21×0.8×0.2=0.32,P(X=20)=(0.8)2=0.64,∴X的概率分布列为∴E(X)=0×0.04+10×0.32+20×0.64=16.6.(2010•盐城三模)将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.【解答】解:(Ⅰ)抛硬币一次正面向上的概率为,∴正面向上的次数为奇数次的概率为P1=P15(1)+P15(3)+…+P15(15)=∴(Ⅱ)∵P1=C151p1(1﹣p)14+C153p3(1﹣p)12+…+C1515p15,P2=C150p0(1﹣p)15+C152p2(1﹣p)13+…+C1514p14(1﹣p)1则P2﹣P1=C150p0(1﹣p)15﹣C151p1(1﹣p)14+C152p2(1﹣p)13+…+C1514p14(1﹣p)1﹣C1515p15=[(1﹣p)﹣p]15=(1﹣2p)15,而,∴1﹣2p>0,∴P2>P17.(2010•南通模拟)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.【解答】解:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A•+•B)=P(A)•P()+P()•P(B)=0.34,两河流同时发生洪水的概率为P(A•B)=0.045,都不发生洪水的概率为P(•)=0.75×0.82=0.615,设损失费为随机变量ξ,则ξ的分布列为:ξ10000 60000 0P 0.340.045 0.615(2)对方案1来说,花费4000元;对方案2来说,建围墙需花费1000元,它只能抵御一条河流的洪水,但当两河流都发生洪水时,损失约56000元,而两河流同时发生洪水的概率为P=0.25×0.18=0.045.所以,该方案中可能的花费为:1000+56000×0.045=3520(元).对于方案来说,损失费的数学期望为:Eξ=10000×0.34+60000×0.045=6100(元),比较可知,方案2最好,方案1次之,方案3最差.8.(2010•海安县校级模拟)2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.【解答】解:(1)记“至少一名北京大学志愿者被分到运送矿泉水岗位”为事件A,则A的对立事件为“没有北京大学志愿者被分到运送矿泉水岗位”设有北京大学志愿者x个,1≤x<6,那么P(A)=,解得x=2,即来自北京大学的志愿者有2人,来自清华大学志愿者4人;(2)记“清扫卫生岗位恰好北京大学、清华大学志愿者各有一人”为事件E,那么P(E)=,所以清扫卫生岗位恰好北京大学、清华大学志愿者各一人的概率是;(3)ξ的所有可能值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,所以ξ的分布列为Eξ=9.(2010•苏州模拟)在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生所包含的事件数C93,满足条件的事件3个数中至少有1个是偶数,包含三种情况一个偶数,两个偶数,三个偶数,这三种情况是互斥的,根据等可能和互斥事件的概率公式得到;(2)记“这3个数之和为18”为事件B,考虑三数由大到小排列后的中间数只有可能为5、6、7、8,分别为459,567,468,369,279,378,189七种情况,∴;(3)随机变量ξ的取值为0,1,2,P(ξ=0)=P(ξ=1)=P(ξ=2)=∴ξ的分布列为∴ξ的数学期望为.10.(2005•湖南)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.【解答】解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C42=6种分法,每组选择不同的景区,共有3!种选法,∴3个景区都有部门选择可能出现的结果数为C42•3!记“3个景区都有部门选择”为事件A1,∴事件A1的概率为P(A1)==.(II)先从3个景区任意选定2个,共有C32=3种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有C41•2!种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有C42种不同选法,∴恰有2个景区有部门选择可能的结果为3(C41•2!+C42).∴P(A2)==.。