华中师范大学数学与统计学学院《717数学分析》历年考研真题专业课考试试题
- 格式:pdf
- 大小:2.65 MB
- 文档页数:51
华中师大试题填空1.戴尔提出的“经验之塔” 依照抽象程度的不同,把人类学习的经验划分为做的经验,观察的经验和抽象的经验三大类。
2.施拉姆传播模式强调传授双方只有双向互动才能达到真正的交流。
3.皮亚杰把人的发展分为感知运算阶段,前运算阶段,具体运算阶段和形式运算阶段四个阶段4.教学设计:是以传播理论,学习理论,教学理论为基础,运用系统论的观点,和方法,分析教学中的问题和需求,从而找出最佳解决方案的理论与实践。
5.布卢姆提出的教育目标分类学,将认知领域的教学目标从底级到高级分为:知识、领会、运用、分析、综合、评价六个层次6.教育技术是由三个不同的起源融合而成,它们是教育心理学,媒体技术,系统方法。
7.戴尔提出的“经验之塔”依照抽象程度的不同,把人类学习的经验划分为做,观察,和抽象三大类。
8.奥苏贝尔指出,有意义学习过程的实质就是符号所代表的新知识与学习者认知结构中已有的适当观念建立旧知识和新知识的联系9.计算机用于教学和训练始于20 世纪50 年代末;斯金纳被誉为当代程序教学运动之父;“媒体是人体的延伸”是由马歇尔.麦克卢汉提出的名词解释1.教学设计:是以传播理论,学习理论,教学理论为基础,运用系统论的观点,和方法,分析教学中的问题和需求,从而找出最佳解决方案的理论与实践2.先行组织者:指在介绍当前学习内容之前呈现的引导性材料,以便于建立新旧知识间的关系3.前端分析:在教学设计过程开始的时候,先分析若干直接影响教学设计但又不属于具体设计事项的问题(学习需要分析、教学内容分析和学习者特征分析)(做4.经验之塔:由戴尔提出的,戴尔将人的经验分成了三大类:直接的经验的经验)、间接的经验(替代的经验)、抽象的经验(符号的经验)。
其中直接的经验位于经验之塔的底层,表示直接的经验是上面两大类经验的基础,人的学习过程总是从最底层的做的经验开始,然后不断上升到最顶层的抽象的经验。
而抽象的经验获得比较困难,人们在学习的时候需要具备足够的学习和认知能力,但是上升到抽象的经验是学习的必然目的。
华中师范大学二〇一〇年研究生入学考试试题考试科目:数学分析一、(30分)计算题1、设函数)(x f 定义在),(+∞−∞上,满足x x f x f cos )()2(=,1)0()(lim 0==→f x f x ,求)(x f ;2、设dx x a n n ∫=40tan π,求)(121+∞=+∑n n n a a n 的值.3/求曲线积分∫−+−+−Ldz y x dy x z dx z y )()()(,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从Z 轴正向看是逆时针.二、(12分)设0,)(>=ααx x f ,证明:当10≤≤α时,)(x f 在),0(+∞上一致连续;当1>α时,)(x f 在),0(+∞上不一致连续.三、(12分)证明含参量x 的反常积分dy yxy ∫+∞0sin 在),[+∞δ上一致收敛(其中0>δ),但在),0(+∞内不一致收敛.四、(20分)设函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于))(,(c f c ,其中b c a <<,证明:存在),(b a ∈ξ,使得0)(''=ξf .五、(20分)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈,存在x 的领域)(x U ,使得)}({'x f n 在],[)(b a x U ∩上一致有界,证明:1、)}({'x f n 在],[b a 上一致有界;2、)}({x f n 在],[b a 上一致收敛.六、(20分)设⎩⎨⎧=+≠++=0,00),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导数的存在性以及可微性.七、(20分)已知)(x f 是),0[+∞上的正值连续函数,且+∞<∫+∞dx x f 0)(1,证明:1、存在数列),0[+∞∈n x ,...)2,1(=n 满足:}{n x 严格单调递增,+∞=∞→n n x lim ,+∞=∞→)(lim n n x f ;2、−∞=∫+∞→x x dt t f x 02)(1lim 八、(16分)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记222222zy x ∂∂+∂∂+∂∂=∆,,,(z y x ∂∂∂∂∂∂=∇.1、证明:dxdydz f g dS n f gdxdydz f g VS V ∫∫∫∫∫∫∫∫∆−∂∂=∇∇)()·(,其中n 表示S 的外法线方向,S 为球面1222=++z y x ;2,若222z y x f ++=∆,试计算:dxdydz z f z y x z y f z y x y x f z y x x I V ∫∫∫∂∂+++∂∂+++∂∂++=(222222222。
更多最新考研咨询关注微信公众号 renrenkaoyan
【真题】华中师范大学学科数学真题
名词解释:活动课程教育修养学园心理发展
简答:直观性原则及其要求教师劳动的特点青少年心理健康的培养途径梁启超的教育
论述:德育是教师的指导下能动的道德活动创造性的培养措施实验教育学评述掌握知识与发展智力的关系
数学教学论真题:名词解释:有意义学习数学认知结构选言推理数学活动经验
简答:发生定义方式简述幼儿园到高中各阶段学习数和运算的特点情感态度价值观目标的确定建立一个学生学习效果的评价体系
论述:数学是一种文化
案例分析题:这题就是让你分析给出的两个数学情境然后论述好的数学情境的特点
教案设计含有一个量词的命题的否定
更多最新考研资讯请扫描上方二维码
爱考机构 中国保过保录高端考研第一品牌! 每年每校每专业限招1‐3人 报名电话010‐51283340 QQ:744569778。
华中师范大学数学与统计学学院考研参考书目学术型硕士研究生参考书目:数学分析考研参考书目:华东师范大学数学系,《数学分析》(上、下册),高等教育出版社高等代数考研参考书目:1、樊恽、刘宏伟编,《线性代数与解析几何教程》(上、下册),科学出版社,2009年8月第1版;(或以下参考书2)2、樊恽、郑延履编,《线性代数与几何引论》,科学出版社,2004年8月第1版概率论基础考研参考书目:李贤平,《概率论基础》(第三版),高等教育出版社。
课程与教学论复试科目参考书目:《数学教育学》:《新编数学教学论》涂荣豹,王光明,华东师范大学出版社或《中学数学教材教法总论》(第二版),十三院校协编,高等教育出版社。
全日制专业学位硕士研究生考研参考书目:学科教学(数学)初试科目参考书目:《数学教学论》:《新编数学教学论》涂荣豹,王光明,华东师范大学出版社。
《数学分析》:华东师范大学数学系,《数学分析》(上册),高等教育出版社。
《高等代数》:高等代数(第3版),北京大学数学系几何与代数教研室前代数小组,高等教育出版社。
考察内容:数学分析与高等代数的基础知识与基本思想方法。
学科教学(数学)复试科目参考书目:《数学教育学》:《新编数学教学论》涂荣豹,王光明,华东师范大学出版社或《中学数学教材教法总论》(第二版),十三院校协编,高等教育出版社。
应用统计硕士考研参考书目:《统计学》:《概率论与数理统计》盛骤等编,高等教育出版社(第四版),浙江大学应用统计复试科目参考书:《计量经济学》:《计量经济学》,赵国庆,中国人民大学出版社,2012-2-1。
考研加试科目参考书目:《抽象代数》:《抽象代数》樊恽、刘宏伟编,普通高等教育“十一五”国家级规划教材,科学出版社。
《实变函数》:《实变函数》徐森林、中国科学技术大学出版社或《实变函数》,江泽坚、吴智泉,高等教育出版社(第二版)《数理统计》:邓集贤、杨维权、司徒荣、邓永录,《概率论与数理统计》(第4版下册),高等教育出版社。
一、论述简答题(每小题6分,共24分)1、论述函数在点处对的偏导数的定义。
(,)z f x y =00(,)x y x 2、论述函数在区间上的拉格朗日中值定理。
()y f x =[,]a b 3、论述一元函数在点的导数、左导数、右导数之间的关系。
0x 4、论述一元函数的连续与一致连续之间的关系。
()y f x =二、填空题(每小题7分,共56分)1、设函数 处处可导,则常数=______, =______。
2,1()2,1x a x f x bx x ⎧+>=⎨+≤⎩a b 2、极限_________。
1(,)(0,2)lim (1)x x y xy →+=3、设为的一个原函数,则 。
sin x x()f x 3()x f x dx '=⎰4、设由方程所确定,则 。
(,)z z x y =2220x y z z ++-=2z x y∂=∂∂5、幂级数的收敛域为___________。
1(1)2nn n x n ∞=-∑6、设是由,与所围成的闭区域,则_________。
D 0x =1y =y x =2sin Dy dxdy =⎰⎰7、设存在,则 __________。
(,)y f a b '0(,)(,2)lim y f a b y f a b y y→+--=8、已知级数,则级数 。
22116∞==∑n nπ21121∞==-∑()n n 三、计算题(每小题9分,共54分)1、计算,其中是圆 的上半平面的逆时针方向的一段弧。
2Lxydx xdy +⎰L 224x y +=2、计算 。
123sin 0lim()3x x xx x e e e →++3、计算 。
22080ln(1)lim x x t t dt x →+⎰4、将给定的正数分为三个正数的乘积,问这三个数各为多少时,它们之和最小?a 5、求幂级数 的和函数。
21121n n x n -∞=+∑6、计算,其中是由曲面及所围成的闭区域。
华 中 师 范 大 学2004年研究生入学考试试题(高等代数)1(15)设12,,n a a a …是数域P 上n 个不同的数,解线形方程组12112222221122111111221n n n n n n n n n n n n n n x x x a x a x a x aa x a x a x a a x a x a x a ----+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩2、(15)设P 是数域,n nA P ⨯∈,3()21m x xx =++是A 的最小多项式,求1A -。
3、(20)设P 是数域,12()(,,,)n nij nA a P ααα⨯==∈,nn a 的代数余子式0nn A ≠, 1)证明12,,,n ααα线形无关;2)当|A|=0时,求线形方程组A*x=0的基础解系,其中A*是A 的伴随矩阵地。
4、(30)设P 是数域,12{|'},{|n n n n V A P A A V B P B ⨯⨯=∈==∈是上三角矩阵},1) 证明12,V V 都是n n P ⨯的子空间;2) 证明1212,n n n nP V V P V V ⨯⨯=+≠⊕。
5、(30)设p(x)是数域P 上的不可约多项式,α是 p(x)的复根 1)证明p(x)的常数项不等于零;2)证明对任意正整数m,m(p(x),x )1=; 3)设3p(x)=x 22x -+,求51α6、(20)设n 元实二次型12(,,,)'n f x x x x Ax =经过正交线形替换x Qy =(其中Q 是正交矩阵)化为222212323n y y y ny ++++,证明: 1) A 的特征值是1,2,3,…,n;2) 存在正定矩阵B 使得2A B =。
7、(20)设A 是数域P 上n 维线形空间V 的线形变换,V α∈,1()0,0n n A A α-≠=,证明:1)21,(),(),,()n A A A αααα-是V 的基; 2)设W 是A 的不变子空间,121,,,,0n a a a P a ∈≠并且存在向量21123()()()n n a a A a A a A W βαααα-=++++∈,则W=V 。
考试复习重点资料(最新版)资料见第三页封面第1页温馨提示提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。
资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。
资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。
寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。
1.一份合理科学的学习计划是你备考的领航灯。
要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。
2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。
公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。
3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。
4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。
切记心浮气躁,半途而废。
5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。
第2页目录1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析331.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇˇˇˇˇˇˇˇˇˇˇˇˇ111¨¨¨1x a1a2¨¨¨a nx2a21a22¨¨¨a2n............x n a n1a n2¨¨¨a n nˇˇˇˇˇˇˇˇˇˇˇˇˇ“0.2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不是f1p x q的根).(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X是变元x1,¨¨¨,x n的列向量.证明:(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.4.(30分)设A,B,C都是n阶方阵,令˜A BC0¸是分块构成的2n阶方阵,其中右下块0表示n阶零方阵.(1)证明:rank ˜A BC0¸ěrank p B q`rank p C q.这里rank p B q表示矩阵B的秩.(2)举例说明:p1q中的等号和不等号都可能成立.5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.(2)证明关于和子空间的维数公式.6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.(1)证明:12p A`A1q的特征根都是实数,令µ1﨨¨ďµn是12p A`A1q的全部特征根.(2)证明:µ1ďrďµn.(3)你有类似的估计s的办法吗?1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.2.(20分)(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当rank p A q`rank p A´kE q“n.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,定义V上的线性变换A:VÑV为A pB q“AB´BA,对任意的B P M3p R q.设A“¨˚˝000010002˛‹‚.求A的特征值和相应的特征子空间;并求此时A的极小多项式.4.(30分)设有三元实二次型f p x,y,z q“x2`3y2`z2`4xz.并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.6.(30分)(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。
2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )xx x →(2)n(3)74limx x →∞(4)1limsin (sin)2nn k k nnππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3f ξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值: (1)1!2!3!!lim!n n n →∞++++(10分)(2)5(21)62n n n-(10分) (3)132lim[().2x x x x x e →+∞-+-(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛;设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n xe nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛.6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn tn n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积. 9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx xx ⎰+ln 1ln ln .(4)设yxy x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在.(3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f a x x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。