八年级数学上册知识大综合基础练习
- 格式:doc
- 大小:53.00 KB
- 文档页数:3
八年级上册数学综合复习题基础题北师版一、单选题(共7道,每道3分)1.下列生活中的现象,属于平移的是()A.抽屉的拉开B.汽车刮雨器的运动C.坐在秋千上人的运动D.投影片的文字经投影变换到屏幕答案:A试题难度:三颗星知识点:平移的定义2.下列说法正确的是()A.49的平方根是-7B.的算术平方根是4C.a²的算术平方根是aD.的立方根是a答案:D试题难度:三颗星知识点:立方根3.第二象限内的点(m,n)到x轴的距离是()A.mB.-mC.nD.-n答案:C试题难度:三颗星知识点:点的坐标4.下列选项正确的是()A.一个多边形的内角相等,则它的边一定都相等B.一组对边平行,另一组对边相等的四边形是等腰梯形C.正方形既是矩形,又是菱形D.矩形的对角线一定互相垂直答案:C试题难度:三颗星知识点:四边形的性质与判定5.如图,有一个直角三角形纸片,两直角边AC=3,BC=4,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则AD等于()A. B.C. D.答案:A试题难度:三颗星知识点:折叠问题6.下列字母是中心对称图形的是()A.UB.HC.MD.E答案:B试题难度:三颗星知识点:中心对称图形7.已知一次函数y=(a-1)x-b的图象如图所示,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.a<1,b>0D.a<1,b<0答案:A试题难度:三颗星知识点:一次函数图象与系数的关系二、填空题(共8道,每道3分)1.若无理数a满足3.2<a<4,请你写出一个满足条件的无理数a:.答案:、、、或试题难度:三颗星知识点:无理数2.若一个正数的平方根是2a+1和-a-2,则这个正数是.答案:9试题难度:三颗星知识点:平方根3.已知m<0,那么点P(-m²-1,m-2)关于原点的对称点在第象限,其坐标为.答案:(m²+1,2-m)试题难度:三颗星知识点:点的坐标4.如图,在梯形ABCD中,AD//BC,AE//DC交BC于E,已知梯形的周长为30cm,AD=5cm,则△ABE的周长为.答案:20cm试题难度:三颗星知识点:梯形性质5.等腰梯形上底为6cm,下底为8cm,高为cm,则腰长为.答案:2cm试题难度:三颗星知识点:梯形性质6.如图,在平面直角坐标系中,□ABCD的顶点A、D的坐标分别是(0,0),(2,3),AB=5,则顶点C的坐标为.答案:(7,3)试题难度:三颗星知识点:坐标与图形性质7.若2,4,2x,4y四个数的平均数是5,而5,7,4x,6y四个数的平均数是9,则x2+y2= .答案:13试题难度:三颗星知识点:平均数8.在直角坐标系中,A(2,0),B(-4,0),△ABC为等边三角形,则C点的坐标为.答案:(-1,)或(-1,)试题难度:三颗星知识点:点的坐标三、计算题(共1道,每道8分)1.(1)(2)答案:(1)(2)试题难度:三颗星知识点:二次根式的混合运算四、解答题(共5道,每道7分)1.一辆卡车装满货物后,高4米,宽2.8米.这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?答案:能通过解:∵卡车在隧道中间位置能通过的可能性最大∴如图,O为EF的中点,OE=1.4m,OG为圆的半径,OG=2m在直角△OEG中GE²=OG²-OE²=2²-1.4²=2.04 ∵(4-2.6)²=1.4²=1.96,2.04>1.96 ∴在相同宽度下隧道的高度高于卡车的高度,卡车能通过该隧道试题难度:三颗星知识点:勾股定理应用之拱桥问题2.如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时.(3)B出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B 的出发点千米.在图中表示出这个相遇点C.(5)求出A行走的路程S与时间t的函数关系式.答案:(1)10;(2)1;(3)3;(4)(5)试题难度:三颗星知识点:一次函数的图象3.佳能电脑公司的李经理对2008年11月份电脑的销售情况做了调查,情况如下表:请你回答下列问题:(1)2008年11月份电脑价格(与销售台数无关)组成的数据平均数为,中位数为,本月平均每天销售台(11月份为30天).(2)如果你是该商场的经理,根据以上信息,应该如何组织货源,并说明你的理由.答案:解:(1)平均数=(6000×20+4500×40+3800×60+3000×30)=4120;中位数为:3800;本月平均每天销售的数量为:(20+40+60+30)=5(台);(2)价格为6000元一台的电脑,销售数量的频率=≈0.13;(3)如:多进3800元的电脑,适量进些其他价位的电脑等.故答案为:4120,3800,5.试题难度:三颗星知识点:平均数、中位数、众数4.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品九折销售,乙商品七折销售,调价后两种商品的单价和比原来的单价和降低了20%.甲、乙两种商品原来的单价各是多少?答案:解:设甲单价为x,乙单价为y,根据题意可得:解得:答:甲单价50元,乙单价50元.试题难度:三颗星知识点:二元一次方程应用题5.已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.(1)求一次函数y=kx+b 的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.答案:解:(1)∵一次函数y=kx+b的图象经过两点A(-4,0)、B(2,6),∴,解得,∴函数解析式为:y=x+4;(2)函数图象如图:(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.试题难度:三颗星知识点:一次函数五、证明题(共1道,每道7分)1.如图,在△ABC中,∠ACB=90°,点E为AB的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形.答案:证明:∵EF⊥BC,∠ACB=90°∴EF∥AC ∵E为Rt△ABC斜边中点∴EC=EA又∵AF=CE ∴∠1=∠2=∠3=∠4=∠5=∠6 从而△AEF和△EAC均为等腰三角形且底角相等∴两顶角∠FAE=∠AEC ∴AF∥EC ∴四边形ACEF是平行四边形(一组对边平行且相等的四边形为平行四边形)试题难度:三颗星知识点:平行四边形的判定。
北师大版八年级数学上册实数基础知识点
及练习题讲解
本文档旨在为八年级学生提供关于北师大版数学上册实数基础知识点以及相应的练题讲解。
以下是一些关键的知识点和题解答。
实数的定义
实数是指有理数和无理数的集合。
有理数包括整数、分数和十进制无限循环小数,而无理数是指非循环无穷小数。
实数的运算
实数具有加法、减法、乘法和除法等基本运算。
以下是一些实数运算的例子:
- 加法:a + b = c
- 减法:a - b = d
- 乘法:a * b = e
- 除法:a / b = f
实数的性质
实数具有许多重要的性质,例如:
- 交换律:a + b = b + a
- 结合律:(a + b) + c = a + (b + c)
- 分配律:a * (b + c) = a * b + a * c
实数的应用
实数在数学中有广泛的应用。
例如,实数可以用来表示物体的长度、时间的流逝以及温度的变化等。
实数的概念也常常在代数和几何中使用。
题解答
以下是一些题的解答,供同学们练:
1. 计算:3 + 4 = ?
答案:7
2. 计算:5 * 6 = ?
答案:30
3. 计算:10 - 7 = ?
答案:3
请同学们仔细阅读每个题,并尝试独立解答。
如果有任何问题,请随时向老师请教。
以上是关于北师大版八年级数学上册实数基础知识点及练习题
讲解的内容。
希望对同学们的学习有所帮助!。
八年级数学上册综合算式专项练习题平方根与立方根的计算在八年级数学上册中,综合算式是非常重要的一部分内容。
而在综合算式中,平方根与立方根的计算也是一个关键的知识点。
本文将为大家提供一些关于平方根与立方根计算的专项练习题。
1. 题目一:计算下列算式的平方根(1) √169(2) √225(3) √400(4) √576(5) √100解析:(1) √169 = 13(2) √225 = 15(3) √400 = 20(4) √576 = 24(5) √100 = 102. 题目二:计算下列算式的立方根(1) ³√8(2) ³√64(3) ³√125(4) ³√216(5) ³√1000解析:(1) ³√8 = 2(2) ³√64 = 4(3) ³√125 = 5(4) ³√216 = 6(5) ³√1000 = 103. 题目三:计算下列算式(1) (√16)² + (√25)²(2) (√81)² - (√49)²(3) (√256)² ÷ (√16)²(4) (√121)² × (√9)²(5) (√400)² - (√625)²解析:(1) (√16)² + (√25)² = 16 + 25 = 41(2) (√81)² - (√49)² = 81 - 49 = 32(3) (√256)² ÷ (√16)² = 256 ÷ 16 = 16(4) (√121)² × (√9)² = 121 × 9 = 1089(5) (√400)² - (√625)² = 400 - 625 = -2254. 题目四:计算下列算式的平方根与立方根(1) √(a² + b²)(2) ³√(a³ + b³)(3) (√a) × (√b)(4) (√a) ÷ (√b)(5) ³√(a³ - b³)解析:(1) √(a² + b²):将两个数的平方相加,再开平方根(2) ³√(a³ + b³):将两个数的立方相加,再求立方根(3) (√a) × (√b):将两个数分别开平方根,再相乘(4) (√a) ÷ (√b):将两个数分别开平方根,再相除(5) ³√(a³ - b³):将两个数的立方相减,再求立方根通过以上综合算式的专项练习题,我们可以更加熟练地掌握平方根与立方根的计算方法。
专题13.19 课题-最短路径(将军饮马问题)(专项练习)(培优篇)一、单选题1.如图,直线是一条河,A 、B 是两个新农村定居点.欲在l 上的某点处修建一个水泵站,直接向A 、B 两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是( )A .B . C. D . 2.如图,等腰ABC 的底边BC 长为4cm ,面积为216cm ,腰AC 的垂直平分线EF 交AC 于点E ,交AB 于点F ,D 为BC 的中点,M 为直线EF 上的动点.则CDM 周长的最小值为( )A .6cmB .8cmC .9cmD .10cm 3.如图.在五边形ABCDE 中,∠BAE =136°,∠B =∠E =90°,在BC 、DE 上分别找一点M 、N ,使得∠AMN 的周长最小时,则∠AMN +∠ANM 的度数为( )A .84°B .88°C .90°D .96° 4.如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒ 5.如图,在锐角∠ABC 中,∠ACB =50°;边AB 上有一定点P ,M 、N 分别是AC 和BC 边上的动点,当∠PMN 的周长最小时,∠MPN 的度数是( )A .50°B .60°C .70°D .80°6.如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为( )A .36︒B .48︒C .60︒D .72︒7.如图,在ABC ∆中,10BC =,CD 是ACB ∠的平分线.若P ,Q 分别是CD 和AC 上的动点,且ABC ∆的面积为24,则PA PQ +的最小值是( )A.125B.4C.245D.58.在∠ABC中,AB=BC,点D在AC上,BD=6cm,E,F分别是AB,BC边上的动点,∠DEF 周长的最小值为6 cm,则ABC∠=( )A.20°B.25°C.30°D.35°9.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.10.如图,在等边∠ABC中,BF是AC边上的中线,点D在BF上,连接AD,在AD的右侧作等边∠ADE,连接EF,当∠AEF周长最小时,∠CFE的大小是()A .30°B .45°C .60°D .90°二、填空题 11.如图,在Rt ABC 中,ACB 90∠=︒,AC 9=,BC 12=,15AB =,AD 是BAC ∠的平分线,若点P 、Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是______.12.如图,在锐角ABC ∆中,8AC cm =,218ABC S cm ∆=,AD 平分BAC ∠,M 、N 分别是AD 和AB 上 的动点,则BM MN +的最小值是__________cm .13.已知30AOB ∠=︒,点C 为射线OB 上一点,点D 为OC 的中点,且6OC =.当点P 在射线OA 上运动时 ,则PC 与PD 和的最小值为_______.14.如图,∠ABC 中,AB =AC =5,BC =6,AD 是BC 边上的中线且AD =4,F 是AD 上的动点,E 是AC 边上的动点,则CF+EF 的最小值为_____.15.如图,在∠ABC中,AB = AC = 8,S∠ABC = 16,点P为角平分线AD上任意一点,PE∠AB,连接PB,则PB+PE的最小值为_____.16.如图,AD为等边∠ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=_______°.17.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(6,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为_____.18.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当∠PMN周长最小时,∠OPM=50°,则∠AOB=___________.19.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为________ .20.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH 上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________.21.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,∠AOB=30°则∠PMN周长的最小值=________三、解答题22.如图,在等边ABC中,D是直线BC上一点,E是边AC上一动点,以DE为边作等边DEF,连接CF.(提示:含30的直角三角形三边之比为2)+=;(1)如图1,若点D在边BC上,求证:CE CF CD(2)如图2,若点D在BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由;(3)图2中,若ED AC==E从A运动到C停止,求出此过程中点F运动的路径长.23.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点.(1)要使得∠PEF的周长最小,试在图上确定点E、F的位置.(2)若OP=4,要使得∠PEF的周长的最小值为4,则∠AOB=________.24.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO =45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求∠ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角∠BDE,求证:AB∠AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.25.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.参考答案1.D【分析】利用轴对称的性质,通过作对称点找到修建水泵站的位置.【详解】解:作点A关于直线l的对称点A',然后连接A B'与直线l交于一点,在这点修建水泵站,根据轴对称的性质和连点之间线段最短的性质可以证明此事铺设的管道最短.故选:D.【点拨】本题考查利用轴对称的性质找线段和最小的问题,解题的关键是掌握这个作图方法.2.D【分析】连接AD,AM,由于∠ABC是等腰三角形,点D是BC边的中点,故AD∠BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】解:连接AD,MA.∠∠ABC是等腰三角形,点D是BC边的中点,∠AD∠BC,∠S∠ABC=12BC•AD=12×4×AD=16,解得AD=8 cm,∠EF是线段AC的垂直平分线,∠MA=MC,∠MC+DM=MA+DM≥AD,∠AD的长为CM+MD的最小值,∠∠CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=10(cm).故选:D.【点拨】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质和垂直平分线的性质是解答此题的关键.3.B【分析】根据要使AMN∆的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A',A'',即可得出44AA M A∠'+∠''=︒,进而得出2()AMN ANM AA M A∠+∠=∠'+∠''即可得出答案.【详解】解:如图示,作A关于BC和ED的对称点A',A'',连接A A''',交BC于M,交ED 于N,则A A'''即为AMN∆的周长最小值.延长AE,作'A H AE⊥于H点,136BAE ∠=︒,44HAA ∴∠'=︒,44A A HAA ∴∠'+∠''=∠'=︒,A M AA ∠'=∠',NAE A ∠=∠'',且A MAA AMN ∠'+∠'=∠, NAE A ANM ∠+∠''=∠,2()24488AMN ANM A MAA NAE A A A ∴∠+∠=∠'+∠'+∠+∠''=∠'+∠''=⨯︒=︒, 故选:B .【点拨】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质等知识,根据已知得出M ,N 的位置是解题关键.4.B【分析】如图,作M 关于OB 的对称点M′,N 关于OA 的对称点N′,连接M′N′交OA 于Q ,交OB 于P ,则MP+PQ+QN 最小易知∠OPM=∠OPM′=∠NPQ ,∠OQP=∠AQN′=∠AQN ,KD∠OQN=180°-30°-∠ONQ ,∠OPM=∠NPQ=30°+∠OQP ,∠OQP=∠AQN=30°+∠ONQ ,由此即可解决问题.【详解】如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB 于P ,则此时MP PQ QN ++的值最小.易知'∠=∠=∠OPM OPM NPQ ,'∠=∠=∠OQP AQN AQN .∠18030∠=︒-︒-∠OQN ONQ ,30∠=∠=︒+∠OPM NPQ OQP30∠=∠=︒+∠OQP AQN ONQ ,∠303018030210+=︒+︒+∠+︒-︒-∠=︒ONQ ONQ αβ.故选:B.【点拨】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.D【分析】根据轴对称的性质作PD∠AC 于点E ,PG∠BC 于点F ,连接DG 交AC 、BC 于点M 、N ,连接MP 、NP ,得到∠PMN ,由此解答.【详解】解:过点P 作PD∠AC 于点E ,PG∠BC 于点F ,连接DG 交AC 、BC 于点M 、N ,连接MP 、NP ,∠PD ∠AC ,PG ∠BC ,∠∠PEC =∠PFC =90°,∠∠C +∠EPF =180°,∠∠C =50°,∠∠D +∠G +∠EPF =180°,∠∠D +∠G =50°,由对称可知:∠G =∠GPN ,∠D =∠DPM ,∠∠GPN +∠DPM =50°,∠∠MPN =130°﹣50°=80°,故选:D .【点拨】此题考查最短路径问题,根据题意首先作出对称点,连接对称点得到符合题意的三角形,再根据轴对称的性质解答,正确掌握最短路径问题的解答思路是解题的关键.6.D【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以求出PCD ∠.【详解】解:∠24AOB ∠=︒,OP 平分AOB ∠,∠12AOP BOE ∠=∠=︒,作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则'P C PC =,'E D ED =,'1OP OP ==,'12AOP AOP ∠=∠=︒,'=12BOE BOE ∠∠=︒,∠=''CP CD DE CP CD DE ++++,''=48P OE ∠︒,'=9012=78OP P ∠︒-︒︒,'='CPP CP P ∠∠,当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值, ∠''=9048=42OP E ∠︒-︒︒,∠'='''=784236CP P OP P OP E ∠∠-∠︒-︒=︒,∠'='36CPP CP P ∠∠=︒,∠'+'7=2PC CPP CP P D ∠∠=∠︒,故选:D.【点拨】本题考查了最短路径问题,等腰三角形等边对等角,直角三角形的两锐角互余,三角形外角的性质,垂线段最短,通过作对称点化折为直是解题的关键.7.C【分析】由题意可知,根据角平分线的性质,先确定当PA PQ +取最小值时动点P 、Q 的位置,再利用三角形的面积公式即可求出答案.【详解】过点A 作AQ BC '⊥于点Q ',交CD 于点P ,过点P 作PQ AC ⊥,如图所示∠CD 平分ACB ∠,P 、Q 分别是CD 和AC 上的动点∠PQ PQ '=,Q 与Q '关于CD 对称∠此时,()AQ PA PQ '=+最小值∠10BC =,24ABC S ∆= ∠222424105ABC S AQ BC ∆⨯'=== ∠PA PQ +的最小值是245 故选:C【点拨】本题是轴对称最短路线问题,主要考查了角平分线的性质、对称的性质以及三角形的面积公式,确定()AQ PA PQ '=+最小值是解题的关键.8.C【分析】作点D 关于AB 的对称点G ,关于BC 的对称点H ,连接GH 交AB 于E ,交BC 于F ,连接BG 、BH ,此时∠DEF 的周长最小,根据轴对称关系得到BG=BD=BH=6cm ,又由∠DEF 的周长=DE+DF+EF=GH=6cm ,得到∠GBH=60°,由此即可求出∠ABC 的度数.【详解】作点D 关于AB 的对称点G ,关于BC 的对称点H ,连接GH 交AB 于E ,交BC 于F ,连接BG 、BH ,此时∠DEF 的周长最小,由轴对称得:BG=BD=BH=6cm ,∠GBA=∠DBA ,∠HBC=∠DBC ,∠∠DEF 的周长=DE+DF+EF=GH=6cm ,∠∠BGH 是等边三角形,∠∠GBH=60°, ∠∠ABC=12∠GBH=30°, 故选:C.【点拨】此题考查最短路径,轴对称关系,等边三角形的判定定理及性质定理,三角形周长最小的题通常转化为最短路径的题进行解答.9.D【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交于点M ,N ,则沿AM -MN -NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点拨】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.10.D【解析】分析:首先证明点E在射线CE上运动(∠ACE=30°),因为AF为定值,所以当AE+EF最小时,∠AEF的周长最小,作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小,根据等边三角形的判定和性质即可求出∠CFE的大小.详解:∠∠ABC,∠ADE都是等边三角形,∠AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=60°,∠∠BAD=∠CAE,∠∠BAD∠∠CAE,∠∠ABD=∠ACE,∠AF=CF,∠∠ABD=∠CBD=∠ACE=30°,∠点E在射线CE上运动(∠ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E′,此时AE′+FE′的值最小,∠CA=CM,∠ACM=60°,∠∠ACM是等边三角形,∠AF=CF,∠FM∠AC,∠∠CFE′=90°,故选D.点拨:本题考查轴对称——最短距离问题、等边三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明点E在射线CE上运动(∠ACE=30°),本题难度比较大,属于中考选择题中的压轴题.11.36 5【分析】由题意可以把Q反射到AB的Q点,如此PC+PQ的最小值问题即变为C与线段AB上某一点O的最短距离问题,最后根据“垂线段最短”的原理得解.【详解】解:如图,作Q关于AP的对称点O,则PQ=PO,所以O、P、C三点共线时,CO=PC+PO=PC+PQ,此时PC+PQ有可能取得最小值,∠当CO垂直于AB即CO移到CM位置时,CO的长度最小,∠PC+PQ的最小值即为CM的长度,∠1115912 22ABCS AB CM AC CB CM=⨯=⨯∴=⨯,,∠CM=91236155⨯=,即PC+PQ的最小值为365,故答案为365.【点拨】本题考查线段和最小的问题,通过轴反射把线段和最小的问题转化为线段外一点到线段某点连线段最短问题是解题关键.12.9 2【分析】根据题意画出符合题意的图形,作N关于AD的对称点R,作AC边上的高BE(E在AC 上),求出BM+MN=BR ,根据垂线段最短得出BM+MN≥BE ,求出BE 即可得出BM+MN 的最小值.【详解】解:作N 关于AD 的对称点R ,作AC 边上的高BE (E 在AC 上)∠AD 平分BAC ∠,∠ABC 是锐角三角形∠R 必在AC 上∠N 关于AD 的对称点是R∠MN=MR∠BM+MN=BM+MR∠BM+MN=BR≥BE (垂线段最短)∠218ABC S cm ∆=,8AC cm = ∠182BE ⨯⨯=18 ∠BE=92cm 即BM+MN 的最小值是92cm. 故答案为92. 【点拨】本题考查了轴对称——最短路径问题. 解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.13.【分析】作点D 关于OA 的对称点D′,连接CD′交OA 于点P′,连接DP,,根据轴对称的性质得到P′D′=P′D,此时DP′+CP′=CD′即为PC+PD的最小值,根据已知条件计算求出结果即可.【详解】解:作点D关于OA的对称点D′,连接CD′交OA于点P′,连接DP′,根据轴对称的性质得到P′D′=P′D,此时DP′+CP′=CD′即为PC+PD的最小值.设DD′与OA交于点E,∠∠O=30°,OD=3,由对称性可知∠DEO=90°,∠∠ODE=60°,DE=12OD=32,∠DD′=2DE=3,∠DD′=CD,∠∠D′=∠DCD′=12∠ODE=30°,∠∠EDP′=∠D′=30°,∠∠ODP′=∠ODE+∠EDP′=90°,∠在Rt∠ODP′中,∠O=30°,OD=3,故PC与PD和的最小值为【点拨】本题考查了轴对称-最短路线问题,两点之间线段最短的性质.得出动点所在的位置是解题的关键.14.24 5【分析】作BM∠AC于M,交AD于F,根据三线合一定理求出BD的长和AD∠BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】解:作BM∠AC于M,交AD于F,∠AB=AC=5,BC=6,AD是BC边上的中线,∠BD=DC=3,AD∠BC,AD平分∠BAC,∠B、C关于AD对称,∠BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∠S∠ABC=12×BC×AD=12×AC×BM,∠BM=BC ADAC⨯=645⨯=245,即CF+EF的最小值是245,故答案为:245.【点拨】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.15.4【分析】利用角平分线定理确定当BF∠AC时,PB+PE的值最小,再利用三角形面积公式,即可求得.【详解】如图,∠AB = AC = 8,AD 平分CAB ∠∠'''P E P F =∠当BF∠AC 时,PB+PE 的值最小=BF1162ABC S AC BF ∆== ∠BF=4 ∠PB+PE 的最小值为4.【点拨】本题考查了轴对称-最短路径问题,也可以用角平分线定理考虑,找到PE+PB 最小值的情况并画出图形,是解题的关键.16.105°【分析】如图,作辅助线,构建全等三角形,证明∠AEC∠∠CFH ,得CE =FH ,将CE 转化为FH ,与BF 在同一个三角形中,根据两点之间线段最短,确定点F 的位置,即F 为AC 与BH 的交点时,BF +CE 的值最小,求出此时∠AFB =105°.【详解】解:如图,作CH∠BC ,且CH =BC ,连接BH 交AD 于M ,连接FH ,∠∠ABC 是等边三角形,AD∠BC ,∠AC =BC ,∠DAC =30°,∠AC=CH,∠∠BCH=90°,∠ACB=60°,∠∠ACH=90°−60°=30°,∠∠DAC=∠ACH=30°,∠AE=CF,∠∠AEC∠∠CFH,∠CE=FH,BF+CE=BF+FH,∠当F为AC与BH的交点时,BF+CE的值最小,此时∠FBC=45°,∠FCB=60°,∠∠AFB=105°,故答案为105°.【点拨】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.17.(3【解析】【分析】作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得∠NON′是等边三角形,根据等边三角形的性质得到N′M∠ON,解直角三角形即可得到结论.【详解】作N关于OA的对称点N′,连接N′M交OA于P,则此时,PM+PN最小,∠OA垂直平分NN′,∠ON=ON′,∠N′ON=2∠AON=60°,∠∠NON′是等边三角形,∠点M是ON的中点,∠N′M∠ON,∠点N(6,0),∠ON=6,∠点M是ON的中点,∠OM=3,∠PM∠P(3.故答案为:(3【点拨】本题考查了轴对称−最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.18.40°【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,∠PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB的交点时,∠PMN的周长最短,连接P1O、P2O,∠PP1关于OA对称,∠∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∠∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∠∠P1OP2是等腰三角形.∠∠OP2N=∠OP1M=50°,∠∠P1OP2=180°-2×50°=80°,∠∠AOB=40°,故答案为40°【点拨】本题考查了对称的性质,正确作出图形,证得∠P1OP2是等腰三角形是解题的关键.19.5cm【分析】作M关于OC的对称点P,过P作PN∠OA于N,交OC于Q,则此时QM+QN的值最小,则OP=OM=10cm,QM=PQ,∠PNO=90°,根据含30°角的直角三角形性质求出PN 即可.【详解】解:作M关于OC的对称点P,过P作PN∠OA于N,交OC于Q,则此时QM+QN 的值最小,∠∠AOB=30°,OC平分∠AOB,在OA上有一点M,∠OA、OB关于OC对称,∠P点在OB上,∠OP=OM=10cm,QM=PQ,∠PNO=90°,∠PN=12OP=12×10=5cm,∠QM+QN=PQ+QN=PN=5cm,故答案为5cm.【点拨】本题考查了含30度角的直角三角形性质,轴对称以及最短路线问题,垂线段最短的应用,关键是确定Q、N的位置.20.60°【详解】如图,因为点A关于GH的对称点是F,所以连接BF交GH于点P,则PA+PB=PF+PB=BF,所以PA+PB的最小值是BF.因为∠BAF=180°×(6-2)÷6=120°,AB=AF,所以∠AFB=30°.因为∠HGF=90°,所以∠GPF=60°.故答案为:60°.21.5cm;【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∠点P关于OA的对称点为C,关于OB的对称点为D,∠PM=CM,OP=OC,∠COA=∠POA;∠点P关于OB的对称点为D,∠PN=DN,OP=OD,∠DOB=∠POB,∠OC=OD=OP=5cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∠∠COD是等边三角形,∠CD=OC=OD=5cm.∠∠PMN 的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5cm .故答案是:5cm .【点拨】主要运用最短路线问题,综合运用了等边三角形的知识.22.(1)见解析;(2)CE CF CD +=,理由见解析;(3)8-【分析】(1)在CD 上截取CH CE =,易证CEH ∆是等边三角形,得出EH EC CH ==,证明()DEH FEC SAS ∆≅∆,得出DH CF =,即可得出结论;(2)过D 作//DG AB ,交AC 的延长线于点G ,由平行线的性质易证60GDC DGC ∠=∠=︒,得出GCD ∆为等边三角形,则DG CD CG ==,证明()EGD FCD SAS ∆≅∆,得出EG FC =,即可得出FC CD CE =+;(3)当点E 与A 重合时,CF 的值最小,最小值AC ==当CE CD =时,CF 的值最大,最大值224=+=,当点E 与C 重合时,CF 的值最小,最小值=,点F 的运动路径从最小值4,再减小到【详解】解:(1)证明:在CD 上截取CH CE =,如图1所示:ABC ∆是等边三角形,60ECH ∴∠=︒,CEH ∴∆是等边三角形,EH EC CH ∴==,60CEH ∠=︒,DEF ∆是等边三角形,DE FE ∴=,60DEF ∠=︒,60DEH HEF FEC HEF ∴∠+∠=∠+∠=︒,DEH FEC ∴∠=∠,在DEH ∆和FEC ∆中,DE FE DEH FEC EH EC =⎧⎪∠=∠⎨⎪=⎩,()DEH FEC SAS ∴∆≅∆,DH CF ∴=,CD CH DH CE CF ∴=+=+,CE CF CD ∴+=.(2)线段CE ,CF 与CD 之间的等量关系是FC CD CE =+.理由如下:ABC ∆是等边三角形,60A B ∴∠=∠=︒,过D 作//DG AB ,交AC 的延长线于点G ,如图2所示://GD AB ,60GDC B ∴∠=∠=︒,60DGC A ∠=∠=︒,60GDC DGC ∴∠=∠=︒,GCD ∴∆为等边三角形,DG CD CG ∴==,60GDC ∠=︒,EDF ∆为等边三角形,ED DF ∴=,60EDF GDC ∠=∠=︒,EDG FDC ∴∠=∠,在EGD ∆和FCD ∆中,ED DF EDG FDC DG CD =⎧⎪∠=∠⎨⎪=⎩,()EGD FCD SAS ∴∆≅∆,EG FC ∴=,FC EG CG CE CD CE ∴==+=+.∆≅∆,(3)由(2)EGD FCD则∠FCD=∠DGC=60°=∠FCE,∠CF与BC的夹角不变,即点F的运动路径为线段,当点E与A重合时,CF的值最小,最小值AC===时,∠EF=DF,当CE CD∠CF垂直平分ED,∠∠CFE=30°,∠∠CEF=90°,∠EF=ED=AC=∠CF=2=4,∠CF的最大值为4,当点E与C重合时,CF的值最小,最小值=∴点F的运动路径从最小值4,再减小到∴此过程中点F运动的路径长2(48=-=-.【点拨】本题属于三角形综合题,考查了等边三角形的判定与性质、全等三角形的判定与性质、平行线的性质等知识;作辅助线构建等边三角形是解题的关键.23.(1) 作图见解析. (2)30°【详解】试题分析:(1)分别作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.(2)由轴对称的性质知OP=OC,OP=OD,且∠PEF周长的最小值是CD,所以dqga4OCD 是等边三角形,而∠COD=2∠EOF,由此即可求解.试题解析:(1)如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,∠PEF的周长最小.(2)根据轴对称的性质得,OC=OP=OD ,∠COE=∠POE ,∠DOF=∠POF ,∠PEF 的周长的最小值=CD ,因为OP=4,∠PEF 的周长的最小值为4,所以∠OCD 是等边三角形.因为∠COE=∠POE ,∠DOF=∠POF ,所以∠PEF=12∠COD=30°.24.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF∠x 轴于点F ,延长EA 交y 轴于点H ,证∠DEF∠∠BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6 ∠1126362ABC S =⨯⨯=(2)过E 作EF∠x 轴于点F ,延长EA 交y 轴于点H,∠∠BDE 是等腰直角三角形,∠DE=DB, ∠BDE=90°,∠EDF BDO 90∠∠+=︒∠BOD 90∠=︒∠BDO DBO 90∠∠+=︒∠EDF DBO ∠∠=∠EF x ⊥轴,∠DEF BDO ≅∠DF=BO=AO,EF=OD∠AF=EF∠EAF OAH OAB 45∠∠∠===︒∠∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∠OAE 30∠=︒,OA=6,∠OM+ON=3【点拨】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.25.(1)见解析;(2)AM+AN=BM+BN.【解析】试题分析:(1)根据轴对称的性质,分别作点M,N关于OP,OQ的对称点M′,N′,连接MM′,NN′交OP,OQ于点A,B.(2)由轴对称的性质可知AM+AN=M′N,BM+BN=MN′,试题解析:(1)图略,点A,B即为所求.画法:∠作点M关于射线OP的对称点M′;∠连接M′N 交OP于点A;∠作点N关于射线OQ的对称点N′;∠连接N′M交OQ于点B.(2)AM+AN=BM+BN.点拨:本题主要考查了轴对称的性质,“将军饮马”型的问题是中考常考的题型,如图,点A,B在直线l的同旁,在直线l求点P,使PA+PB最小.确定点P的位置的方法是,作点A关于直线l的对称点A′,连接BA′交直线l于点P,则PA+PB的值最小.。
三角形知识点一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△"表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系.4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余.5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性.6、三角形的分类:(1)三角形按边分类:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)还有一种特殊的三角形:等腰直角三角形.它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部.(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
性质:三角形的三条高所在的直线交于一点。
锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点在它的直角顶点;钝角三角形的三条高所在的直线的交点在它的外部;8、三角形的面积:1×底×高三角形的面积=2二、全等图形:定义:能够完全重合的两个图形叫做全等图形。
专题5.20应用二元一次方程组——里程碑上的数(知识梳理与考点分类讲解)【知识点1】里程碑上的数字问题两位数:十位数字×10+个位数字.三位数:百位数字×100+十位数字×10+个位数字.四位数:千位数字+百位数字×100+十位数字×10+个位数字.......例如:如果一个两位数,个位数字为x,十位数字为y,则这个两位数可表示为10y+x,而不可表示为yx,因为yx表示y乘x,应注意区别.特别提醒:1.在表示多位数时,什么数位上的数字就乘什么,如百位上的数字乘100,千位上的数字乘1000.2.若用两个数拼一个新数,则要关注两个数的前后顺序和前面的数扩大的倍数与后面的数的数位的关系.【考点目录】【考点1】数字问题;【考点2】几何问题;【考点3】图表信息题;【考点4】开放问题;【考点5】其他问题.【考点一】数字问题【例1】(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5;(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点拨】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【举一反三】【变式1】(2022下·重庆江津·七年级校联考阶段练习)甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的151倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1089.求这两个两位数?如果设甲数为x ,乙数为y .则得方程组()A .1001511001001089x y y y x x y +=⎧⎨+=+-⎩B .1001511001001089x y x y x x y +=⎧⎨+=++⎩C .1001001089100151x y x y y x y +=++⎧⎨+=⎩D .1001001089100151x y x y y x y +=+-⎧⎨+=⎩【答案】A【分析】设甲数为x ,乙数为y .根据题意,列出二元一次方程组即可求解.解:设甲数为x ,乙数为y .根据题意,得方程组1001511001001089x y y y x x y +=⎧⎨+=+-⎩,故选A .【点拨】本题考查了二元一次方程组的应用,理解题意是解题的关键.【变式2】(2023下·江苏扬州·七年级统考期末)小凡出门前看了下智能手表上的运动APP ,发现步数计数是一个两位数,步行下楼后发现十位数字与个位上数字互换了,到小区门口时,发现步数计数比下楼后看到的两位数中间多了个1,且从出门到小区门口共走了...........586步,则出门时看到的步数是.【答案】26【分析】设出门时看到的步数的十位数字为x ,个位数字为y ,根据从出门到小区门口共走了586步,可列出关于x ,y 的二元一次方程,结合x ,y 均为一位正整数,即可得出x ,y 的值,再将其代入()10x y +中,即可求出结论.解:设出门时看到的步数的十位数字为x ,个位数字为y ,根据题意得:()1001010586y x x y ++-+=,∴1164y x =+.又∵x ,y 均为一位正整数,∴2 6x y =⎧⎨=⎩,∴10102626x y +=⨯+=,即出门时看到的步数是26.故答案为:26.【点拨】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【考点二】几何问题【例2】(2023上·四川内江·八年级威远中学校校考期中)(1)一个正方形的边长增加3cm ,面积就增加281cm ,求原正方形的边长;(2)已知一个长方形,若它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变.求这个长方形的面积.【答案】(1)12cm ;(2)224cm 【分析】本题考查了二元一次方程组的应用:(1)设原正方形的边长为cm x ,根据“正方形的边长增加3cm ,面积就增加281cm ”,列出方程,即可求解;(2)设长方形原来的长为cm x ,宽为cm y ,根据“它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变”,列出方程组,即可求解.(1)解:设原正方形的边长为cm x ,()22381x x +-=,解得12x =.答:原正方形的边长为12cm ;(2)解:设长方形原来的长为cm x ,宽为cm y ,依题意,得()()()()4121x y xy x y xy ⎧+-=⎪⎨-+=⎪⎩,整理得:4422x y x y -=-⎧⎨-=⎩,解得:83x y =⎧⎨=⎩,所以这个长方形的面积23824cm S xy ==⨯=.答:这个长方形的面积是224cm .【举一反三】【变式1】(2021上·福建漳州·八年级校考阶段练习)如图,周长为34的大长方形ABCD 被分成7个全等的小长方形,则每个小长方形的面积为()A .10B .14C .20D .30【答案】A 【分析】本题中的两个等量关系是:长方形长的四倍与宽的七倍之和为34;长的二倍等于宽的五倍,据此建立二元一次方程组求解即可.解:设长方形的长为x ,宽为y ,根据题意,得:473425x y x y +=⎧⎨=⎩,解得:52x y =⎧⎨=⎩,∴5210xy =⨯=,∴每个小长方形的面积为10.故选:A .【点拨】本题考查二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.【变式2】(2023上·陕西西安·八年级高新一中校考期中)如图,在一个大长方形中放入六个形状、大小相同的小长方形,有关尺寸如图所示,则图中大长方形ABCD 的面积是2cm .【答案】560【分析】本题主要考查二元一次方程组的应用,设小长方形的长、宽分别为x 、y ,根据图示可以列出方程组,然后解这个方程组即可求出小长方形长和宽,然后求得大长方形的长和宽,从而求得面积.解题的关键是会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.解:设小长方形的长、宽分别为cm cm x y ,,依题意得212328x y y x y +-=⎧⎨+=⎩,解之得164x y =⎧⎨=⎩,∴小长方形的长、宽分别为16cm 4cm ,,∴12220cm,28cm AB y BC =+==,∴大长方形ABCD 的面积22028560cm AB BC =⋅=⨯=,【考点三】图表信息问题【例3】(2022上·陕西西安·八年级统考期末)张老师在某文体店购买商品A 、B 若干次(每次A 、B 两种商品都购买,且A 、B 都只能购买整数个),其中第一、二两次购买时,均按标价购买,两次购买商品A 、B 的数量和费用如表所示:购买商品A 的数量/个购买商品B 的数量/个购买总费用/元第一次购物65980第二次购物37940(1)求商品A 、B 的标价;(2)若张老师第三次购物时,商品A 、B 同时打6折出售,这次购买总费用为960元,则张老师有哪几种购买方案?【答案】(1)商品A 的标价为80元/个,商品B 的标价为100元/个;(2)张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B【分析】(1)设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据“表格信息”建立方程组,再解方程组即可;(2)设张老师购买m 个商品A ,n 个商品B ,根据“这次购买总费用为960元”建立二元一次方程,再利用方程的正整数解可得答案.(1)解:设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据题意得:6598037940x y x y +=⎧⎨+=⎩,解得:80100x x =⎧⎨=⎩.答:商品A 的标价为80元/个,商品B 的标价为100元/个.(2)设张老师购买m 个商品A ,n 个商品B ,根据题意得:800.61000.6960m n ⨯+⨯=,∴5204m n =-.当4n =时,15m =;当8n =时,10m =;当12n =时,5m =.答:张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B .【点拨】本题考查的是二元一次方程组的应用,二元一次方程的正整数解的含义,理解题意,确定相等关系建立方程组或方程是解本题的关键.【举一反三】【变式1】(2023下·河北邢台·七年级校考期末)如图,两架天平均保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是()A .10gB .20gC .25gD .30g【答案】B 【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量50=克.根据这两个等量关系式可列一个方程组,进行求解即可.解:设每块巧克力的重量为x 克,每块果冻的重量为y 克.由题意列方程组得:3250x y x y =⎧⎨+=⎩,解方程组得:2030x y =⎧⎨=⎩.即:每块巧克力的质量是20克.故选:B .【点拨】题考查二元一次方程的应用,根据等量关系列方程组是关键.【变式2】(2023下·浙江湖州·七年级统考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在33⨯(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.如图2的方格中填写了一些代数式,若能构成一个广义的三阶幻方,则a b +=.【答案】6-【分析】根据三阶幻方中的数字列方程组求解即可.解:由题意知,322224a a b +=-⎧⎨-=+-⎩,解得33a b =-⎧⎨=-⎩,∴336a b +=--=-,故答案为:6-.【点拨】本题主要考查二元一次方程组的应用,熟练根据三阶幻方列方程求解是解题的关键.【考点四】开放问题【例4】(2017下·江苏南通·七年级校考期中)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用二元一次方程组解决的问题,并写出这个问题的解答过程.【答案】问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一),答案:6.5吨.【分析】1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解:问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一)设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得3422{2623x y x y +=+=,解得4{ 2.5x y ==.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.【举一反三】【变式1】(2020上·辽宁铁岭·八年级校联考期中)小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是()A .20B .22C .23D .25【答案】C 【分析】设投掷中外环区、内区一次的得分分别为x ,y 分,根据等量关系列出方程组,解方程组即可;解:设投掷中外环区、内区一次的得分分别为x ,y 分,依题意得:32192321x y x y +=⎧⎨+=⎩,∴解这个方程组为:35x y =⎧⎨=⎩,∴大壮的得分为:432023x y +=+=.故选:C .【点拨】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.【变式2】(2018下·七年级单元测试)如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23cm ,小红所搭的“小树”的高度为22cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =,y =.【答案】45解:根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,解得45x y =⎧⎨=⎩.故答案为:4和5.【点拨】本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.【考点五】其他问题【例5】(2023上·全国·八年级专题练习)在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打八折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?【答案】(1)每瓶免洗手消毒液价格是15元,每瓶84消毒液的价格是8元;(2)学校选用方案一更节约钱,节约76元.【分析】本题考查二元一次方程组的应用.(1)根据购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元,可以列出相应的二元一次方程组,从而可以求出每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元;(2)根据题意,可以求出方案一和方案二的花费情况,然后比较大小并作差即可解答本题.(1)解:设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a 元、b 元,40901320601201860a b a b +=⎧⎨+=⎩,解得:158a b =⎧⎨=⎩,答:每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)方案一的花费为:()151008600.81584⨯+⨯⨯=(元),方案二的花费为:()15100860100521660⨯+⨯-÷⨯=(元),1660158476-=(元),15841660<,答:学校选用方案一更节约钱,节约76元.【举一反三】【变式1】(2023下·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A .120cmB .130cmC .140cmD .150cm【答案】D 【分析】设1支塑料凳子的高度为 cm x ,每叠放1支塑料凳子高度增加 cm y ,根据2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,列出二元一次方程组,解之求出x 、y 的值,即可解决问题.解:设1支塑料凳子的高度为 cm,x 每叠放1支塑料凳子高度增加 cm y ,依题意得:60380x y x y +=⎧⎨+=⎩解得:5010x y =⎧⎨=⎩10501010150x y ∴+=+⨯=,即11支塑料凳子整齐地叠放在一起的高度为150cm .故选:D .【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·黑龙江齐齐哈尔·校考三模)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备用160元全部购买A ,B 两种奖品若干个,那么可以购买B 种奖品个.【答案】4或8【分析】设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据“购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元”,可得出关于x ,y 的二元一次方程组,解之可得出两种奖品的单价,设可以购买A 种奖品m 个,B 种奖品n 个,利用总价=单价×数量,可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数,即可得出n 的值.解:设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意得:2410052130x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,∴A 种奖品的单价为20元,B 种奖品的单价为15元.设可以购买A 种奖品m 个,B 种奖品n 个,根据题意得:2015160m n +=,∴384m n =-,∵m ,n 均为正整数,∴54m n =⎧⎨=⎩或28m n =⎧⎨=⎩,∴可以购买B种奖品4或8个.故答案为:4或8.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出二元一次方程组(或二元一次方程)是解题的关键.。
八年级数学上册基础知识练习题班别:姓名1已知点P 在第三象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为( • )A.(3,5)B.(-5,3)C.(3,-5)D.(-5,-3)2、下面有四个汽车标致图案,其中是轴对称图形的是()A、②③④B、①②③C、①②④D、①②④①②③④3、两个三角形有以下三对元素对应相等,则不能判定全等的是()(A)一边和任意两个角(B)两边和他们的夹角(C)两个角和他们一角的对边(D)三角对应相等4、下列语句中正确的有()句.①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.(A)1 (B)2 (C)3 (D)45、已知△ABC≌DEF,则下列说法错误的是:()A、AB=DEB、∠CAB=∠FDEC、∠A=∠ED、BC=EF6、三角形内到三条边的距离相等的点是()A、三角形的三条角平分线的交点B、三角形的三条高的交点C、三角形的三条中线的交点D、三角形的三边的垂直平分线的交点7、等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A.65°或50°B.80°或40°C.65°或80°D.50°或80°8、据统计,2008年五·一期间,我市某风景区接待中外游客的人数为86740人次,将这个数字保留三个有效数字,用科学记数法可表示为()A.8.67×102B. 8.67×103C.8.67×104D. 8.67×1059、等腰三角形的周长为cm13,其中一边长为cm3,则该等腰三角形的底边为()A、cm7B、cm3C、cm7或cm3D、cm8二、耐心填一填10、OC是∠BOA的平分线,PE⊥OB,PD⊥OA,若PE=5cm,则PD=11、已知等腰三角形的一边长为4,一边的长为6,则此等腰三角形的周长为。
专题11.8多边形及其内角和(精选精练)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.(23-24六年级下·山东烟台·期中)过多边形一个顶点的所有对角线将这个多边形分成3个三角形,这个多边形是()A .五边形B .六边形C .七边形D .八边形2.(23-24八年级下·安徽阜阳·阶段练习)一个正多边形的内角和为1080︒.则这个正多边形的边数为()A .9B .8C .7D .63.(2024·福建福州·模拟预测)如图1是颐和园小长廊五角加膛窗,其轮廓是一个正五边形,如图2是它的示意图,它的一个外角α的度数为()A .70︒B .72︒C .60︒D .108︒4.(2020·辽宁葫芦岛·三模)如图,多边形ABCDEFG 中,108E F G ∠=∠=∠=︒,72C D ∠=∠=︒,则A B ∠∠+的值为()A .108︒B .72︒C .54︒D .36︒5.(2024·内蒙古赤峰·三模)如果一个正多边形的一个外角是45︒,则这个正多边形是正()边形A .六B .八C .十D .十二6.(2024·湖北荆门·模拟预测)小聪利用所学的数学知识,给同桌出了这样一道题:假如从点A 出发,沿直线走9米后向左转θ,接着沿直线前进9米后,再向左转θ,…,如此下去,当他第一次回到点A 时,发现自己一共走了72米,则θ的度数为()A.60︒B.75︒C.30︒D.45︒7.(2024·云南玉溪·三模)若一个正多边形的每一个外角都是36︒,则该正多边形的内角和的度数是().A.1440︒B.360︒C.1800︒D.2160︒∠=︒,则1∠的度数为8.(2024·河北石家庄·三模)如图,五边形ABCDE是正五边形,AF DG∥,若226()A.86︒B.64︒C.62︒D.52︒9.(23-24九年级下·河北邯郸·期中)综合实践课上,嘉嘉用八个大小相等的含45°角的直角三角板拼成了一个环状图案,如图1,若淇淇尝试用含60°角的直角三角板拼成类似的环状图案,如图2,除了图上3个还需要含60°角的直角三角板的数量为()A.3个B.6个C.9个D.12个10.(2024·河北沧州·二模)用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的∠的度数为()内角BCDA.120︒B.135︒C.144︒D.150︒二、填空题(本大题共8小题,每小题4分,共32分)11.(2024八年级下·全国·专题练习)一个八边形的内角和是.12.(23-24六年级下·山东济南·期中)若从n边形的一个顶点最多能引出2条对角线,则n是.13.(2024·湖北咸宁·一模)一个多边形的内角和为540︒,这个多边形的边数是.14.(2024·陕西宝鸡·模拟预测)一个正多边形的内角比外角大90︒,则这个多边形的内角和为.15.(23-24八年级上·辽宁营口·期中)如果把一个多边形剪去一个内角,剩余部分的内角和为1440︒,那么原多边形有条边.16.(19-20七年级下·江苏扬州·期末)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=.17.(2024·陕西西安·模拟预测)一个正多边形的外角和与内角和的比为1:3,则这个多边形是正边形.18.(2024·云南昆明·二模)如图,一个正n边形被树叶遮掩了一部分,若直线a,b所夹锐角为36︒,则n的值是.三、解答题(本大题共6小题,共58分)19.(8分)(21-22八年级下·广西桂林·期中)列式计算:求图中x的值.20.(8分)(23-24八年级上·江西南昌·期末)如果多边形的每个内角都比与它相邻的外角的4倍多30︒.(1)这个多边形的内角和是多少度?(2)求这个多边形的对角线的总条数.21.(10分)(23-24八年级上·新疆昌吉·期中)如图,在五边形ABCDE 中,100120AE CD A B �靶=,,∥(1)若110D ∠=︒,请求E ∠的度数;(2)试求出C ∠及五边形外角和的度数.22.(10分)(23-24七年级下·湖南衡阳·阶段练习)如图,阅读佳佳与明明的对话,解决下列问题:(1)多边形内角和为什么不可能为2020︒?(2)明明求的是几边形的内角和?(3)错当成内角的那个外角为多少度?23.(10分)(2024·浙江杭州·一模)问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了问题,请解答.(1)若四边形的一个内角的度数是α.①求和它相邻的外角的度数(用含α的代数式表示);②求其他三个内角的和(用含α的代数式表示).n>,除了一个内角,其余内角的和为920︒,求n的值.(2)若一个n边形(3)深入探究:n>的一个外角与和它不相邻的(n)1-个内角的和之间满足的等量关系,说明理由.(3)探索n边形(3)24.(12分)(1)已知图①中的三角形ABC,分别作AB,BC,CA的延长线BD,CE,AF,测量∠CBD,∠ACE,∠BAF的度数,并计算∠CBD+∠ACE+∠BAF.由此你有什么发现?请利用所学知识解释说明;(2)类似地,已知图②中的四边形PQRS,分别作PQ,QR,RS,SP的延长线QG,RH,SM,PN,测量∠RQG,∠SRH,∠PSM,∠QPN的度数,并计算∠RQG+∠SRH+∠PSM+∠QPN.由此你又有什么发现?(3)综合(1)(2)的发现,你还能进一步得到什么猜想?参考答案:1.A【分析】本题考查了多边形的对角线数量问题,根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可求出n 的值,得到答案.【详解】解:设这个多边形是n 边形,由题意得:23n -=,解得:5n =,即这个多边形是五边形,故选:A .2.B【分析】本题多边形内角和公式,解题关键是理解并熟记多边形内角和公式.根据多边形内角和定理:可得方程()18021080x ︒⨯-=︒,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:()18021080x ︒⨯-=︒解得:8x =故选B3.B【分析】本题主要考查多边形的内角和外角,熟练掌握正多边形的外角和为360︒是解题的关键.根据多边形的外角和为360︒即可作答.【详解】解:360572÷=︒.故选:B .4.B【分析】连接CD ,设AD 与BC 交于点O ,根据多边形的内角和公式即可求出∠E +∠F +∠G +∠EDC +∠GCD ,根据各角的关系即可求出∠ODC +∠OCD ,然后根据对顶角的相等和三角形的内角和定义即可求出结论.【详解】解:连接CD ,设AD 与BC 交于点O∵∠E +∠F +∠G +∠EDC +∠GCD=180°×(5-2)=540°,108E F G ∠=∠=∠=︒,72∠=∠=︒GCB EDA ,∴108°+108°+108°+72°+∠ODC +72°+∠OCD=540°∴∠ODC +∠OCD=72°∵∠AOB=∠COD∴∠A +∠B=180°-∠AOB=180°-∠COD=∠ODC +∠OCD=72°故选B .【点拨】此题考查的是多边形的内角和公式和对顶角的性质,掌握多边形的内角和公式和对顶角相等是解决此题的关键.5.B【分析】本题考查了正多边形的外角性质,根据正多边形的外角都相等以及外角和为360︒,列式36045︒÷︒进行计算,即可作答.【详解】解:∵一个正多边形的一个外角是45︒,∴360458︒÷︒=,∴这个正多边形是正八边形,故选:B .6.D【分析】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A 时,所经过的路线正好构成一个正多边形.第一次回到出发点A 时,所经过的路线正好构成一个正多边形,用8972=÷,求得边数,再根据多边形的外角和为360︒,即可求解.【详解】解:∵第一次回到出发点A 时,所经过的路线正好构成一个正多边形,∴正多边形的边数为:8972=÷,根据多边形的外角和为360︒,∴则他每次转动θ的角度为:360845︒÷=︒,故选:D .7.A【分析】本题主要考查了多边形的内角和与外角和,掌握内角和公式是解题的关键.根据任何多边形的外角和都是360︒,可以求出多边形的边数,再根据多边形的内角和公式,就得到多边形的内角和.【详解】解:根据题意得:该多边形的边数为:3601036︒=︒,∴该正多边形的内角和为:()1021801440-⨯︒=︒.故选:A .8.C【分析】此题考查了多边形的内角和外角及平行线的性质,熟记多边形内角和公式及平行线的性质是解题的关键.连接AD ,根据多边形的内角和及平行线的性质求解即可.【详解】如图,连接AD ,∵五边形ABCDE 是正五边形,()521801085E BAE -⨯︒∴∠=∠==︒,EA ED =,()34180108236∴∠=∠=︒-︒÷=︒,5108472∴∠=︒-∠=︒,226∠=︒ ,2598,DAF ∴∠=∠+∠=︒,AF DG 98,ADG ∴∠=︒1362.ADG ∴∠=∠-∠=︒故选:C .9.C【分析】本题主要考查了正多边形的外角和.多边形由拼图方法可知:环状图案的外围是正多边形,根据正多边形外角和等于360︒即可求出正多边形的边数.【详解】解:依题意可知:用含60°角的直角三角板按图示拼成类似的环状图案是正多边形,正多边形的外角180(9060)30=︒-︒+︒=︒,故正多边形的边数为3603012︒÷︒=(条)∴除了图上3个还需要含60°角的直角三角板的数量为1239-=(个)故选C .10.C【分析】本题主要考查了多边形内角和定理,根据5个“筝形”组成一个正十边形,结合多边形内角和定理求解即可【详解】解;由图可知,5个“筝形”组成一个正十边形,∴()180********BCD ︒⨯-∠==︒,故选:C11.1080︒/1080度【分析】本题考查了多边形内角和定理,直接套用多边形的内角和()2180n -⋅︒进行计算可求八边形的内角和,【详解】解:内角和:()8218061801080-⨯︒=⨯︒=︒.故答案为:1080︒12.5【分析】本题考查了多边形的对角线,牢记n 边形从一个顶点出发可引出(3)n -条对角线是解题的关键.据此求解即可.【详解】解:∵从n 边形的一个顶点最多能引出2条对角线,∴32n -=,∴5n =.故答案为:5.13.5【分析】本题考查多边形的内角和公式,n 边形的内角和公式为()2180n -⨯︒,由此列方程即可得到答案.【详解】解:设这个多边形的边数为n ,则()2180540n -⨯︒=︒,解得5n =,故答案为:5.14.1080︒/1080度【分析】本题考查了多边形外角和与内角和,掌握其计算公式是解题的关键.多边形的内角和公式为:()2180n -⨯︒(其中n 为多边形的边数),多边形的外角和是360︒.因为多边形的外角和是360︒,且正多边形的每个内角都相等,每个外角也都相等,设这个正多边形的一个外角为x ,则内角为90x +︒,根据内角与外角的和为180︒可列出方程.【详解】设外角是x ,则内角是180x ︒-,则18090x x ︒--=︒,解得45x =︒.则多边形的边数是:360458︒÷︒=.∴内角和是:()821801080-⨯︒=︒.故答案为:1080︒.15.11或10或9【分析】本题考查了多边形的内角和度数,熟记相关结论是解题关键.【详解】解:以五边形为例,如图所示:剪去一个内角后,多边形的边数可能加1,可能不变,也可能减1设新多边形的边数为n ,则()21801440n -⨯︒=︒,解得:10n =∴原多边形可能有11或10或9条边.故答案为:11或10或9.16.540°【分析】连接ED ,由三角形内角和可得∠A+∠B=∠BED+∠ADE ,再由五边形的内角和定理得出结论.【详解】连接ED ,∵∠A+∠B=180°-∠AOB ,∠BED+∠ADE=180°-∠DOE ,∠AOB=∠DOE ,∴∠A+∠B=∠BED+∠ADE ,∵∠CDE+∠DEF+∠C+∠F+∠G=(5-2)×180°=540°,即∠CDO+∠ADE+BED+∠BEF+∠C+∠F+∠G=540°,∴∠A+∠B+∠C+∠CDO+∠BEF+∠F+∠G=540°.故答案为:540°.【点拨】本题考查了三角形的内角和公式,以及多边形的内角和公式,熟记多边形的内角和公式为(n -2)×180°是解答本题的关键.17.八【分析】本题主要考查了多边形的内角和,熟练掌握多边形的内角和公式,是解决问题的关键设这个正多边形的边数为n ,根据正多边形的外角和与内角和的比为1:3,利用多边形内角和公式与外角和列方程解答并检验,即得【详解】设这是个正n 边形,∵这个正多边形的外角和与内角和的比为1:3,∴()360121803n =-⨯,解得,8n =,经体验8n =是所列方程的解,且符合题意,∴这是个正八边形,故答案为:八18.5【分析】本题主要考查了多边形的内角和外角,解题关键是熟练掌握正多边形的定义及性质和外角和.先根据题意画出图形,再根据已知条件求出2∠和3∠的度数,然后根据正多边形的性质和外角和,求出正多边形的边数即可.【详解】解:如图所示:由题意得:136∠=︒,123180∠+∠+∠=︒ ,2318036144∴∠+∠=︒-︒=︒,正多边形每个外角都相等,23144272∴∠=∠=︒÷=︒,正多边形的外角和为360︒,∴它的边数为:360725÷=,n ∴的值为5,故答案为:5.19.100【分析】本题考查了四边形的内角和定理,根据题意,列式109060360x x +++︒+︒=︒计算即可.【详解】根据题意,列式109060360x x +++︒+︒=︒,解得100x =,故图中x 的值为100.20.(1)1800︒(2)54【分析】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引3n -()条对角线.(2)求出多边形的边数,利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答.【详解】(1)解:设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =,3603012︒÷︒=∴这个正多边形是十二边形.∴这个正多边形的内角和为(122)1801800-⨯︒=︒(2)解:对角线的总条数为4(1231)252-=⨯(条).21.(1)70E ∠=︒(2)140C ∠=︒,五边形外角和的度数是360︒【分析】本题主要考查多边形内角和、外角和及平行线的性质,熟练掌握多边形内角和及平行线的性质是解题的关键.(1)根据平行线的性质可进行求解;(2)根据多边形内角和、外角和及平行线的性质可进行求解.【详解】(1)解:∵AE CD ∥,∴180D E ∠+∠=︒,∴180********E D ∠∠=︒-=︒-︒=︒;(2)解:五边形ABCDE 中,()52180540A B C D E ∠+∠+∠+∠+∠=-⨯︒=︒,∵180D E ∠+∠=︒,100A ∠=︒,120B ∠=︒,∴()540C D E A B∠∠∠∠∠=︒-+--140=︒;五边形外角和的度数是360︒.22.(1)见解析(2)十三边形或十四边形(3)110︒或20︒【分析】本题主要考查了多边形内角和定理,多边形内角和外角的关系以及二元一次方程组的应用.(1)根据多边形内角和定理公式计算判断即可.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,结合角的属性建立不等式求整数解即可.(3)分别计算十三边形的内角和以及十四边形的内角和,分别列出关于x ,y 的二元一次方程组求解即可.【详解】(1)设多边形的边数为n ,由题意得()18022020n -= ,解得2139n =,∵n 为正整数,∴多边形的内角和不可能为2020︒.(2)设应加的内角为x ,多加的外角为y ,依题意可列方程为()21802020n y x -=-+ ,∵180180x y -<-< ,∴()202018018022020180n -<-<+ ,解得22121499n <<,又∵n 为正整数,∴n 13=或14n =.故明明求的是十三边形或十四边形的内角和.(3)十三边形的内角和为()1801321980⨯-= ,∴2020198040y x -=-= ,又180x y += ,∴70x = ,110y = .十四边形的内角和为()1801422160⨯-= ,∴21602020140x y -=-= ,又180x y += ,∴160x = ,20y = .所以错当成内角的那个外角为110︒或20︒.23.(1)①180α︒-,②360α︒-(2)8n =;(3)(3)180n βα-=-⨯︒,理由见解析【分析】(1)①根据一个内角与它相邻的外角的和是180︒进行计算即可;②四边形的内角和是360︒进行计算即可;(2)根据多边形的内角和的计算方法进行计算即可;(3)表示出和它不相邻的(n )1-个内角的和即可.【详解】解:(1)①四边形的一个内角的度数是α,则与它相邻的外角的度数180α︒-;②由于四边形的内角和是360︒其中一个内角为α,则其它三个内角的和为360α︒-;(2)由题意得,(2)180920n α-⨯︒-=︒,3n > 的正整数,0180α︒<<︒,8n ∴=,即这个多边形为八边形;(3)设n 边形(3)n >的一个外角为α,它不相邻的(n )1-个内角的和为β,则有180(2)180n αβ︒-+=-⨯︒,即(3)180n βα-=-⨯︒.24.(1)见解析,∠CBD +∠ACE +∠BAF =360°,三角形中的外角和为360°,见解析;(2)∠RQG +∠SRH +∠PSM +∠QPN =360°,见解析;(3)多边形的外角和和都是360°,见解析【分析】(1)经测量得出∠CBD =138°,∠ACE =117°,∠BAF =105°,∠CBD +∠ACE +∠BAF =360°,则据此得出结论三角形中的外角和为360°,根据平角是180°和多边形内角和证明即可;(2)分别测量出几个角并求出这几个角的和,得出结论:在四边形的外角和是360°;根据(1)中证明方法证明即可;(3)猜想:多边形的外角和和都是360°.根据(1),(2)方法证明即可;【详解】解:(1)经测量知∠CBD =138°,∠ACE =117°,∠BAF =105°,∴∠CBD +∠ACE +∠BAF =360°,发现:三角形中的外角和为360°,理由:∵∠CBD+∠ABC=180°,∠ACE+∠ACB=180°,∠BAC+∠BAF=180°,∴∠CBD+∠ACE+∠BAF+∠ABC+∠ACB+∠BAC=540°,又∵∠ABC+∠ACB+∠BAC=180°,∴∠CBD+∠ACE+∠BAF=360°;(2)∠RQG=125°,∠SRH=113°,∠PSM=48°,∠QPN=74°,所以∠RQG+∠SRH+∠PSM+∠QPN=360°;发现:在四边形的外角和是360°;∵∠RQG+∠PQR=180°,∠SRH+∠QRS=180°,∠PSM+∠RSP=180°,∠QPN+∠QPS=180°,∵∠RQG+∠PQR+∠SRH+∠QRS+∠PSM+∠RSP+∠QPN+∠QPS=720°,∵∠PQR+∠QRS+∠RSP+∠QPS=360°,∴∠RQG+∠SRH+∠PSM+∠QPN=360°.(3)猜想:多边形的外角和都是360°.设多边形为n边形,则n边形的每一个内角与它相邻的外角的和为180°,∴n边形的外角和=180°n﹣(n﹣2)×180°=180°n﹣180°n+360°=360°.【点拨】此题考查多边形外角和的知识,利用平角是180°结合多边形内角和证明即可.。
专题2.1 平方根(知识讲解)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】【知识点一】算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);的算术平方根”,叫做被开方数.特别说明:0,≥0. 【知识点二】平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.【知识点三】平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.【知识点四】平方根的性质【知识点五】平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者x a 2x a =x a a a a a a 2x a =x a a a a 0)a ≥a 0||000aa a a a a >⎧⎪===⎨⎪-<⎩()20aa =≥向左移动1位..【典型例题】类型一、求一个数的平方根1.求下列各数的算术平方根. (1)169; (2)481; (3)0.09; (4)(﹣3)2. 【答案】(1)13; (2)29; (3)0.3; (4)3 【分析】根据算术平方根的定义解答 解:(1)∵132=169,∵169的算术平方根是13, 13; (2)∵(29)2=481, ∵481的算术平方根是29,29; (3)∵0.32=0.09,∵0.09的算术平方根是0.3, =0.3; (4)∵32=9=(﹣3)2,∵(﹣3)2的算术平方根是3, 3.【点拨】此题考查了求一个数的算术平方根,正确理解算术平方根的定义是解题的关键. 【变式】 求下列各数的算术平方根: (1) 0.64 (2) 4981【答案】(1) 0.8; (2)79【分析】根据算术平方根的定义求解即可. 解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8. (2)因为2749()981=,250=25= 2.5=0.25=所以4981的算术平方根是7979. 【点拨】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.类型二、利用算术平方根非负性求解2.已知223y x x =-+--,求(x +y )2022的值 【答案】1【分析】根据二次根式的性质得到2x =,计算出1x y +=-,从而计算出最终的答案.解:∵3y =∵2020x x -≥⎧⎨-≥⎩得22x x ≥⎧⎨≤⎩∵2x =∵33y ==- ∵202220222022()(23)(1)1x y +=-=-= ∵2022()1x y +=.【点拨】本题考查二次根式、幂运算的性质,解题的关键是熟练掌握二次根式、幂运算的相关知识.举一反三:【变式】 已知实数a 、b 、c |1|a +=(1) 求证:b c =;(2) 求a b c -++的平方根. 【答案】(1)见分析 (2)3±【分析】根据算术平方根的非负性,即可得证;(2)根据(1)的结论,以及非负数之和为0,求得,,a b c 的值,进而求得a b c -++的平方根.(1)证明:0≥0,0,0b c c b -≥-≥,b c ∴=;(2)解:|1|a +=b c =,10a -=,1,4a b ∴=-=, 4c b ∴==,1449a b c ∴-++=++=,9的平方根是3±.【点拨】本题考查了算术平方根的非负性,非负数之和为0,掌握非负数的性质以及算术平方根的非负性是解题的关键.类型三、求算术平方根的整数部分和分数部分3.已知21a-=3,3a﹣b+1的平方根是±4,c是113的整数部分,求a+b+2c 的平方根.【答案】±5【分析】分别根据算术平方根、平方根的意义,无理数的估算求出a、b、c的值,即可求出a+b+2c的值,根据平方根的意义即可求解.解:=3,∵2a﹣1=9,解得:a=5,∵3a﹣b+1的平方根是±4,∵15﹣b+1=16,解得:b=0,∵1011,∵c=10,∵a+b+2c=5+0+2×10=25,∵a+b+2c的平方根为±5.【点拨】本题考查了算术平方根、平方根的意义,无理数的估算,熟知算术平方根、平方根的意义是解题关键.举一反三:【变式】已知a b-1是400【答案】6a的值,进而利用算术平方根的定义得出b 的值,即可得出答案.解:∵a∵a=15,∵b-1是400的算术平方根,∵b-1=20,解得:b=21,6.【点拨】此题主要考查了估计无理数大小以及算术平方根,得出a 的值是解题关键.类型四、算术平方根相关规律问题4.先填写表,通过观察后再回答问题:(1)表格中x = ,y = ;(2)从表格中探究a∵ ;∵8.973=89.73,用含m 的代数式表示b ,则b = ;(3)a 的大小.【答案】(1)0.1,10(2)∵31.6;∵100b m =(3)当0a =a =;当1a =a =;当01a <<a ;当1a >a 【分析】(1)根据算术平方根的性质,即可求解;(2)根据题意可得当a 扩大10010倍,∵≈3.16,即可求解;∵8.973=89.73,即可求解;(3)分四种情况:当0a =时,当1a =时,当01a <<时,当1a >时,即可求解.(1)解:根据题意得:0.1,10x y ====;(2)解:根据题意得:当a 扩大10010倍,,31.6;8.973=89.73, ∵100b m =;(3)当0a =0=a =;当1a =1=a =;当01a <<时,根据a a >;当1a >时,根据a a ;综上所述,当0a =a =;当1a =a ;当01a <<a >;当1a >时,a <.【点拨】本题主要考查了算术平方根,明确题意,准确得到规律是解题的关键. 举一反三:【变式】 细心观察图,认真分析各式,然后解答问题:221+=; 221+=;221+=;⋅⋅⋅⋅⋅⋅(1)请用含n (n 为正整数)的等式表示上述交化规律:______;(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;(3的长度;(4)若S 表示三角形面积,121OP P S S =△,232OP P S S =△,343OP P S S =△⋅⋅⋅,计算出222212310S S S S +++⋅⋅⋅+的值.【答案】(1)221+=;(2)直角边的平方和等于斜边的平方;(3)见分析;(4)554. 【分析】(1)观察已知各式,归纳总结规律即可得; (2)根据等式和图形即可得;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,可得6OP 出点7P ,连接7OP 即为所求;(4)先分别求出123,,S S S 的值,再归纳总结出一般规律得出n S 的值,从而可得10S 的值,然后代入求和即可.解:(1)观察已知各式可得,各式的变化规律为221+=故答案为:221+=;(2)结合等式和图形可得,直角三角形两条直角边与斜边的关系为:直角边的平方和等于斜边的平方故答案为:直角边的平方和等于斜边的平方;(3)先作5OP 的垂线,再在垂线上截取561P P =,连接6OP ,即可得6OP 作点7P ,连接7OP ,则7OP 即为所求,如图所示:(4)121111122OP P S S==⨯⨯==2321122OP P S S ==⨯343112OP P S S==⨯归纳类推得:1112n n n OP P S S +==⨯当10n =时,101110112OP P S S==⨯=则222222221231010()2S S S S +++⋅⋅⋅+=++++ 123104444=++++123104++++=554=. 【点拨】本题考查了算术平方根、勾股定理等知识点,读懂题意,正确归纳类推出一般规律是解题关键.类型五、算术平方根的实际应用5.如图,用两个边长为18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为230cm 请说明理由.【答案】不能,理由见分析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为2:1,计算长方形的长与宽进行验证即可.解:不能,∵2+2=36(cm 2), ∵大正方形的边长为6cm ,设截出的长方形的长为2b cm ,宽为b cm , ∵2b 2=30,∵b∵2b =6=,∵不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.【点拨】本题考查了算术平方根的应用,理解算术平方根的意义是正确解答的关键. 举一反三:【变式】 小强同学用两个小正方形纸片做拼、剪构造大正方形游戏:(他选用的两个小正方形的面积分别为1S 、2S ).(1)如图1,121,1S S ==,拼成的大正方形1111D C B A 边长为___________; 如图2,121,4S S ==,拼成的大正方形2222A B C D 边长为___________; 如图3,121,16S S ==,拼成的大正方形3323A B C D 边长为___________.(2)若将(1)中的图3沿正方形3333A B C D 边的方向剪裁,能否剪出一个面积为14.52且长宽之比为4∵3的长方形?若能,求它的长、宽;若不能,请说明理由;【答案】(2)不能用正方形3333A B C D 纸片裁出符合要求的长方形纸片,理由见分析 【分析】(1)求出所拼成的正方形的面积,再根据算术平方根的定义进行计算即可; (2)根据题意求出其长、宽,再根据算术平方根进行验证即可.(1)解:如图1,当S 1=1,S 2=1,拼成的大正方形A 1B 1C 1D 1的面积为1+1=2,因此其边如图2,当S 1=1,S 2=4,拼成的大正方形A 2B 2C 2D 2的面积为1+4=5如图3,当S 1=1,S 2=16,拼成的大正方形A 3B 3C 3D 3的面积为1+16=17,(2)解:不能,理由如下:设长方形的长为4x ,宽为3x ,则有4x •3x =14.52, 所以x 2=1.21, 即x =1.1(x >0),因此长方形的长为4x =4.4,宽为3x =3.3, 因为(4.4)2=19.36>17,所以不能用正方形A 3B 3C 3D 3剪出一个面积为14.52且长宽之比为4:3的长方形. 【点拨】本题考查算术平方根,理解算术平方根的定义是正确解答的前提.类型六、平方根概念的理解6.已知10﹣3a 的平方根是±1,a ﹣b +2的算术平方根是2,求3a +b 的值. 【答案】10【分析】利用平方根和算术平方根的定义求得a 与b 的值,然后代入3a +b 即可. 解:∵10﹣3a 的平方根是±1,∵()21031a -=±, 解得,a =3,∵a ﹣b +2的算术平方根是 2, ∵222a b -+=, 解得,b =1,∵333110a b +=⨯+=.【点拨】本题考查了平方根和算术平方根的概念,理解掌握概念是解题的关键. 举一反三:【变式】 已知一个正数的两个不相等的平方根是6a +与29a -. (1)求a 的值及这个正数;(2)求关于x 的方程()2280ax --=的解. 【答案】(1)a =1,这个正数是49;(2)8x =± 【分析】(1)由正数的两个平方根互为相反数得到6a ++29a -=0,求解即可得到答案;(2)将a =1代入方程,根据平方根的意义得到答案即可. 解:(1)由题意得6a ++29a -=0,解得a =1,∵这个正数是2(6)49a +=;(2)将a =1代入方程()2280ax --=,得2x -64=0, 解得8x =±.【点拨】此题考查正数平方根的性质,根据平方根的定义解方程,正确理解平方根的性质是解题的关键.类型七、求一个数的平方根7.先用平方根符号表示下列各数,再求值: (1)9(2)1625【答案】(1)记为3±(2)±记为45± 【分析】(1)根据平方根的概念与性质,计算即可; (2)根据平方根的概念与性质,计算即可.(1)解:原式=3=±(2)解:原式45=±【点拨】本题考查平方根的概念与性质,一个数a 的正的平方根,用符号表示,a叫做被开方数,2叫做根指数,a 的负平方根用“表示,根指数是2时,通常略去不写.如“根号a ”,“正、负根号a ”,掌握平方根的概念与性质是解题的关键.举一反三:【变式】 求下列各数的平方根: (1)100; (2)64; (3)4964;(4)1.21.【答案】(1)±10(2)±8(3)78±(4)±1.1【分析】(1)根据2100±=(10)计算即可. (2)根据264±=(8)计算即可.(3)根据2749864±=()计算即可. (4)根据2 1.21±=( 1.1)计算即可.解:(1)∵2100±=(10),∵100的平方根是±10.(2)∵264±=(8),∵64的平方根是±8. (3)∵2749864±=() ∵4964的平方根是78±. (4)∵2 1.21±=( 1.1),∵1.21的平方根是±1.1.【点拨】本题考查了平方根即如果2x a =(a 是非负数),则称x 是a 的平方根,正确理解平方根的意义是解题的关键.类型八、求代数式的平方根8.若2x +的算术平方根是3,求34+x 的平方根.【答案】5±【分析】根据2x +的算术平方根是3,求出x 的值后,代入34+x 中,再求34+x 的平方根.解:∵2x +的算术平方根是3,∵29x +=,∵7x =,∵3425x +=,∵34+x 的平方根为5±.【点拨】本题考查了算数平方根和平方根的应用,解题的关键是:理解算数平方根和平方根的定义,易错点是容易把负的平方根丢掉.举一反三:【变式】k 是64的平方根,求m -n+k 的平方根.【答案】【分析】由互为相反数的两个数的和等于0可得:m+1=0,2-n -0,解得m=-1,n=2;由k 是64的方根,得出k=±8,再代入m 、n 、k 的值求得m -n+k 的值,求其平方根即可.解:0,又,∵m+1=0,2-n-0,∵m=-1,n=2,∵k是64的平方根,∵k=±8;当k=8时,m-n+k=-1-2+8=5,由m-n+k的平方根为当k=-8时,m-n+k=-1-2-8=-11,没有平方根;综合上述可得:m-n+k的平方根为【点拨】考查了非负数的性质和平方根的定义,解题关键掌握几个非负数的和为0时,则这几个非负数都为0.类型九、已知一个数的平方根,求这个数9.一个正数x的两个平方根是3a﹣2与4﹣a,则x是多少?【答案】25【分析】直接利用平方根的性质求解.解:依题意得,3a﹣2+4﹣a=0,∵a=﹣1,∵3a﹣2=﹣5,∵x=25.【点拨】本题考查了平方根的性质,熟练掌握一个正数有两个平方根,它们互为相反数是解题的关键.举一反三:【变式】一个正数x的两个不同的平方根分别是4a﹣1和4﹣a,求a和x的值.【答案】a和x的值分别为﹣1,25【分析】根据一个正数的两个平方根互为相反数,得到4a﹣1+(4﹣a)=0,求出a=﹣1,再根据x=(4a﹣1)2求出x即可.解:∵一个正数的两个平方根互为相反数,∵4a﹣1+(4﹣a)=0,解得a=﹣1,∵x=(4a﹣1)2=(﹣5)2=25.答:a和x的值分别为﹣1,25.【点拨】此题考查了已知一个数的平方根求参数,正确掌握一个正数的两个平方根是一对相反数的性质是解题的关键.类型十、利用平方根解方程10.阅读下列解答过程,在横线上填入恰当内容.解方程:(x-1)2=4解:∵(x-1)2=4(1)∵x-1=2(2)∵x=3(3)上述过程中有没有错误?若有,错在步骤__________(填序号)原因是____________________________________.请写出正确的解答过程.【答案】(2),正数的平方根有两个,它们互为相反数,见分析【分析】根据正数的平方根有两个,它们互为相反数,即可求解.解:上述过程中有错误,错在步骤(2),原因是:正数的平方根有两个,它们互为相反数,正确的解答过程为:解:∵(x-1)2=4∵x-1=±2∵x=3或x=-1故答案为:(2)正数的平方根有两个,它们互为相反数,【点拨】本题考查了根据平方根解方程,掌握正数的平方根有两个,它们互为相反数是解题的关键.举一反三:【变式】求下列式子中的x:(1)25(x﹣35)2=49;(2)12(x+1)2=32.【答案】(1)x1=2,x2=45(2)x1=7,x2=﹣9【分析】(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解:25(x﹣35)2=49,(x﹣35)2=4925,x﹣35=±75,x ﹣35=75或x ﹣35=﹣75, 解得:x 1=2,x 2=45-; (2)12(x +1)2=32,(x +1)2=32×2,(x +1)2=64,x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.【点拨】此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键. 类型十一、平方根的应用11.如图∵所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图∵的方式拼成一个正方形.(1)图∵中阴影部分的正方形的边长等于______________(2)请用两种不同的方法列代数式表示图∵中阴影部分的面积:方法一:________________________________________________方法二:________________________________________________(3)根据(2)直接写出22(),(),m n m n mn -+这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x 和y ,若9,18x y xy +==,求x y -的值.【答案】(1)m n -(2)2()m n -,2()4m n mn +-(3)22()()4m n m n mn -=+-(4)3±【分析】(1)利用小长方形的长减去宽即可得;(2)方法一:根据(1)的结论,直接利用正方形的面积公式即可得;方法二:利用大长方形的面积减去四个小长方形的面积即可得;(3)根据(2)中方法一与方法二求出的面积相等即可得;(4)先利用(3)中的等式求出2()x y -的值,再根据平方根的性质即可得.(1)解:由题意得:小长方形的长为m ,宽为n ,则图∵中阴影部分的正方形的边长等于为m n -,故答案为:m n -.(2)解:方法一:图∵中阴影部分的正方形的边长等于为m n -,则其面积为2()m n -;方法二:图∵中大正方形的边长为m n +,四个小长方形的长均为m ,宽均为n ,则图∵中阴影部分的面积为2()4m n mn +-,故答案为:2()m n -,2()4m n mn +-.(3)解:因为(2)中方法一与方法二求出的面积相等,所以22()()4m n m n mn -=+-.(4)解:9,18x y xy +==,222()()494189x y x y xy ∴-=+-=-⨯=,3x y ∴-=±.【点拨】本题考查了完全平方公式与图形面积、平方根的应用,结合图形,正确发现图∵中阴影面积的两种求解方法是解题关键.举一反三:【变式】 已知|2020|a a -=,求22020a -的值.【答案】2022【分析】根据算术平方根的非负性确定a 的范围,进而化简绝对值,在根据平方根的定义求得代数式的值.解:∵20220a -≥,∵2022a ≥.∵20200a -<,∵原式化简为2020a a -+=,2020=,∵220222020a -=,故220202022a -=.【点拨】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定a 的范围化简绝对值是解题的关键.。
2022-2023学年北师大版八年级数学上册《第2章实数》章末综合知识点分类练习(附答案) 一.平方根1.已知一个数的平方根是2a +5与﹣3a +25,求这个数.2.(1)若5a +1和a ﹣19是数m 的两个不同的平方根,求m 的值. (2)如果y =+3,试求2x +y 的值.二.算术平方根3.已知实数a ,b ,c 满足:b =+4,c 的平方根等于它本身.求的值.4.若一正数x 的平方根是2a ﹣1和﹣a +2, 是5的算术平方根,求x +5y 的平方根.三.非负数的性质:算术平方根 5.已知:(x +2)2与互为相反数,求(x +y )2018的平方根.6.若+(1﹣y )2=0.(1)求x ,y 的值; (2)求+++…+()()202220221++y x 的值.四.立方根 7.已知M =是m +3的算术平方根,N =是n ﹣2的立方根,求:M ﹣N 的值的平方根. 五.计算器—数的开方8.(1)观察下表,你能得到什么规律?n 0.008 8 8000 80000000.2220200(2)请你用计算器求出精确到0.001的近似值,并利用这个近似值根据上述规律,求出和的近似值.六.无理数9.在实数:3.14159,,1.010010001…,,0,,中,无理数有()A.1个B.2个C.3个D.4个七.实数10.把下列各数填在相应的大括号里:﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,负整数集合:(…);负分数集合:(…);无理数集合:(…).八.实数的性质11.若|a|=,则﹣的相反数是.12.已知|x﹣1|=,求实数x的值.九.实数与数轴13.如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P 在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T表示的数为;MT=.(用含t的代数式填空)十.实数大小比较14.先填写表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.十一.估算无理数的大小15.阅读下面文字,然后回答问题.大家知道是无理数,而无理数是无限不循环小数,所以的小数部分我们不可能全部写出来,由于的整数部分是1,将减去它的整数部分,差就是它的小数部分,因此的小数部分可用﹣1表示.由此我们得到一个真命题:如果=x+y,其中x是整数,且0<y<1,那么x=1,y=﹣1.请解答下列问题:(1)如果=a+b,其中a是整数,且0<b<1,那么a=,b=;(2)如果﹣=c+d,其中c是整数,且0<d<1,那么c=,d=;(3)已知2+=m+n,其中m是整数,且0<n<1,求|m﹣n|的值.十二.实数的运算16.(π﹣1)0+(﹣)﹣1+|5﹣|﹣2.17.(1)计算:(2)求x的值:(x﹣5)3=﹣8十三.二次根式的定义18.已知是整数,则满足条件的最小正整数n是.十四.二次根式有意义的条件19.使在实数范围内有意义,则实数x的取值范围是.20.已知:a、b、c是△ABC的三边长,化简.十六.最简二次根式21.在二次根式,,,,,,中,最简二次根式有个.十七.二次根式的乘除法22.化简:(b<0).十八.化简分母中的二次根式23.计算:=.24.阅读下面计算过程:==﹣1;==﹣;==﹣2.求:(1)的值.(2)(n为正整数)的值.(3)+++…+的值.十九.可以合并的二次根式25.若最简二次根式与是可以合并的二次根式,则a的值为.26.若最简二次根式和是可以合并的二次根式.(1)求x,y的值;(2)求的值.二十.二次根式的加减法27.计算:+的结果为.28.化简.29.化简:()2﹣=.二十二.二次根式的化简求值30.若x,y是实数,且y=++,求(x+)﹣(+)的值.参考答案一.平方根1.解:∵一个数的平方根是2a+5与﹣3a+25,∴2a+5+(﹣3a+25)=0,解得a=30,∴2a+5=2×30+5=65,∴这个数是:652=4225.2.解:(1)∵5a+1和a﹣19是数m的两个不同的平方根,∴5a+1+a﹣19=0,解得a=3,所以,5a+1=3×5+1=16,m=162=256;(2)由题意得,x2﹣4≥0且4﹣x2≥0,所以,x2≥4且x2≤4,所以,x2=4,解得x=±2,又∵x+2≠0,∴x≠﹣2,所以,x=2,y=3,所以,2x+y=2×2+3=7.二.算术平方根3.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.4.解:∵一正数x 的平方根是2a ﹣1和﹣a +2, ∴2a ﹣1﹣a +2=0,解得:a =﹣1. ∴2a ﹣1=﹣3, ∴x =(﹣3)2=9. ∵是5的算术平方根,∴3×9﹣2y ﹣9=2,解得:y =8. ∴x +5y =49.∴x +5y 的平方根是±7. 三.非负数的性质:算术平方根 5.解:因为:(x +2)2与互为相反数,所以:(x +2)2+=0,又因为:(x +2)2≥0,≥0, 所以 x +2=0,x +2y =0, 所以x =﹣2,y =1, 所以(x +y )2018=1,所以(x +y )2018的平方根是±1. 6.解:(1)根据题意得,解得;(2)原式=+++…+202320241=1﹣+﹣+﹣+…+20231﹣20241=1﹣20241=20242023. 四.立方根 7.解:∵M =是m +3的算术平方根,∴m ﹣4=2,解得m=6,∴M==3;∵N=是n﹣2的立方根,∴2m﹣4n+3=3,即12﹣4n+3=3,解得n=3,∴N==1,∴M﹣N=3﹣1=2,∴M﹣N的值的平方根是±.五.计算器—数的开方8.解:(1)被开方数的小数点每向右(左)移动3位,立方根的小数点向相同的方向移动1位;(2)∵,∴,.六.无理数9.解:3.14159,=4,0,是有理数,1.010010001…,﹣,是无理数,共有3个,故选:C.七.实数10.解:在﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,中,负整数集合是:(﹣(﹣2)2,﹣|﹣2|,…);负分数集合是:(﹣0.101001,﹣0.,…);无理数集合是:(0.202002…,,…).八.实数的性质11.解:∵|a|=,∴a2=6,∴﹣=﹣=﹣2,﹣2的相反数是2.故本题的答案是2.12.解:∵|x﹣1|=,∴x﹣1=±.解得:x=+1或x=﹣+1.∴x的值为1﹣或1+.九.实数与数轴13.解:(1)AB=9﹣(﹣6)=15,t=1时,BQ=3,OQ=6,设t秒后相遇,由题意(2+3)t=15,t=3,故答案为15,6,3(2)答:MN长度不变,理由如下:∵M为AP中点,N为BP中点∴MP=AP,NP=BP,∴MN=MP+NP=(AP+BP)=AB=7.5.(3)则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t;故答案为t﹣6,9﹣t,15﹣t;十.实数大小比较14.解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,故答案为:(1)0.1;10;(2)①31.6;②10000m十一.估算无理数的大小15.解:(1)∵=a+b,其中a是整数,且0<b<1,2<<3,∴a=2,b=﹣2;(2)∵﹣=c+d,其中c是整数,且0<d<1,2<<3,﹣3<﹣<﹣2,∴c=﹣3,d=3﹣;(3)∵2+=m+n,其中m是整数,且0<n<1,∴m=4,n=﹣2,则|m﹣n|=|4﹣+2|=6﹣.故答案为:2,﹣2;﹣3,3﹣,6﹣.十二.实数的运算16.解:(π﹣1)0+(﹣)﹣1+|5﹣|﹣2=1﹣2+3﹣5﹣2=﹣6+.17.解:(1)原式=5﹣4+2=3;(2)开立方得:x﹣5=﹣2,解得:x=3.十三.二次根式的定义18.解:∵8=22×2,∴n的最小值是2.故答案为:2.十四.二次根式有意义的条件19.解:由题意,得3﹣x≥0,且x≠0,解得x≤3且x≠0,故答案为:x≤3且x≠0.十五.二次根式的性质与化简20.解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.十六.最简二次根式21.解:,是最简二次根式,故答案为:2.十七.二次根式的乘除法22.解:∵由二次根式的性质可得a<0,b<0,∴原式=•(﹣b)•(a)÷3=﹣3a2b÷3=﹣3a2b×(﹣)=a2b2×=ab.十八.化简分母中二次根式23.解:原式===3.故答案为:3.24.解:(1)==﹣;(2)==﹣;(3)+++…+=(﹣1)+(﹣)+(2﹣)+…+(10﹣)=10﹣1=9.十九.可以合并的二次根式25.解:∵最简二次根式与是可以合并的二次根式,∴2a﹣3=5,解得:a=4.故答案为:4.26.解:(1)根据题意知,解得:;(2)当x=4、y=3时,===5.二十.二次根式的加减法27.解:原式=+=+2=.故答案为:.28.解:=﹣=﹣=﹣=+4﹣﹣1=3.二十一.二次根式的混合运算29.解:根据题意得3﹣x≥0,解得x≤3,所以原式=3﹣x﹣=3﹣x﹣(3﹣x)=0.故答案为0.二十二.二次根式的化简求值30.解:∵x,y是实数,且y=++,∴4x﹣1≥0且1﹣4x≥0,解得:x=,∴y=,∴(x+)﹣(+)的值.=2x+2﹣x﹣5=x﹣3=﹣3=﹣.。
八年级数学上册知识大综合基础练习
试卷简介:全卷共四个大题,第一题是选择(1道,每道5分);第二题是填空(10道,每道5分);第三题是解答(4道,每道10分),第四题是作图(1道,每道5分),满分100分,测试时间30分钟。
本套试卷综合考察了八年级上册的基础知识,同学们在做题的过程中可以查漏补缺,做到及时巩固。
学习建议:本讲内容主要回顾了八年级上册学习的基础知识,大家可以针对自己的薄弱点再加强练习,争取做到牢固掌握各个知识点并且能够灵活综合应用。
一、单选题(共1道,每道5分)
1.一个多边形的每个内角都等于144°,则内角和是______,共有______条边.()
A.1260°,8
B.1440°,10
C.1620°,9
D.1800°,11
二、填空题(共10道,每道5分)
1.______,的算术平方根的平方根是______.
2.下列说法正确的是______ ① 任何正数的两个平方根的和等于0 ② 任何实数都有一个立方根③ 无限小数都是无理数④ 实数和数轴上的点一一对应
3.菱形有一个内角是60°,边长为10,则它的面积是______
4.下列表述的图形中能进行密铺的有______ ①平行四边形②三角形③直角梯形④正五边形⑤正八边形
5.矩形ABCD的对角线AC,BD所成的锐角是60度,则下列说法正确的是______
①.AC+BD=AB+BC+CD+DA ②.BD+AC=AB+AC ③.BD=2AB ④.以上都不对
6.等腰梯形ABCD中,A=120°,AB=4,CD=10,各顶点坐标是A______,B______,C______,D(0,0).
7.点P(a-1,-b+2)关于x轴对称与关于y轴对称的点的坐标相同,则a、b的值分别是______.
8.如图所示,图中函数的解析式为______
9.y=-2x+b与x轴交于(4,0),则它与y轴的交点为______,与y=x的交点坐标为______.
10.方程2x+y=7在自然数范围内的解有______对.
三、解答题(共4道,每道10分)
1.如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线与点F.
①DE和BF相等吗?请说明理由.
②连结AF、BE,四边形AFBE是平行四边形吗?说明理由.
2.如图,lA 、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距______千米.
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是______小时.
(3)B出发后______小时与A相遇.
(4)若B的自行车不发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.
(5)求出A行走的路程S与时间t的函数关系式.
3.列方程组解应用题:甲、乙两种商品原来的单价和为100元,因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%,甲、乙两种商品原来的单价各是多少元?
4.在一次射击比赛中,19名参赛队员(每人打3发)的成绩如下表:
求出这组数据的平均数,众数,中位数.
四、作图题(共1道,每道5分)
1.将△ABC平移后,A点移到A1点,请作出平移后的图形.
八年级数学暑期预习领先班(八年级上册知识系统梳理+完美衔接、领先一步) 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室电话:68856662。