人教版六年级(上册)数学概念知识点整理
- 格式:doc
- 大小:195.00 KB
- 文档页数:14
人教版六年级数学上册教材的知识点归纳总结人教版六年级数学上册教材内容丰富,包括了数的概念、整数、小数、分数、计算、图形、运算定律、面积、体积等多个知识点。
下面将对这些知识点进行归纳总结,帮助同学们更好地理解和记忆这些知识。
一、数的概念1. 自然数:从1开始的数叫做自然数,用N表示。
2. 整数:包括自然数和负整数,用Z表示。
3. 真分数:分子小于分母的分数叫做真分数。
4. 假分数:分子大于等于分母的分数叫做假分数。
5. 数轴:用来表示数的大小关系的直线。
二、整数1. 整数的概念:正整数、负整数和0统称为整数。
2. 整数的比较:同号相比较,大的数更大;异号相比较,负数更小。
3. 整数的加法和减法:同号相加减,结果的符号不变;异号相加减,结果的符号取绝对值大的数的符号。
4. 整数的乘法:同号相乘结果为正;异号相乘结果为负。
5. 整数的除法:两个整数相除,商的符号与被除数和除数的符号相同。
三、小数1. 小数的概念:整数和小数点后的数字组成的数。
2. 小数的读法:按位读出小数点前的数字,小数点后的数字按位数读。
3. 小数的比较:同样位数的小数,从左至右比较每一位的大小。
4. 小数的加法和减法:按位对齐,从右到左进行加减运算。
5. 小数的乘法和除法:按照整数运算法则进行计算,最后保留相应的小数位数。
四、分数1. 分数的概念:一个整数除以一个非零的整数所得的数。
2. 分数的分类:真分数和假分数。
3. 分数的化简:将分子和分母的公约数都除掉,得到最简分数。
4. 分数的加法和减法:分母相同,直接加减分子;分母不同,通分后再进行加减运算。
5. 分数的乘法:分子乘以分子,分母乘以分母,得到的新分数即为乘积。
6. 分数的除法:将除数倒转,变成乘法运算。
五、图形1. 正方形:四条边相等且四个角都是直角的四边形。
2. 长方形:相邻两边相等且四个角都是直角的四边形。
3. 三角形:有三条边和三个角的多边形。
4. 直角三角形:一个角为直角的三角形。
人教版六年级上册数学知识点汇总一、分数乘法•分数乘法的意义:理解分数乘法的两种意义——求一个数的几分之几是多少,以及分数乘整数的意义。
•分数乘法的计算方法:掌握分数乘法的计算法则,能熟练进行分数乘法运算,并理解分数乘法运算的算理。
•分数乘法与加减法的混合运算:能够进行分数乘法与加减法的混合运算,并合理运用运算律进行简便计算。
•解决实际问题:能将分数乘法运算应用于解决实际问题,如分数应用题。
二、位置与方向(二)•根据方向和距离确定物体的位置:学会根据方向和距离在平面图上确定物体的位置,能描述简单的路线图。
•在方格纸上用数对表示位置:进一步巩固用数对表示位置的方法,并能在方格纸上根据数对确定点的位置。
•比例尺的应用:理解比例尺的意义,能根据比例尺计算图上距离或实际距离。
三、分数除法•分数除法的意义:理解分数除法的意义,掌握分数除以整数的计算方法。
•一个数除以分数的计算方法:学会一个数除以分数的计算方法,并能进行分数除法的简便计算。
•分数除法的混合运算:能够进行分数除法的混合运算,包括与加、减法的混合运算。
•解决实际问题:能将分数除法运算应用于解决实际问题,如分数除法应用题。
四、比•比的意义:理解比的意义,掌握比的基本性质。
•比与分数、除法的关系:理解比与分数、除法之间的联系与区别,能够进行比与分数、除法的互化。
•比的应用:掌握比的应用,如按比例分配问题等。
五、圆•圆的认识:认识圆,掌握圆的基本特征,理解直径与半径的关系。
•圆的周长:理解圆周率的意义,掌握圆的周长计算公式,并能进行圆的周长的计算。
•圆的面积:理解圆的面积公式的推导过程,掌握圆的面积计算公式,并能进行圆的面积的计算。
•圆的对称性:理解圆是轴对称图形,能找出圆的对称轴。
六、百分数(一)•百分数的意义:理解百分数的意义,掌握百分数的读写方法。
•百分数与小数、分数的互化:学会百分数与小数、分数的互化方法。
•百分数的应用:能将百分数应用于解决实际问题,如折扣问题、纳税问题、利息问题等。
六年级上册数学知识点 第一单元 位置 1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法 (一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
人教版小学数学六年级上册知识点整理归纳 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少? A × 61表示: 求a 的61是多少? (二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数, 这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
人教版六年级数学上册教材的知识点重点梳理重点梳理:人教版六年级数学上册教材的知识点一、整数的认识与比较1. 整数的定义及表示方法2. 正整数、负整数、零的概念3. 整数的大小比较二、整数的加减运算1. 整数的加法运算2. 整数的减法运算3. 整数的加减法运算规则三、整数的乘法与除法运算1. 整数的乘法运算2. 整数的除法运算3. 乘法、除法的运算规则四、整数的应用1. 整数在坐标系中的表示与应用2. 整数的温度计表示法3. 整数在日常生活中的应用五、小数的认识与比较1. 小数的定义及表示方法2. 小数的大小比较3. 小数的整数部分与小数部分六、小数的加减运算1. 小数的加法运算2. 小数的减法运算3. 小数的加减法运算规则七、小数的乘法与除法运算1. 小数的乘法运算2. 小数的除法运算3. 乘法、除法的运算规则八、分数的认识与比较1. 分数的定义及表示方法2. 分数的大小比较3. 分数的整数部分与分数部分九、分数的加减运算1. 分数的加法运算2. 分数的减法运算3. 分数的加减法运算规则十、分数的乘法与除法运算1. 分数的乘法运算2. 分数的除法运算3. 乘法、除法的运算规则十一、分数的应用1. 分数在日常生活中的应用2. 分数在图形中的应用十二、单位换算1. 长度单位的换算2. 容量单位的换算3. 质量单位的换算十三、面积的认识与计算1. 长方形的面积计算2. 正方形的面积计算3. 三角形的面积计算十四、容量与质量的认识与计算1. 容量的认识与计算2. 质量的认识与计算十五、几何图形1. 图形的分类2. 平行线与垂直线的认识3. 常见几何图形的性质与应用以上是人教版六年级数学上册教材的知识点重点梳理。
通过对这些知识点的学习与掌握,学生将能够建立起整数、小数、分数等数学概念的基础,并能够进行相应的计算与运用。
这些知识点的理解与掌握对于学生进一步学习数学及日常生活中的应用都具有重要意义。
六年级上册数学知识点(概念)归纳与整理(人教版)第二单元 分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512 ,表示:6的512 是多少。
27 ×512 ,表示:27 的512 是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤. (1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
六年级上册数学知识点第一单元位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行〞。
作用:确定一个点的位置。
经度和纬度就是这个原理。
例:在方格图〔平面直角坐标系〕中用数对〔3,5〕表示〔第三列,第五行〕。
注:〔1〕在平面直角坐标系中横轴上的坐标表示列,纵轴上的坐标表示行。
如:数对〔3,2〕表示第三列,第二行。
〔2〕数对〔X,5〕的行号不变,表示一条横线,〔5,Y〕的列号不变,表示一条竖线。
〔有一个数不确定,不能确定一个点〕〔列,行〕↓↓竖排叫列横排叫行〔从左往右看〕〔从下往上看〕〔从前往后看〕2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点〔0,0〕的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法〔一〕分数乘法意义:1、分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数的和的简便运算。
注:“分数乘整数〞指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少?或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数〞指的是第二个因数必须是分数,不能是整数。
〔第一个因数是什么都可以〕例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A ×61表示: 求a的61是多少?〔二〕分数乘法计算法那么:1、分数乘整数的运算法那么是:分子与整数相乘,分母不变。
注:〔1〕为了计算简便能约分的可先约分再计算。
〔整数和分母约分〕〔2〕约分是用整数和下面的分母约掉最大公因数。
〔整数千万不能与分母相乘,计算结果必须是最简分数〕2、分数乘分数的运算法那么是:用分子相乘的积做分子,分母相乘的积做分母。
〔分子乘分子,分母乘分母〕注:〔1〕如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。
一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。
2. 分数的基本性质,如通分、约分等。
二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。
2. 分数四则运算,包括分数乘除法及运算顺序。
三、空间与几何1. 图形的基本认识,如点、线、面等。
2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。
3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。
四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。
2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。
五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。
2. 数学与生活的联系,如解决生活中常见的数学问题等。
具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。
在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。
通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。
六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。
例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。
此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。
七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。
学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。
八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。
如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。
这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。
一、整除和余数1. 整除的概念整数a除以整数b(b≠0),当结果为整数时,称a能整除b,记作b|a。
2. 余数的概念整数a除以整数b(b≠0),所得到的未被整除的部分叫做余数,记作a mod b。
17÷5=3(余2),则5|17,17 mod 5=2。
二、最小公倍数和最大公约数1. 最小公倍数的概念两个以上整数公有的倍数中最小的一个叫做这些整数的最小公倍数,记作a和b的最小公倍数=lcm(a,b)。
2. 最大公约数的概念两个以上整数公有的约数中最大的数叫做这些整数的最大公约数,记作a和b的最大公约数=gcd(a,b)。
三、分数1. 分数的概念形如a/b(b≠0)的数叫做分数,a叫做分子,b叫做分母。
2. 分数的大小比较分数大小比较的方法:(1)分子相等,分母越小,分数越大;(2)分母相等,分子越大,分数越大。
四、质数和合数1. 质数的概念在大于1的自然数中,除了1和它本身以外,没有其他因数的数叫做质数。
2. 合数的概念大于1的自然数中,除了1和它本身以外,还有其他因数的数叫做合数。
五、数字的读法1. 十进位和百进位的读法十进位以上的数字读法遵循“顺读”和“倒读”的规则,例如23读作“二十三”,32读作“三十二”。
2. 小数点后数字的读法小数点后的数字读法遵循“分”的规则,例如0.32读作“三十二分”。
六、加法和减法1. 加法的概念两个数进行相加的运算叫做加法,加法运算遵循交换律和结合律。
2. 减法的概念两个数进行相减的运算叫做减法,减法运算是加法运算的逆运算。
七、乘法和除法1. 乘法的概念两个数进行相乘的运算叫做乘法,乘法运算遵循交换律和结合律。
2. 除法的概念两个数进行相除的运算叫做除法,除法运算是乘法运算的逆运算。
八、计算顺序1. 加减乘除的顺序在进行多种运算时,应按照“先乘除后加减”的顺序进行运算,也可以通过加括号改变计算的顺序。
九、数学应用题1. 数学应用题的解题步骤解题步骤包括问题分析、列式、算式、检验等环节,解决数学应用问题需要灵活运用所学知识。
人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。
本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。
二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。
2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。
o整数与分数相乘,将整数化成分数再相乘。
o乘法的交换律、结合律和分配律同样适用于分数乘法。
4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。
o计算路程:速度×时间 = 路程,其中速度为分数。
三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。
o方向角:描述物体相对于参考点在平面上的方向。
o距离:描述两个物体之间的直线距离。
2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。
四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。
2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。
o除法的交换律、结合律和分配律同样适用于分数除法。
3.解题方法:o将除法转化为乘法,约分得到最简结果。
o整数与分数相除,将整数化成分数再相除。
4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。
o计算平均数:总和÷个数 = 平均数。
五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。
书 香 浸 润, 励 志 成 长!第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)几 列 几 行↓ ↓竖排叫列 横排叫行一般(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。
3、图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 也表示98的5倍是多少? 5×98 表示求5的98是多少 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:一般在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,01(分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为1a ;非零整数a 的倒数为1a ;分数b a 的倒数是a b; 5、 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
第三单元 分数除法一、 分数除法1、分数除法的意义:乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、 “[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。
(2)算术(用除法): 对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或:① 求多几分之几:大数÷小数 – 1② 求少几分之几: 1 - 小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示) ∶ ∶ ∶ ∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例: 路程÷速度=时间。
4、求比值的方法:用比的前项除以比的后项。
5、区分比和比值比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。
有比的前项和比的后项比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。
6、根据分数与除法的关系,两个数的比也可以写成分数形式。
例如3:2也可以写成32,仍读作“3:2”。
7、 比和除法、分数的联系:8、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
9、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。
6、路程一定,速度比和时间比成反比。
(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)(三)和比的应用题有关的概念1、求每份数的方法和÷分数和=每份数 相差数÷相差份数=每份数 部分数÷对应份数=每份数2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4 长方形: (长+宽)的和=周长÷23、相遇问题速度和 = 路程÷相遇时间第四单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
(画圆给出半径标半径r=?,给出直径标直径d=?)6、在同圆或等圆,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 或r=d ÷2 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
圆的周长总是它直径的3倍多一些。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C= πd ÷π或C=2π r÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r÷ 2 即π r (2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。