看关键句写数量关系式复习过程
- 格式:ppt
- 大小:67.00 KB
- 文档页数:7
学生不能熟练写出分数应用题的数量关系怎么办?在教简单的分数应用题时就应对学生进行这方面的训练。
有这么几种情况:(1)完整的顺向叙述:男生是女生的3/4,学生马上可以根据这句话找出等量关系,男生=女生*3/4,然后在具体的题目中,学生就能很清楚地明白,根据这个等量关系式求男生人数如何列式,求女生如何列式。
(2)完整的逆向叙述:女生的3/4相当于男生,等量关系是女生*3/4=男生(3)不完整的顺向叙述:已修了1/3,先让学生把句子说完整:已修的是总长的1/3,然后再列出等量关系式(4)不完整的逆向叙述:一年级学生参加兴趣活动,2/3的人参加美术组,让学生把句子说完整:参加美术组的人数是一年级总人数的2/3,然后再列出等量关系式。
在此基础上,在教稍复杂的分数应用题对学生再进行以下训练如:梨树比桃树少2/5,(1)让学生把话说完整是:梨树比桃树少的是桃树的2/5,(2)让学生通过画线段图(基础好的同学也能从字面分析出):梨树是桃树的(1-2/5)然后,学生就较容易地能说出等量关系式了。
那么选择(1)(2)中的哪一句作为解题的依据呢?那就应让学生明白,应当选择能把已知条件和问题联系在一起的句子。
因为解应用题的关键其实就是要找到能把问题和已知条件联系起来的关系句。
你说呢?至于培养学生逆向思维的问题,根据新课程标准并不提倡,而要提倡用方程来解,有的学生不愿意用方程来解,嫌麻烦,我想他能正确列出算式,肯定也能用方程来解。
只要能真正理解题意就行了。
对六年级分数应用题教学的思考在九义教材中,对分数除法应用题教学的基本思路是:根据分数乘法的意义建立等量关系,再根据等量关系建立方程,然后再让学生思考算术方法计算(即以方程为主,算术为辅)。
但实际教学中当学生理解意义,建立等量关系后,很少有愿意采用方程计算的,特别在作业中表现更为明显。
我想就其原因,是他们不能从中体会到用方程计算的便利,那我们为何非要在此强加给学生用方程呢。
【数学知识点】找等量关系的小窍门
根据题中所给出的关键句找到等量关系,如“甲的工作效率是乙的2倍”;利用常见数量关系式找到等量关系,比如“总价=单价×数量”;利用公式作等量关系,如“长方形面积=长×宽”;画出线段图找出等量关系。
“等量关系”特指数量间的相等关系,是数量关系中的一种。
数学题目中常含有多种等量关系,比如用方程解答应用题时,就需找出题中的对等关系。
1、抓住关键数学术语找等量关系
应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示。
在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
2、根据常见的数量关系找等量关系
常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程等等。
3、根据常用的计算公式找等量关系
常用的计算公式就是几何图形的面积公式有:长方形面积=长×宽;三角形面积=1/2(底×高);平行四边形面积=底×高。
4、画线段图找等量关系
例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图。
从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数。
根据这个关系式,可列出方程70×3+2x=400。
感谢您的阅读,祝您生活愉快。
数量关系解题技巧之计算问题解题思路对于大部分考生来说,计算问题中的应用题是复习时容易忽视的一类题。
但实际上,尽管这类题不难,但失分并不低于其他题型,考生往往特别容易掉入陷阱,甚至陷入死循环,既费时正确率又不高。
计算问题中的应用题的解答关键在于找准题干中的关键句,而且要正确理解其含义,才能一击即中,解题就快,反之,就慢。
但这类题并不像行程问题有固定的公式,更多靠做题积累的经验,但只要谨记“关键句”三字,再加上日常的训练,就能掌握这类题。
了解:行测数学运算知识框架例题1、一次书画展览中,各参展作者的作品的数量按从少到多排序,恰好是连续自然数1、2、3、4、5……,对参展作品的数量进行统计加总时,管理人员把其中一个人的作品数量多加了一次,结果和为149,问这次书画展览的参展作者总数是多少? ( )A 14B 15C 16D 13解析:本题的关键句在于“其中一个人的作品数量多加了一次,结果和为149”,那么就设有X个人,重复计数的作品数是d,依题可得:(1+X)X÷2=149-d,而且必须符合“d 例题2、30个人围坐在一起轮流表演节目。
他们按顺序从1到3依次不重复地报数,数到3的人出来表演节目,并且表演过的人不再参加报数,那么在仅剩一个没表演过节目的时候,共报数多少人数?A 87B 117C 57D 77解析:本题的关键句是“数到3的人出来表演节目,并且表演过的人不再参加报数”,其意思是:每当有1个人表演节目,则有3个人报数。
即1人表演节目则对应3次报数,现仅剩一个人未表演,即表演人数有29人,则对应的报数人数为:29*3=87人。
故答案为A。
更多数学运算问题请查看:数学运算题型特训题库。
人教六年级数学上册全册教案之:第7课时解决问题(3)第7课时解决问题(3)【教学内容】教材第41页例6。
【教学目标】1.使学生在理解数量关系的基础上学会列方程解答稍复杂的分数应用题。
2.能运用方程方法解决实际生活中的问题。
3.培养学生的分析、判断和推理能力。
【教学重难点】重、难点:分析数量关系,运用方程解决问题。
【教学过程】一、复习准备1.根据题意,看图写代数式。
苹果有akg,西瓜质量比苹果重。
西瓜重()kg。
2.根据信息,找出数量关系式。
(1)体积相等的冰的质量比水的质量少。
(2)今年比去年增产。
(3)一条公路,已修了。
二、自主探究1.创设情境,引出例6。
2.审题。
(1)看例题图,获取信息。
(2)反馈:说说已知的条件与要求的问题。
3.分析题意:说说你对“下半场得分只有上半场的一半”的理解。
(1)同桌讨论,(2)小组交流,(3)全班反馈。
出示:下半场得分=上半场得分×或上半场得分=下半场得分×2。
下半场得分+上半场得分=全场得分。
4.尝试解答。
(可提示:设什么为未知数的量,则另一个量怎么表示?)说理由。
展示两种不同解法,你更喜欢哪种解法?(只要理由充分都行)5.回顾与反思:如何检验结果是否正确?(可算一下检验:下半场得分是否是上半场的一半?)1.看图口头编应用题。
2.完成教材练习九第1题。
(先说说对关键句的理解,能说出数量关系式吗?再尝试解答,反馈)3.完成教材练习九第5题。
(先说说对关键句的理解,再说出数量关系式,最后尝试解答,反馈)四、课堂小结今天我们研究了什么?解题时应注意什么?解题的关键是什么?五、课堂作业教材练习九第2、3、4题。
【教学反思】如何把“比一个数多它的几分之几”转化成“是一个数的几分之几”比较抽象,难度大,用画图法比较形象,易于掌握。
部分学生对于解决问题中的单位“1”的量的确定不够准确。
准确找出问题中的等量关系仍是一个难点。
一、六年级数学上册应用题解答题1.一玩具商从批发行购进两种大小不同的玩具熊100个,共花了3600元。
六年级数学总复习知识点归纳一、常用的数量关系式1、每份数乘以份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数。
2、1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数,几倍数除以倍数等于1倍数。
3、速度乘以时间等于路程,路程除以速度等于时间,路程除以时间等于速度。
4、单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。
5、工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于工作时间,工作总量除以工作时间等于工作效率。
6、加数加上加数等于和,和减去一个加数等于另一个加数。
7、被减数减去减数等于差,被减数减去差等于减数,差加上减数等于被减数。
8、因数乘以因数等于积,积除以一个因数等于另一个因数。
9、被除数除以除数等于商,被除数除以商等于除数,商乘以除数等于被除数。
二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长等于边长乘以4,C=4a,面积等于边长的平方,S=a×a。
2、正方体(V:体积 a:棱长)表面积等于棱长的平方乘以6,S表=a×a×6,体积等于棱长的立方,V=a×a×a。
3、长方形(C:周长 S:面积 a:边长)周长等于长和宽的和乘以2,C=2(a+b),面积等于长乘以宽,S=ab。
4、长方体(V:体积 s:面积 a:长 b:宽 h:高)表面积等于长乘以宽加上长乘以高加上宽乘以高的和乘以2,S=2(ab+ah+bh),体积等于长乘以宽乘以高,V=abh。
5、三角形(s:面积 a:底 h:高)面积等于底乘以高除以2,s=ah÷2,三角形的高等于面积乘以2除以底,三角形的底等于面积乘以2除以高。
6、平行四边形(s:面积 a:底 h:高)面积等于底乘以高,s=ah。
7、梯形(s:面积 a:上底 b:下底 h:高)面积等于上底加下底的和乘以高除以2,s=(a+b)×h÷2.8、圆形(S:面积 C:周长 d:直径 r:半径)周长等于直径乘以π或者半径乘以2π,C=πd=2πr,面积等于半径的平方乘以π,S=πr²。
初中方程找等量关系的口诀
1.抓住关键句,寻找等量关系:
●找到题目中的“等于”、“比…多”、“比…少”、“是…的几倍”、“一共”、
“相差”等关键词汇,这些往往暗示着等量关系的存在。
●例如:“小明和小红共收集了100个瓶子”,其中的“共”字就提示了等
量关系。
2.运用数量关系式建立等量关系:
●根据常见数学模型建立等式,如:工作总量=工作效率×工作时间、
路程=速度×时间、总价=单价×数量、总产量=单产量×面积等。
●如题目描述的是某个具体问题的情景时,可以利用这些公式来构建
等量关系。
3.根据图形或线段图找等量关系:
●对于几何问题,通过画出线段图、面积图等可视化工具,直观地展
示出各个部分之间的数量关系。
●比如在解梯形面积问题时,可以通过梯形面积公式(上底+下底)×
高÷2建立等量关系。
4.应用代数思想抽象化处理:
●把未知量用字母表示,并根据题意列出方程,通过运算求解。
●例如:“已知甲车速度为每小时38千米,两车相遇时,它们走过的
路程之和等于总路程237千米。
”可以设乙车速度为X,得到等量关
系式(38+X)×3=237。
总结起来就是:
•关键句里抓等式,
•数量关系建模快,
•几何图形显关系,
•未知字母列方程。
小数除法法则小数除法高位起,看着除数找规律。
除数是整直接除,除到哪位商哪位。
不够商一零占位,商被除数点对齐。
小数除法变整数,被除数点同位移。
右边数位若不够,应该用零来补齐。
分数加减法法则分数加减很简单,统一单位是关键。
同分母分数相加减,分子加减分母不变。
异分母分数相加减,先通分来后计算。
分数乘法法则分数乘法更简单,分子、分母分别算。
分子相乘作分子,分母相乘作分母。
分子、分母不互质,先约分来后计算。
分数除法法则分数除法最简便,转换乘法来计算。
除号变成乘号后,再乘倒数商出来。
质数、合数分清质数与合数,关键就是看因数。
1的因数只一个,不是质数也非合数;如果因数只两个,肯定无疑是质数;3个因数或更多,那就一定是合数。
分解质因数合数分解质因数,最小质数去整除,得出的商是质数,除数乘商来写出;得出的商是合数,照此方法继续除,直到得出质数商,再用连乘表示出。
求最大公因数要求最大公因数,就用公因数去除,直到商为互质数,除数连乘就得出;如果两数相比较,小是大数的因数,不必再用短除式,小数就是公因数。
求最小公倍数要求最小公倍数,公有质因数去除,直到商为互质数,除数乘商就得出;两数若是互质数,乘积即为公倍数;大是小数的倍数,不必去求已清楚。
100以内的质数二三五七一十一,十三十九和十七,二三二九三十一,三七四三和四一,四七五三和五九,六一六七手拉手,七一七三和七九,还有八三和八九,左看右看没对齐,原来还差九十七。
列方程解应用题列方程解应用题,抓住关键去分析。
已知条件换成数,未知条件换字母,找齐相关代数式,连接起来读一读。
百分数和小数互化小数化成百分数,小数点右移要记住,移动两位并做到:在后面添上百分号。
百分数要化小数,小数点左移要记住,移动两位并做到:一定要去掉百分号。
百分数和分数互化分数要化百分数,先把分数化小数;除不尽时别发愁,三位小数可保留。
化成小数要记住:小数再化百分数。
百分数要化分数,把它改写成分数,能约分的要约分,约到最简即完成。
分数应用题一般解题步骤(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
(4)根据线段图写出等量关系式:标准量×对应分率=比较量。
求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量(5)根据已知条件和问题列式解答。
12.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?单位“1”×对应分率=对应量(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“是、比、相当于、占、等于”后的规则。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,乙比甲少几分之几表示乙比甲少的数占甲的几分之几。
(甲-乙)÷乙 = 甲÷乙-1(甲-乙)÷甲 = 1-乙÷甲(4)江氏规则:多比少多,少比多少。
如8比5多,6比9少,在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
常用的数量关系式1、速度×时间=路程路程÷速度=时间路程÷时间=速度2、单价×数量=总价总价÷单价=数量总价÷数量=单价3、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率4、加数+加数=和和-一个加数=另一个加数5、被减数-减数=差被减数-差=减数差+减数=被减数6、因数×因数=积积÷一个因数=另一个因数6、被除数÷除数=商被除数÷商=除数商×除数=被除数在有余数的除法中: (被除数-余数)÷除数=商7、总数÷总份数=平均数8、相遇问题相遇路程=速度和×相遇时间或相遇路程=快车速度×相遇时间+慢车速度×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间9、利息=本金×利率×时间10、收入-支出=结余单产量×数量=总产量量的计量在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率高级单位的名数低级单位的名数÷进率长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=1000000平方米1公顷=10000平方米1平方千米=100公顷1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体积(容积)单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升1升=1000毫升质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月=4个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒练习:填空(1). 1时30分=()时40分=()时时=()分0.7时=()分平方米=()平方分米125克=()千克2 立方分米=()升=()毫升10 吨=()吨()千克()元=50元8角1分(2).1米∶ 10厘米=()∶()=()∶()100毫升∶1升=()∶()=()∶ ()(3).填上适当的计量单位名称。