江苏省镇江市句容市华阳镇八年级数学下册第10章分式10.2分式的基本性质3导学案无答案新版苏科版20180718276
- 格式:doc
- 大小:190.00 KB
- 文档页数:5
苏科版数学八年级下册10.1《分式》教学设计一. 教材分析《分式》是苏科版数学八年级下册第10章的内容,本节课的主要内容是分式的概念、分式的基本性质和分式的运算。
本节课的内容是学生学习更高级数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式的相关知识,具备了一定的逻辑思维和抽象思维能力。
但部分学生对于抽象概念的理解和运用还不够熟练,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算,并能灵活运用。
3.培养学生的逻辑思维和抽象思维能力。
四. 教学重难点1.分式的概念和基本性质。
2.分式的运算及其运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探索、发现和解决问题,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和板书。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如:“某商店进行打折活动,原价100元的商品打八折后,顾客实际支付80元。
请问,顾客实际支付的价格是原价的多少?”让学生思考并解答,从而引出分式的概念。
2.呈现(10分钟)通过PPT呈现分式的定义、基本性质和运算规则,引导学生观察和理解。
同时,给出相应的例子,让学生跟随讲解,逐步掌握分式的基本知识。
3.操练(10分钟)让学生独立完成一些分式的基本运算题目,如分式的加减、乘除等。
教师巡回指导,解答学生遇到的问题,并给予反馈。
4.巩固(10分钟)通过一些综合性的题目,让学生运用所学的分式知识解决问题。
如:“已知a、b、c为实数,且a+b+c=0,求证:a/b+b/c+c/a=0。
”教师引导学生思考和解答,巩固所学知识。
5.拓展(10分钟)引导学生思考分式在实际生活中的应用,如经济、物理、化学等领域。
让学生举例说明,进一步拓宽视野。
苏科版数学八年级下册10.2《分式的基本性质》教学设计4一. 教材分析《分式的基本性质》是苏科版数学八年级下册第10章第2节的内容。
本节内容主要让学生掌握分式的基本性质,包括分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
学生通过本节的学习,为后续学习分式的化简、运算等打下基础。
二. 学情分析八年级的学生已经学习了分式的概念,对分式有一定的了解。
但在实际操作中,部分学生可能会对分式的基本性质理解不深,导致在化简、运算时分式出错。
因此,在教学本节内容时,需要让学生通过实际操作,加深对分式基本性质的理解。
三. 教学目标1.理解分式的基本性质,掌握分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
2.能运用分式的基本性质进行分式的化简、运算。
3.培养学生的动手操作能力,提高学生的数学思维能力。
四. 教学重难点1.重点:分式的基本性质。
2.难点:运用分式的基本性质进行分式的化简、运算。
五. 教学方法采用问题驱动法、合作探究法、引导发现法等教学方法,引导学生通过实际操作,发现分式的基本性质,提高学生的动手操作能力和数学思维能力。
六. 教学准备1.教学PPT。
2.练习题。
七. 教学过程1.导入(5分钟)通过复习分式的概念,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)利用PPT展示分式的基本性质,让学生观察、思考,引导学生发现分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
3.操练(15分钟)让学生分组进行实际操作,运用分式的基本性质进行分式的化简、运算,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示练习题,让学生独立完成,检验学生对分式的基本性质的掌握程度。
教师选取部分学生的作业进行点评,指出优点和不足。
5.拓展(10分钟)引导学生思考:分式的基本性质在实际问题中的应用,如何运用分式的基本性质解决实际问题?6.小结(5分钟)对本节课的内容进行总结,强调分式的基本性质,以及如何在实际问题中运用。
10.2 分式的基本性质教学目标:1.理解分式的基本性质,会利用分式的基本性质对分式进行变形;2.通过类比分数的基本性质探索分式的基本性质,培养学生类比的推理能力.教学重点:理解分式的基本性质.教学难点:分式基本性质的简单运用.教学过程:一、思考问题:(数学封面)如果这个长方形的面积为13,宽为3,则长为多少?一般化:如果这个长方形的面积为s,宽为a,则长为多少?特殊化:字母s、a各取一个数,把分式sa变回为分数133.还能另取一组数吗?猜想:请根据分数的基本性质猜想一下“分式的基本性质”呢?二、探究过渡:究竟这个猜想是否正确呢?是否完善呢?我们仍从刚才那个封面问题入手。
(一)情景认知情景认识一:课本排列问题(1)已知:1本数学课本封面的面积为s,宽为a,求长为;(2)已知:2本数学课本封面的面积为,宽为,求长为;(3)已知:3本数学课本封面的面积为,宽为,求长为;(4)已知:k本数学课本封面的面积为,宽为,求长为;(5)已知:(m+n)数学课本封面的面积为,宽为,求长为;你能得到什么等式?(追问:为什么它们相等呢?课本的长不变)情景认识二:匀速行驶问题一列匀速行驶的火车,t h行驶s km, 2t h行驶2s km; 3t h行驶3s km;…nt h行驶ns km;(n+1)t h行驶(n+1)s km;由此你发现了什么等式?(追问:你是根据什么得到等式的?)三、体悟(1)23()23() s s s ks m n s a a a ka m n a+====+(2)23(1)===23(1)ss s ns n s t t t nt n t+=+ 1.观察这两个等式,完善刚才的猜想?2.基本性质的深层分析:(1)找出其中的关键性字词;(2)分数和分式的基本性质有何不同点?(3)符号语言表达:请用数学式子表示分式的基本性质吗?A B =A ×C B ×C ,A B =A ÷C B ÷C,(其中C 是不等于0的整式) 整式C 是多少? (4)思考——变与不变,变中的不变性。
第十章分式一、单元教学目标:知识目标1、了解分式的概念。
2、会利用分式的基本性质进行约分和通分。
3、会进行简单的分式加、减、乘、除运算。
4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。
5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。
能力目标:1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。
4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识情感目标:1. 进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神二、单元教学重点、难点:1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。
三、单元教学课时:本章教学时间大约需10课时,具体分配如下第1节分式 1课时第2节分式的基本性质 3课时第3节分式的加减运算 1课时第4节分式的的乘除运算 2课时第5节分式方程 3课时课题:10.1 分式第1课时共1课时一、教学目标:知识目标:1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
苏科版数学八年级下册《10.2 分式的基本性质》教学设计2一. 教材分析《苏科版数学八年级下册》中的《10.2 分式的基本性质》是学生在学习了分式的概念、分式的运算基础上进一步深入学习分式的性质。
这一节内容主要介绍分式的基本性质,包括分式的分子、分母都乘或除以同一个不为0的整式,分式的值不变;分式的分子、分母都加或都减同一个整式,分式的值不变;以及分式的分子、分母都乘或除以同一个不为0的整式,分式的值不变。
这些性质是分式运算的重要依据,对于学生深入理解分式的运算规则,提高解题能力具有重要意义。
二. 学情分析学生在八年级上学期已经学习了分式的概念和基本运算,对分式有一定的认识和理解。
但是,对于分式的基本性质,学生可能还没有完全理解和掌握。
因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解分式的基本性质,并能够熟练运用。
三. 教学目标1.理解分式的基本性质,并能够熟练运用。
2.提高学生的逻辑思维能力和解决问题的能力。
3.培养学生的团队合作意识和交流沟通能力。
四. 教学重难点1.分式的基本性质的理解和运用。
2.如何在实际问题中灵活运用分式的基本性质。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现分式的基本性质。
2.通过小组合作和讨论,培养学生的团队合作意识和交流沟通能力。
3.通过具体例题和实际操作,让学生深入理解分式的基本性质,并能够熟练运用。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备相关的问题和练习题。
3.准备教学环境和教学工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾上节课所学的分式的基本运算,为新课的学习做好铺垫。
2.呈现(15分钟)通过PPT展示分式的基本性质,让学生初步了解分式的基本性质。
3.操练(20分钟)让学生通过实际的例题和练习题,运用分式的基本性质进行计算和解决问题。
教师在这个过程中要给予学生必要的指导和帮助,确保学生能够正确理解和运用分式的基本性质。
苏科版数学八年级下册10.2《分式的基本性质》说课稿4一. 教材分析《分式的基本性质》是苏科版数学八年级下册第10章第2节的内容。
本节内容主要介绍了分式的概念、分式的基本性质以及分式的运算规则。
这部分内容是学生进一步学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在学习本节内容前,已经学习了有理数的运算、代数式的知识,对于分式的概念和运算规则有一定的了解。
但部分学生对于分式的理解仍存在困难,对于分式的基本性质和运算规则的运用还不够熟练。
因此,在教学过程中需要注重引导学生理解分式的基本性质,并通过大量的练习让学生熟练掌握分式的运算规则。
三. 说教学目标1.知识与技能:让学生理解分式的基本性质,掌握分式的运算规则,能够熟练地进行分式的运算。
2.过程与方法:通过自主学习、合作交流的方式,培养学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:分式的基本性质,分式的运算规则。
2.教学难点:分式的运算规则的理解和运用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探索、积极思考。
2.教学手段:利用多媒体课件,直观展示分式的运算过程,帮助学生理解分式的基本性质。
六. 说教学过程1.导入新课:通过复习有理数的运算和代数式的知识,引出分式的基本性质。
2.自主学习:让学生自主探究分式的基本性质,引导学生通过观察、思考、总结出分式的基本性质。
3.合作交流:学生分组讨论,分享各自的学习心得,共同解决问题。
4.教师讲解:针对学生自主学习过程中遇到的问题,进行讲解和解答。
5.巩固练习:让学生进行分式运算的练习,巩固所学知识。
6.课堂小结:引导学生总结本节课所学内容,巩固分式的基本性质和运算规则。
七. 说板书设计板书设计如下:分式的基本性质:1.分式的分子和分母都乘(或除以)同一个不为0的整式,分式的值不变。
课题:10.2 分式的基本性质(3)班级: 姓名:一、学习目标理解最简公分母的概念,会将异分母的分式进行通分二、预习导航读一读:阅读课本P103-P105想一想:1、填空,并说明下列等式右边是怎么从左边得到的,依据是什么? (1)23()4m my x =,5106()x xy = (2)22221634,,()()3()24b x a x y aby ab a b === 依据是 。
2、在进行分式的通分时,如何确定最简公分母?3、类比分数的通分,说说如何将分式25y x z 与 2y x- 进行通分?三、课堂探究1.探问新知①分式的通分:根据分式的基本性质,把几个异分母的分式化为 的分式叫做分式的通分,变形后的分母叫做这几个分式的 。
②最简公分母:几个分式中各分母的_____________与所有字母的__________________作为这几个分式的最简公分母。
2.例题精讲例1:通分 (1)25y x z , 2y x -; (2)11x - , 21(1)x -;例2:通分(1)91,622--+x x x x ; (2)x x +21 ,2121x x -++;41293,942)3(22+--m m m (4)22,()()x y x y y x --变式训练 通分(1) cab a b 32,3-(2)1,11,122--+x c x x练一练1.(1)分式241xy 与y x 3-的最简公分母是 ___ . (2)分式n m m -2与nm n +2的最简公分母是 ___ .2.通分: (1)241xy 与y x 3- (2)n m m -2与nm n +2归纳小结:四、随堂演练【基础题】1. 分式21和a 3的最简公分母是____________.3.通分:(1)231,21xy xy - (2)2)(1,a b b a c --(3)33,+-y y y xy x (4)214x - ,142++x x x ;【课后巩固】1.(1)分式2235,46a b ab c-的最简公分母是 ; (2)分式1m n +,221m n mn-的最简公分母是 ; (3) 分式x x 312-,922-x 961,2+-x x 的最简公分母是 ..2.通分:(1)231x ,512xy -;(2)xy c z xy x y 34,65,222;(3)x x +21,x x -21.;(4)212,()a a b b a --(5)2214,499124mm m m --+(6)2142,,242x x x x +--(7)224(21),21441a a a a a -+-+ (8)222421,4)1(1a a a a a +---+-学后/教后思:。
分式公因式的提取方法是什么?难易度:★★★★关键词:分式、公因式答案:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
【举一反三】典例:等式中的未知的分母是( )A.a2+1 B。
a2+a+1 C。
a2+2a+1 D.a-1思路导引:一般来讲,解决本题要根据分式的基本性质,分子a2+2a+1a+1,分母也应a2-1a-1。
标准答案:D尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be someunsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
课题:10.2 分式的基本性质(3)
班级: 姓名:
一、学习目标
理解最简公分母的概念,会将异分母的分式进行通分 二、预习导航
读一读:阅读课本P103-P105 想一想:
1、填空,并说明下列等式右边是怎么从左边得到的,依据是什么?
(1)23()4m my x =,5106()
x
xy =
(2)22221634,,(
)()3()24b x a x y aby ab a b ===
依据是 。
2、在进行分式的通分时,如何确定最简公分母?
3、类比分数的通分,说说如何将分式25y x z 与 2y
x
- 进行通分?
三、课堂探究 1.探问新知
①分式的通分:根据分式的基本性质,把几个异分母的分式化为 的分式叫做分式的通分,变形后的分母叫做这几个分式的 。
②最简公分母:几个分式中各分母的_____________与所有字母的__________________作为这几个分式的最简公分母。
2.例题精讲 例1:通分
(1)25y x z , 2y
x
-; (2)
1
1x - ,
2
1
(1)x -;
例2:通分 (1)9
1,622--+x x x x ; (2)x x +21 ,21
21x x -++;
4
1293,942)3(22+--m m m (4)22,()()x y x y y x --
变式训练 通分
(1)
c
ab
a b 32,3-(2)1
,11,122--+x c
x x 练一练 1.(1)分式
2
41
xy 与y x 3-的最简公分母是 ___ . (2)分式
n m m -2与n
m n +2的最简公分母是 ___ .
2.通分: (1)
2
41
xy 与y x 3-
(2)n m m -2与n m n +2
归纳小结:
四、随堂演练 【基础题】
1. 分式
2
1和a
3的最简公分母是____________.
3.通分: (1)
231,21xy xy - (2)2
)(1
,
a b b a c --
(3)
3
3,+-y y
y xy x (4)214x - ,142++x x x ;
【课后巩固】 1.(1)分式
2235,46a b ab c -的最简公分母是 ; (2)分式1m n +,22
1
m n mn -的最简公分母是 ; (3) 分式x x 312-,922-x 9
61
,2+-x x 的最简公分母是 ..
2.通分: (1)
231x ,5
12xy -; (2)xy
c z xy x y 34,
65,222; (3)
x x +21,x x -21.; (4)2
12,()a a b b a -- (5)2214,499124m m m m --+ (6)2
142
,,242x x x x
+--
(7)
224(21)
,21441a a a a a -+-+ (8)2
22421,4)1(1a a a a a +---+-
学后/教后思:。