《流体力学》2015-2016-2 复习提纲
- 格式:pdf
- 大小:159.46 KB
- 文档页数:4
第1章 流体力学 1.流体压强的表示方法 表压强=绝对压强-大气压强 真空度=大气压强-绝对压强=-(绝对压强-大气压强) ∴ 表压强=-真空度绝对零压压强的单位:SI 中为Pa ; 压强的几个单位间的换算关系:1atm=760mmHg=10.33mH 2O=1.01325×105Pa 1kgf/cm 2=1at=735.6mmHg=10mH 2O =9.81×104Pa2 .流体的粘性与粘度牛顿粘性定律dydu A F μτ-==:dydu 称为速度梯度。
粘度的单位:在SI 中为Pa.s ;在其它单位制中,用P (泊)和cP (厘泊)。
换算关系: 1Pa.s=10P=1000cP T ↑,μL ↓,μG ↑。
牛顿型流体与理想流体牛顿型流体:服从牛顿粘性定律的流体; 理想流体:流体的粘度μ=0的流体。
3 管中流动 3.1基本概念uA V s =或 管道截面积体积流量==A V u s或管道截面积质量流量==Aw V s s钢管的表示法: Φd 0×δ (mm ) d 0-管子外径,mm ;δ-壁厚,mm 。
管内径d i =d 0-2δ mm3.2 管中稳定流动连续性方程稳定流动情况下,单位时间内流进体系的流体质量等于流出体系的流体质量,即 222111A u A u w s ρρ==对于不可压缩流体,ρ=常数,则2211A u A u Q ==对于圆管,22221144d u d u ππ⨯=⨯即不可压缩流体在圆管内稳定流动时,流速与管道直径的平方成反比。
4 流体流动能量平衡 4.1稳定流动体系的能量平衡4.2 稳定流动体系能量方程(柏努利方程)gZ 1+p 1/ρ+u 12/2+we= gZ 2+p 2/ρ+u 22/2+∑h f (J/kg)gugpz HH fe 22∆+∆+∆=-∑ρ (m)式中:H e =w/g-泵所提供的压头(扬程),m ; 应用柏努利方程解题要点:1) 根据题意定出上游1-1,截面和下游2-2,截面;2) 两截面均应与流动方向垂直,并且两截面间的流体必须是连续的。
流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。
2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。
流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。
3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。
2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。
4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。
第一章一、名词解释1.理想流体:没有粘性的流体2.惯性:是物体所具有的反抗改变原有运动状态的物理性质。
3.牛顿内摩擦力定律:流体内摩擦力T 的大小与液体性质有关,并与流速梯度和接触面A成正比而与接触面上的压力无关。
4.膨胀性:在压力不变条件下,流体温度升高时,其体积增大的性质。
5.收缩性:在温度不变条件下,流体在压强作用下,体积缩小的性质。
6.牛顿流体:遵循牛顿粘性定律得流体。
二、填空题1.流体的动力粘性系数,将随流体的(温度)改变而变化,但随流体的(压力)变化则不大。
2.动力粘度μ的国际单位是(s p a ⋅或帕·秒)物理单位是(达因·秒/厘米2或2/cm s dyn ⋅)。
3.运动粘度的国际单位是(米2/秒、s m /2),物理单位是(沱 )。
4.流体就是各个(质点)之间具有很大的(流动性)的连续介质。
5.理想流体是一种设想的没有(粘性)的流体,在流动时各层之间没有相互作用的(切应力),即没有(摩擦力)三、单选题1. 不考虑流体粘性的流体称( )流体。
AA 理想B 牛顿C 非牛顿D 实际2.温度升高时,空气的粘性( ) BA .变小B .变大C .不变D .不能确定3.运动粘度的单位是( ) BA .s/m 2B .m 2/sC .N ·m 2/sD .N ·s/m 24.与牛顿内摩擦定律直接有关的因素是( ) CA .切应力与速度B .切应力与剪切变形C .切应力与剪切变形速度D .切应力与压强5.200℃体积为2.5m 3的水,当温度升至800℃时,其体积变化率为( ) C200℃时:1ρ=998.23kg/m 3; 800℃时: 2ρ=971.83kg/m 3A .2.16%B .1.28%C .2.64%D .3.08%6.温度升高时,水的粘性( )。
AA .变小B .变大C .不变D .不能确定2.[动力]粘度μ与运动粘度υ的关系为( )。
BA .υμρ=B .μυρ=C .ρυμ= D .μυ=P3.静止流体( )剪切应力。
流体力学期末复习提纲(给水排水)工程流体力学复习提纲(给排水)第一章绪论1、三种理想模型:连续介质假说、理想流体、不可压缩流体2、流体的粘性:牛顿内摩擦实验dydu μAτA T == 3、作用在流体上的力表面力:法向力和切向力质量力:重力第二章流体静力学1、静水压强的两大特性2、重力场中流体静压强的分布规律:c p z =γ+相对压强、绝对压强、真空值:a p -=abs p p ;abs v p p -=a p 3、流体作用在平面壁上的总压力大小:A h P c γ= 方向:垂直指向受压面作用点:Ay J y y C CC D += 4、流体作用在曲面壁上的总压力x c x A h P γ=;V P z γ=22P z x P P +=;xz P P anctan =θ第三章流体动力学基础1、拉格朗日法、欧拉法的特点2、欧拉法的基本概念:流线方程:zy x u dz u dy u dx == 3、连续性方程2211A v A v =4、恒定总流的伯努利方程w h gvp z g v p z +α+γ+=α+γ+2222222211115、恒定总流的动量方程()()()??β-βρ=β-βρ=β-βρ=∑∑∑1z 12z 2z1y 12y 2y1x 12x 2xv v Q Fv v Q F v v Q F第四章管路、孔口、管嘴的水力计算1、沿程水头损失:2gv d l h 2f λ=(普遍适用)局部水头损失:2g v h 2j ζ=(普遍适用),特殊地,对于突扩管()2gv v h 221j -= 2、粘性流动的两种流态:层流、紊流描述雷诺实验雷诺数:ν=vd Re 流态的判别:2320Re :层流;2320Re :紊流;2320Re =:临界流 3、层流运动沿程阻力系数:Re64=λ 紊流运动沿程阻力系数:尼古拉兹实验曲线4、孔口、管嘴出流孔口自由出流:gH A gH A Q 22με?== 孔口淹没出流:gz A gz A Q 22μ?ε'='=有97.0='=??、62.0='=μμ、64.0=ε,所以με? 。
第一章流体的定义:流体是一种受任何微小的剪切力作用时,都会产生连续变形的物质。
能够流动的物体称为流体,包括气体和液体。
流体的三个基本特征:1、易流性:流动性是流体的主要特征。
组成流体的各个微团之间的内聚力很小,任何微小的剪切力都会使它产生变形,(发生连续的剪切变形)——流动。
2、形状不定性:流体没有固定的形状,取决于盛装它的容器的形状,只能被限定为其所在容器的形状。
(液体有一定体积,且有自由表面。
气体无固定体积,无自由表面,更易于压缩)3、绵续性:流体能承受压力,但不能承受拉力,对切应力的抵抗较弱,只有在流体微团发生相对运动时,才显示其剪切力。
因此,流体没有静摩擦力。
三个基本特性:1.流体惯性涉及物理量:密度、比容(单位质量流体的体积)、容重、相对密度(与4摄氏度的蒸馏水比较)2.流体的压缩性与膨胀性压缩性:流体体积随压力变化的特性成为流体的压缩性。
用压缩系数衡量K,表征温度不变情况下,单位压强变化所引起的流体的体积相对变化率。
其倒数为弹性模量E,表征压缩单位体积的流体所需要做的功。
膨胀性:流体的体积随温度变化的特性成为膨胀性。
体胀系数α来衡量,它表征压强不变的情况下,单位温度变化所引起的流体体积的相对变化率。
3.流体的粘性流体阻止自身发生剪切变形的一种特性,由流体分子的结构及分子间的相互作用力所引起的,流体的固有属性。
恩氏粘度计测量粘度的一般方法和经验公式,见课本的24页牛顿内摩擦定律:当相邻两层流体发生相对运动时,各层流体之间因粘性而产生剪切力,且大小为:(省略)实验证明,剪切力的大小与速度梯度(流体运动速度垂直方向上单位长度速度的变化率)以及流体自身的粘度(粘性大小衡量指标)有关。
温度升高时,液体的粘性降低,气体的粘性增加。
(原理,查课本24~25页)三个力学模型1.连续介质模型:便于对宏观机械运动的分析,可以认为流体是由无穷多个连续分布的流体微团组成的连续介质。
这种流体微团虽小,但却包含着为数甚多的分子,并具有一定的体积和质量,一般将这种微团称为质点。
流体力学复习大纲第1章绪论一、概念1、什么是流体?(所谓流体,是易于流动的物体,是液体和气体的总称,相对于固2、345678910;牛公式;粘性、粘性系数同温度的关系;理想流体的定义及数学表达;牛顿流体的定义;11、压缩性和热胀性的定义;体积压缩系数和热胀系数的定义及表达式;体积弹性模量的定义、物理意义及公式;气体等温过程、等熵过程的体积弹性模量;不可压缩流体的定义。
二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的定义及特性;理想流体压强的特点(无论运动还是静止);2345671、U23;4第3章一元流体动力学基础一、概念1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数);2、流场的概念,定常场与非定常场(即恒定流动与非恒定流动)、均匀场与非均匀场的概念及数学描述;3、流线、迹线的定义、特点和区别,流线方程、迹线方程,什么时候两线重合;4、一元、二元、三元流动的概念;流管的概念;元流和总流的概念;一元流动模型;5、连续性方程:公式、意义;当流量沿程改变即有流体分出或流入时的连续性方程;6、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对流导数(迁移导数、对流导数)的物理意义、数学描述;流体质点加速度的公式;7、8、h轴的91012、流线、迹线方程的计算。
3、连续方程、动量方程同伯努利方程的综合应用(注意伯努利方程的应用,注意坐标系、控制体的选取、受力分析时尤其要注意表压力是否存在);第4章流体阻力和能量损失一、概念1、沿程损失和局部损失的定义、产生原因及计算公式(注意沿程损失计算公式中的物理量沿程阻力系数λ的计算公式因流态不同而不同,物理量d对非圆管而言为当量直径de);水力半径和当量直径的概念及计算公式;局部阻力系数的确定;2、流动的两种状态及区分;判断准则数Re的计算公式及圆管流动临界雷诺数的值;计算雷诺数时的特征长度是什么?如何根据雷诺数进行流态分析;345671转角速度公式,角变形速度的定义及公式;2、流体微团的复合运动;亥姆霍兹速度分解定理公式;3、有旋流动的定义;涡量(即速度旋度)的公式;涡量连续性微分方程;涡线的定义;涡线微分方程;涡通量的公式;斯托克斯定理;汤姆逊定理;拉格朗日定理;4、不可压缩流体微分形式连续方程的适用条件、物理意义(对于不可压缩流体而言,相对体积膨胀率为零)、公式(注意直角坐标和柱面坐标公式的不同);5、粘性流体中任一点的应力状态(9个应力张量);与理想流体有什么区别(粘性流体的表面力不垂直于作用面);应力正方向的表示规则(表面外法线方向与坐标轴正向一致,则应力分量正向分别与各坐标轴正向一致;反之,表面外法线方向与坐标轴正向相反,则应力分量正向分别与各坐标轴正向相反)67、式);8、9101、,2第6章绕流运动一、概念1、无旋流动的定义、前提条件三等式;2、势流的定义;速度势函数存在的条件(为无旋流动,也就是必须满足前提条件三等式);势函数的全微分方程;势函数与流速的关系方程;势函数满足拉普拉斯方程;速度势函数的应用(无旋流动,即速度场有势时,速度沿曲线的线积分与路径无关);3、平面无旋流动即平面势流;势流伯努利方程:公式、适用条件(理想不可压缩流体定常平面势流);平面势流势函数各方程的极坐标形式;4、流函数存在的条件(平面不可压缩流动);满足拉普拉斯方程;与速度之间的关系(直角坐标和极坐标);等流函数线与流线的关系;流函数和势函数的区别(只有5、流线、67;8为边界层和外部势流两个不同的流动区域?(粘性小的物体绕过物体运动时,摩擦阻力主要发生在紧靠物体表面的一个流速梯度很大的薄层内,在薄层以外,由于速度梯度很小,可忽略粘性,流体作理想流体的无旋流动,速度从而保持原有的势流速度,因此,将流场分为边界层和外部势流区两部分。
《流体力学》复习提纲第一部分:基本知识第一章 流体及其主要物理性质1. 流体的概念。
2. 连续介质假设的内容,质点的概念。
3. 液体和气体相对密度的定义。
4. 密度、重度、相度密度的相互计算。
5. 体积压缩系数和体积膨胀系数的定义,写出其数学表达式。
6. 动力粘度与运动粘度的相互计算、粘度的国际单位和物理单位及单位换算。
7. 作用在流体上的力的分类:分为质量力和表面力两大类。
8. 温度对液体和气体粘性的影响规律。
9. 什么是理想流体和实际流体。
10. 牛顿内摩擦定律的内容及其两种数学表达式。
重点习题:1-1,1-4,1-5,第二章 流体静力学1. 静压强的两个重要特性是什么?2. 欧拉平衡方程及其全微分形式3. 绝对压力、相对压力(表压力)、真空度三种压力的概念。
4. 工程大气压和标准大气压的区别。
5. 静力学基本方程C pz =+γ中每一项的几何意义和物理意义是什么?6. 绝对静止和两种典型的相对静止流体(等加速水平运动和绕轴等角速旋转运动)中的压力分布规律和等压面的形状。
7. 液式测压计的计算。
8. 掌握静止流体作用在平面和曲面上的总压力的计算方法(包括总压力的大小﹑方向和作用点)等,会进行有关计算。
重点习题:2-6,2-9,2-18,2-19第三章 流体运动学与动力学基础1. 研究流体运动的两种方法:拉格朗日法和欧拉法。
2. 欧拉法表示的质点加速度公式3. 定常流与非定常流的概念4. 流线与迹线的概念5. 流量的概念及三种流量表示方法及相互换算。
6. 欧拉运动方程7. 实际流体总流伯努利方程的三条水头线的画法和意义8. 水力坡降的概念。
9. 实际流体总流伯努利方程。
10. 节流式流量计的工作原理是什么?11. 理解测速管(或皮托管)的原理和用途。
12. 泵的扬程H 的概念及其与泵有效功率泵N 的关系?13. 连续性方程反映了什么物理基本原理?质量守恒定律14. 掌握连续方程﹑总流伯努利方程和动量方程的应用,动量方程部分应会进行弯管、渐缩管和平板等受力的计算。
流体力学复习资料流体力学复习资料第一章基本概念1、流体力学的定义、流体的性质。
流体力学就是研究流体运动规律,以及流体和固体之间相互作用等方面的一门学科。
流体有三大性质:易流动性,黏性和压缩性。
2、流点的定义及其物理性质。
流点是指微观上足够大,宏观上足够小的分子团。
微观上足够大:使分子团的空间尺度选得足够大,使其含有大量的分子;平均的时间也应该足够大,使得这段时间内分子团内分子间碰撞已发生过很多次。
宏观上足够小:一方面使其可以近似看作几何上没有维度的一个点,另一方面使分子团被看作一个瞬间。
3、流体连续介质假说?并说明其必要性和可能性。
连续介质假设是把离散分子构成的实际流体,看作是由无数流体质点没有空隙连续分布而构成的。
可能性:通常,这样的分子团是存在的,如:0℃, 1个大气压,1cm3气体含有2.7x1019个分子;流点:10-9cm3 含有2.7x1010个分子;(体积上足够小)(微观上足够大,含有这么多分子)。
特殊问题,如稀薄气体运动或者空气动力学中的基波区。
稀薄气体运动:流点必须取得很大,则失去点的意义。
基波区:在非常小的空间范围内流体物理量就有剧烈的变化,就需要流点取得很小,结果无法包括足够多的分子数量来确定统计量。
必要性:a) 有了连续介质假定就可以不考虑流体的分子结构,从连续介质力学看来,流体的形象是宏观的均匀排列的流体,而不是含有大量分子的离散体。
b) 有了连续介质假定,当我们说流体质点处于静止状态时,那就是说它是停留在原地不动的,虽然那里的分子由于热运动将不断的位置移动。
c) 有了连续介质假定,当我们在连续介质内的某点A 上取极限时,不管A点多近的地方都有流体质点存在,并有确定的物理量。
(大量分子的总体表现是有规律的,或说微观量运动的统计平均是有规律的,这种微观量的统计平均值就是物体(流体)的宏观总体表现。
因而需要我们想个办法找到流体的基本运动元,(就像固体的质点一样),使我们对流体运动的描述变得简单方便,而且是可能和有效的。
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。
流体力学复习(个人整理仅供参考)温馨提示:1、考试题型为选择题、填空题、简答题、计算题2、考试章节为1、2、3、4、6、7、11.其中重点章节为2、4、63、选择(课后习题):4、填空:基本的公式和知识点5、简答6、三大计算题:静水压力、三大方程、水头损失。
7、计算题一定要按规范答,按步骤答,即使不全会,只要按步骤,把该写的写上也能得分。
8、考试复习:作业题、习题课、课本例题第一章绪论基本要求:①正确理解液体的主要物理性质,重点掌握粘滞性的有关概念。
②弄清连续介质和理想流体的概念,了解作用于流体上的力的分类及其各种力的含义。
基本概念:⑴连续介质⑵液体密度⑶液体容重⑷液体的粘滞性、运动粘度、动力粘度⑸液体的压缩性、体积压缩系数、弹性系数⑹液体的膨胀性、体积膨胀系数⑺表面张力、毛细现象⑻理想液体(非粘性液体)⑼实际液体(粘性液体)⑽表面力、压应力(压强)⑾质量力(体积力)、单位质量力重点掌握:⒈连续介质的概念⒉液体的粘滞性⒊液体的压缩性、液体的膨胀性概念⒋表面力、质量力(体积力)、单位质量力的概念1、液体基本特征。
2、连续介质3、液体主要物理性质惯性粘滞性动力粘度μ运动粘度ν=μ/ρ水的粘度随温度而变化,温度上升其粘度减小。
压缩性与膨胀性非粘性液体(理想液体)粘性液体(实际液体)4、作用于液体上的力表面力:表面力连续作用于液体的表面,表面力又可分解成垂直和平行于作用面的压力和切力。
压强:单位面积上的压力称为压强,又称为压应力。
以p表示。
切应力:单位面积上的切力称为切应力。
以τ表示。
质量力连续作用于液体质点上,其值与液体的质量成正比,对均质液体其质量力与体积成正比,故又称为体积力。
第二章流体静力学基本要求:①了解静水压强特性,等压面,绝对压强与相对压强,水头与单位势能等基本概念。
了解压强测量的基本方法和压强的各种表示方法。
②会使用重力作用下流体静压强的基本公式求解任意点的流体静压强。
③能正确绘制静水压强分布图和压力体图,能利用该图或基本公式求解作用于平面上和曲面上的静水总压力的大小,方向及其作用点。
弹性系数体积压缩系数dp V dV Pa E p p -==ββ//)(1体积膨胀系数T V V T ∂∂=0β牛顿内摩擦定律dy du μτ=(1P=0.1Pas)运动粘度系数ρμν=(1St=10^14m2/s ) 压强差公式dp =ρ(Xdx+Ydy+Zdz);加速度为a 向右运动的页面,竖直为z 轴液面方程x g a z s -=;A y J e c c ==yd -yc,对于矩形Jc=ba^3/12圆pai*d^4/64 z u u y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=yx u dy u dx ==dt 孔板流量计流量 系数γαp g A Q ∆=2 泵的功率QH N γ=泵泵的效率N 泵/N 轴 电动机的效率N 轴/N 电动量方程()12V V Q F -=ρ水利半径Rh=A/X(A 断面面积X 液体与固体边界接触长度)当量直径De=4RhμρVD =Re 达西公式g V d L hf 22λ= Ns 方程z u u y u u x u u t u z u y u x u x p X x z x y x x x x x x ∂∂+∂∂+∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+∂∂-2222221νρ(层流不可压缩) 几何相似。
运动相似。
动力相似(充要条件Ne 相同)Ne=F/Ρl2v2粘性力为主的相似准则数Re 相等,反映惯性力和粘性力比。
重力为主:Fr=v2/gl 相等,反映了惯性力和重力之比。
压力:Eu=p/ρv2相等;反映了压力和惯性力之比。
圆管层流:du/dr=-△pr/2μl// u=(△P*R 2/l*4*μ)*(R 2-r 2); Q=△P*PAI*R4/8*μ*l; 平均速度0.5umax 切应力分布τ=△P*r/2*L层流Re<2000 Re 64=λ力光滑区d ∆=2ε 787.59Re 3000ε<<4Re 3164.0=λ 水力粗糙区 g V h j 2022.02ζλ=查表得数据。
《流体力学》期末复习提纲1、什么是流体?流体有哪几种分类?2、什么叫连续介质假设?为什么提出这种假设?流体有哪些主要物理性质?3、何谓流体的粘性?粘性的物理本质是什么?粘性随温度变化的特性是什么?在工程中有什么应用?4、什么是流体的毛细现象?5、作用在流体上的力有哪两大类?6、静压力有哪些特性?7、压力有哪些表示方法及哪些单位?如何换算?8、静力学方程有哪两种表示式?试说明其意义?9、什么是等压面?判别等压面有哪些方法?10、说明电厂锅炉水位监测的重要性?11、静力学方程有哪些应用及计算?12、什么是静水奇象?13、研究流体运动的两种方法是什么?有何区别与联系?14、什么是当地加速度和迁移加速度?如何求解?15、什么叫流线?有什么性质?16、水力要素概念:过流断面、流量、平均流速的计算?17、流体的连续性方程及其微分表达式?连续性方程的应用?18、写出理想流体的运动微分表达式。
19、粘性流体能量方程(伯努力方程)的适用范围是什么?20、粘性流体能量方程(伯努力方程)的工程应用?(计算题)21、粘性流体能量方程的意义?22、定常流动的动量方程的作用是什么?23、流动有哪两种流动状态?如何判别流动状态?24、什么是雷诺数?其本质是什么?25、什么是缓变流和急变流?26、试从流动特征、速度分布、切应力分布和水头损失等方面来分析比较圆管中的层离和紊流特性?27、阻力损失分为哪两大类?试说明它们产生的原因?28、试画图说明流动损失与平均流速的关系?29、沿程阻力系数有哪几个分布区域?30、流体在产生紊流时的参数如何描述?31、试画出流体紊流的结构图。
说明什么是水力光滑管和水力粗糙管?32、沿程阻力损失hy及局部阻力损失hj如何计算?33、管道的水力计算?(计算题)34、什么是水击?水击包含哪几个过程?35、什么是有旋流和无旋流?如何判断?36、什么是速度环量、旋涡强度和涡量37、什么是流体的边界层?边界层的有哪些特征?。
流体力学复习提纲第一章 流体的物理性质1.主要概念(1)表面力和质量力(2)动力粘性系数μ和运动粘性系数ν :ρμ=v 运动粘性系数是衡量流体动量扩散的参量,其中包含了流体本身粘性大小μ和密度ρ的综合影响。
在PPT 第五章中有比较详细的阐述。
(3)粘性流体和理想流体(4)牛顿流体和非牛顿流体:它们都属于粘性流体k dydV n x +=)(μτ 当n =1,k = 0, μ≠0时,是牛顿流体。
所以对于牛顿流体,τ满足下式:)(dydV x μτ= (1-1) 当n≠1,k≠ 0, μ≠0时,是非牛顿流体,非牛顿流体可以分成各种类型。
2.关键问题:(1)表面力单位面积的流体所受的表面力主要可概括为法向应力p 和切向应力τ ,法向应力一般 为压强(但要注意:在高等流体力学中法向应力还包括其他内容),切向应力也可称为剪切应力或粘性应力。
A. 流体静止时,切向应力τ=0, 只考虑压强(法向应力)的作用;B. 流体运动时,法向应力p 和切向应力τ一般都需考虑C. 需注意应力的单位是N/m 2, 即单位面积所受的力,所以面积A 上的切向和法向所 受的力由下式计算:A F AF p ==法切τ(2)固体和液体剪切应力的区别首先弄清楚什么是应力?应力是物体内部所受的力(单位面积)。
下面以牛顿流体和固体比较剪切应力的差异。
固体剪切应力:由虎克定律描述,切应力与角变形大小成正比G 是剪切模量, 不同材料G 大约是(1010)Pa流体剪切应力:由牛顿粘性定律描述,切应力与角变形速率成正比μ (Pa·S)是动力粘性系数, 其数量级10-3 (水), 10-6 (空气)正因如此,流体只要有剪切应力的作用,就会发生连续运动和变形,一旦流体静止下来,流体中就不存在剪切应力,而且所受的剪切应力不论多么小,只要有足够的时间,就会产生任意大的变形。
“流体经不起搓,一搓就会起旋涡”―陆士嘉(3)理想流体与粘性流体任何实际流体都有粘性,理想流体只是一种近似。