脱硫废水零排放工艺
- 格式:pptx
- 大小:6.85 MB
- 文档页数:44
工艺方法——火电厂脱硫废水零排放技术工艺简介目前市场通用零排放技术均采用“预处理单元+减量浓缩单元+固化单元”技术系统。
一、预处理单元预处理为整个脱硫废水零排放的基础,该部分采用各种技术,将废水中所含污染物质分离去除、回收利用,或将其转化为无害物质,净化水质。
脱硫废水处理技术,按原理可分为如下两种:物理法:利用物理作用分离废水中悬浮状态的固体污染物质,有筛滤法、沉淀法、气浮法、过滤等;化学法:利用化学反应,分离废水中各种形态的污染物质(包括悬浮物、溶解物、胶体等),有中和、混凝、电解、氧化还原、萃取、吸附等。
以上的二种方法,以二级沉淀软化最为常用,主要通过投加石灰乳、碳酸钠和液碱等药剂,去除水中硬度离子、悬浮物等,保证系统运行过程中不产生无机垢类。
二、减量浓缩单元减量浓缩单元为成熟工艺,根据后续固化单元水量,确定减量浓缩单元工艺。
目前,废水减量化处理手段主要为膜浓缩处理工艺。
常用的膜浓缩处理工艺有反渗透、正渗透、电渗析和膜蒸馏等工艺。
1、反渗透反渗透是渗透的逆过程,在压力推动下,借助半透膜截留作用,使溶液中的溶剂与溶质分开。
其具有净化率高、成本低和环境友好等优点,在近几十年的时间里发展非常迅速,广泛应用于海水和苦咸水淡化纯水和超纯水制备、工业或生活废水处理等领域。
其缺点在于废水中杂质沉积致使膜污染、氧化,膜的截留性能也需进一步提高。
近年来,陆续出现了几种针对高含盐量的废水浓缩反渗透膜技术,如SWRO技术和DTRO技术等。
(1)SWRO技术因脱硫废水含盐量极高,约为30000mg/L,与海水含盐量相当,采用海水反渗透(SWRO)技术进行脱盐,一般回收率至40-45%,经软化处理后回收率可提至50%。
为满足进入RO系统水质,预处理后的脱硫废水需进一步除浊,根据水质特点,可选择管式膜过滤系统(简称TMF)作为RO预处理。
TMF是一种耐强性和耐化学腐蚀性较高的膜过滤系统。
由于其膜丝接近于超滤过滤孔径,可高效去除废水中污染物,同时因其独特构造,使含有污泥颗粒的废水进入膜系统时可直接固液分离,省去沉淀池、多介质过滤,砂滤、碳滤及超滤等环节。
工艺方法——燃煤电厂脱硫废水零排放技术工艺简介一、处理原则燃煤电厂除脱硫废水外,各类废水经处理后基本能实现“一水多用、梯级利用”、废水不外排,因此脱硫废水零排放是燃煤电厂实现全厂近零排放的重点和关键。
燃煤电厂脱硫废水特点之一就是预处理后含盐量高。
目前脱硫废水零排放技术主要包括烟气余热喷雾蒸发干燥、高盐废水蒸发结晶等。
蒸发干燥或蒸发结晶前,宜采用反渗透、电渗析等膜浓缩预处理工艺减少废水量。
电厂应加强全厂水务管理,经济合理地处理各种废水,最大限度地提高废水回用率。
二、零排放技术脱硫废水零排放处理技术主要包括蒸发结晶法和烟道蒸发法,这两种工艺各有优势和不足,具体工艺选择还需要依据具体水质条件等综合因素进行具体确定。
在下一步燃煤电厂脱硫废水零排放技术发展中,一方面需要关注对于重金属的去除,尤其是吸附法脱除;一方面是对脱硫废水零排放技术的多元化发展进行研究与开发,以及水资源回收与利用。
在蒸发结晶处理方面,为了降低运行成本,建议将废水减量化处理后,再进行蒸发结晶处理,同时结合具体水质情况,选择开发相应的预处理工艺,并注重开发脱硫废水浓水或结晶盐的资源化利用技术,最终实现循环经济。
在烟道蒸发处理方面,应重点关注脱硫废水进入烟道后对大气污染区的达标排放和对于环保设施的腐蚀等影响,以及对布袋除尘器的影响研究,尤其注重对粉煤灰综合利用和烟气中氯排放的影响研究。
蒸发结晶技术是通过一系列方法将废水浓缩,浓缩液蒸发结晶,蒸汽经冷凝回收,而盐结晶干燥成工业盐,从而达到废水零排放的目的。
目前废水蒸发结晶技术主要有以下2种:1、多效蒸发技术常规蒸发结晶技术为多效蒸发(MED)结晶技术,该技术一般分为热输入单元、热回收单元、结晶单元和附属系统单位4个单元。
常规处理后的废水经过多级蒸发室的加热浓缩后成为盐浆,盐浆经离心、干燥后成为工业盐运输出厂出售或掩埋。
2009年,广东河源电厂应用该技术建成了脱硫废水零排放工程,设计处理量为20m3/h,蒸发系统出水TDS小于30mg/L,回用于电厂循环冷却水,产生的固体结晶盐达到二级工业盐标准,以每吨约80元的价格出售,虽然该技术较为成熟,但极高的能耗还是限制了其发展和推广。
脱硫废水零排放(ZLD)系统脱硫废水零排放工艺是针对火电厂脱硫废水特点,通过软化、MVR蒸发、结晶等技术途径,实现高盐度脱硫废水的零排放要求,最终看形成纯净可回用的蒸馏水和结晶盐。
该工艺也可实现其他各种高盐度、高硬度、高COD工业废水零排放,具有高效、节能、运行稳定、低成本的特点。
脱硫废水零排放预处理工艺脱硫废水首先进入预澄清池,进行沉淀澄清,降低原水浊度。
沉淀物排放至沉淀浓缩池,上清液进入三联箱反应器。
三联箱中加入Ca(OH)2、Na2CO3和絮凝剂,反应沉淀废水中的Mg2+、Ca2+和重金属离子。
反应后的脱硫废水自流入澄清池,废水中的絮凝物沉淀到池底,并排放至沉淀浓缩池,上清液流入中间水池,后经多介质过滤后进入清水池,并加酸调节pH值。
经沉淀浓缩池进一步浓缩后的污泥浆液,进入污泥脱水机固液分离,脱水后的污泥转运到场外处理,污水经缓冲水池后循环回预澄清池。
脱硫废水零排放深度处理工艺MVR是“机械式蒸汽再压缩”的英文简称(Mechanical Vapor Recompression)。
其基本原理是:对蒸发过程中产生的二次蒸汽通过机械再压缩,二次蒸汽的温度、压力升高,热焓增加,然后进入换热器冷凝,二次蒸汽的潜热得到完全利用。
进液经预热、除气后,进入蒸发系统,由泵送至卧式降膜蒸发器顶部,经液体分布装置,均匀分配到各换热管外,在重力作用下,成均匀膜状自上而下沿管外壁环向流动。
流动过程中,被管程加热介质加热汽化,产生的二次蒸汽经离心蒸汽压缩机增压升温后进入降膜蒸发器管程与管外液体冷凝换热。
一定比例的蒸发浓缩液进入结晶系统。
结晶系统的料液由泵送至加热器,晶浆在加热器管程升温,但不蒸发。
热晶浆进入结晶器后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。
产生的二次蒸汽一部分被蒸汽热泵引射后进入加热器壳程,继续加热管内浓缩液,另一部分通过冷凝器冷凝。
作为产品的晶浆从结晶器底部排出,通过旋液分离器初步分离后,富集晶体的浓浆液进入离心机分离出晶体,浓浆液继续循环回结晶系统。
脱硫废水零排放工艺1脱硫废水概述1.1脱硫废水的水质特点及常规处理工艺典型热电厂脱硫废水中一般含有大量的盐分、硫酸根离子、重金属离子及氯化物,并含有难处理的COD等,pH值一般在5~6之间,水质呈弱酸性。
处理时需要在水中加入Ca(OH)2,将pH值调节到8.5~9.0之间,使得重金属离子(如铜、铁、镍、铬和铅)生成氢氧化物沉淀;同时反应过程中还会生成CaCl2、CaF2、CaSO3、CaSO4沉淀物,以分离氯根离子、氟化物、亚硝酸盐、硫酸盐等盐类物质;对于汞、铜等重金属,目前普遍采用15%TMT溶液替代Na2S 来将其沉淀出来。
1.2脱硫废水处理难点从脱硫废水常规处理工艺中可以看出:预处理工艺中添加了大量的熟石灰,会导致水中硬度离子含量较高,且水中残留有高浓度的SO42-、Cl-,属于典型的高含盐废水。
水中硬度离子含量高会导致处理设备结垢污堵,Cl-离子含量高会对设备、管道产生严重腐蚀。
其次,脱硫废水水质成分复杂,污染物超标严重,水中镉、汞、硫化物、氟化物含量高。
另外,脱硫废水受燃煤品种、脱硫工艺、吸收剂等多种因素影响,水质变化较大。
1.3脱硫废水排放标准滞后与现实环保要求脱硫废水水质控制的行业标准:DL/T997-2006《火电厂石灰石-石膏湿法脱硫废水水质控制指标》,其对脱硫废水中总汞、总铬、总镉、总铅、总镍、悬浮物等指标进行了限制,但是总体标准偏低,如汞的最高排放限值为0.05mg/L,同时也没有对Cl-的排放浓度进行限制。
而目前火电厂的废水排放是按照GB8978-1996《污水综合排放标准》进行控制的,但该标准规定的控制项目和指标也不能完全适用于脱硫废水。
2015年4月16日,国务院发布《水污染防治行动计划》,强调将强化对各类水污染的治理力度,脱硫废水因成分复杂、含有重金属引起业界关注。
目前行业内工程案例基本上都是:利用浓缩工艺对脱硫废水减量化处理,产水回用循环水系统,浓缩水进入蒸发器结晶生成固态盐。
脱硫废水零排放技术与工艺路线探讨脱硫废水是指燃煤、石油、天然气等能源的燃烧过程中产生的含有硫化物的废水。
由于含有硫化物对环境和人体健康具有较大的危害性,因此脱硫废水零排放技术与工艺路线的研究变得尤为重要。
脱硫废水的零排放是指将脱硫后的废水进行处理和回用,达到废水的完全零排放。
实现脱硫废水的零排放需要采用一系列的技术和工艺路线。
下面将对其中几种常见的技术进行探讨。
1. 生物法:生物法是利用微生物来降解废水中的硫化物。
常见的生物法包括厌氧生物脱硫法和好氧生物脱硫法。
厌氧生物脱硫法适用于高浓度、小型设备的脱硫废水处理,通过采用特定的微生物将硫化物转化为硫气或硫酸盐,进而降低废水中硫化物的含量。
而好氧生物脱硫法适用于低浓度、大型设备的脱硫废水处理,通过氧化硫化物为硫酸盐,然后进行沉淀或过滤等处理。
2. 化学法:化学法是利用化学反应来达到脱硫废水的零排放。
常见的化学法包括化学还原法和氧化沉淀法。
化学还原法通过添加还原剂将硫化物还原为硫气或者硫酸盐,然后通过沉淀或过滤等方式将其分离出来。
氧化沉淀法是将废水中的硫化物经过氧化反应生成硫酸盐,然后与金属离子反应形成沉淀,最终实现废水中硫化物的分离。
3. 膜法:膜法是利用特定的选择性膜来进行分离和去除废水中的硫化物。
常见的膜法包括微滤膜法、超滤膜法和反渗透膜法。
微滤膜法和超滤膜法主要是通过膜的孔隙大小来选择性地去除废水中的固体颗粒和溶解物,从而实现硫化物的分离。
反渗透膜法是利用一定的压力差将废水通过膜的渗透、分离,从而去除废水中的硫化物。
4. 吸附法:吸附法是通过添加一定的吸附剂来去除废水中的硫化物。
常见的吸附剂包括活性炭、氧化铁等。
吸附法通过吸附剂对硫化物的亲和力,将其吸附到吸附剂上,然后通过沉淀或过滤等方式将其分离出来。
脱硫废水零排放技术与工艺路线的选择需要根据废水的性质、目标要求和实际操作条件等因素进行综合评估。
在实际应用中,也可以结合多种技术和工艺进行组合,以达到最佳的脱硫效果和废水零排放目标。
工艺方法——脱硫废水零排放处理工艺工艺简介1、预处理+蒸发工艺预处理系统采用“两级反应+沉淀和澄清”处理,一级投加石灰,二级投加碳酸钠软化水质。
蒸发结晶处理采用多效蒸发结晶或MVR 蒸发工艺,结晶通过离心机和干燥床制得固体结晶盐。
脱硫废水经废水缓冲池调节水量,均衡水质,在一级反应器,投加石灰乳、絮凝剂和助凝剂,大部分重金属被生成沉淀,沉淀微粒物在絮凝剂和助凝剂的作用下凝聚成特大的颗粒物,最后流入一级澄清器,然后完成一系列的程序后实现固体和液体的分离。
上清液进入二级反应器,为了确保后期的深度处理的部分能够长期稳定,减少清洗次数,需要对容易结垢的物质进行直接处理。
在二级反应器中加入软化剂后,使水中钙离子生成沉淀,沉淀微粒物在絮凝剂和助凝剂的作用下凝聚成特大的颗粒物,最后流入二级澄清器,上清液经过滤器再次过滤,确保废水满足深度处理进水要求。
蒸发器一般分为2种,一种是多效蒸发装置,一种是MVR蒸发装置。
多效蒸发装置分为4个单元:热输入单元、热回收单元、结晶单元、附属系统单元。
热输入单元即从主厂区接入蒸汽,经过减温减压后成为低压蒸汽,再将蒸汽送至加热室对废水进行加热处理。
热交换后的冷凝液则进到冷凝水箱中。
预处理后的脱硫废水排水,经多级蒸发室的加热浓缩后送至盐浆箱,由盐浆泵输送至旋流器,将大颗粒的盐结晶进行旋流并进入离心机,分离出盐结晶体,然后再经螺旋输送机送往各类干燥床干燥塔进行干燥。
旋流器和离心机分离出的浆液返回至加热系统中再进行蒸发浓缩,最终干燥出的盐结晶包装运输出厂。
MVR蒸发装置原理是利用高能效蒸汽压缩机压缩蒸发产生的二次蒸汽,提高二次蒸汽的焓,被提高热能的二次蒸汽打入蒸发室进行加热,以达到循环利用二次蒸汽已有的热能,从而可以不需要外部鲜蒸汽,通过蒸发器自循环来实现蒸发浓缩的目的。
从理论上来看,使用MVR蒸发器比传统蒸发器节省80%以上的能源,节省90%以上的冷凝水,减少50%以上的占地面积。
预处理+蒸发工艺,投资成本较高,所有废水进入蒸发系统,运行费用高。
燃煤电厂脱硫废水零排放处理工艺鉴于燃煤电厂脱硫废水成分复杂化、处理标准高等特点,要想实现废水的零排放,需要根据废水中污染物的组分、性质等,采取分阶段处理措施,逐步去除其中的有害成分,从而使最终产物无害化,达到相关部门规定的排放标准。
在设计零排放处理技术路线时,要遵循经济性原则、协同性原则、无害化原则,在保护生态环境和维护企业效益之间做到统筹兼顾。
现阶段技术成熟度高、废水净化效果好的一种技术路线是依次对脱硫废水进行沉淀过滤的预处理程序、渗透整流的浓缩减量程序,以及蒸发固化程序,最终实现彻底净化、无害排放。
1、脱硫废水的预处理技术1.1化学沉淀脱硫废水的硬度较高,在预处理环节需要将含量较高的钙、镁离子沉淀下来,然后在过滤环节将其去除,实现废水软化处理。
向脱硫废水中加入适量的化学剂(如碳酸钠),通过搅拌使新加的化学药剂与废水进行置换反应,得到以碳酸钙、碳酸镁为主的沉淀物。
还有一种技术是收集脱硫后的烟道气,使用密封管道将气体直接通入废水中。
利用烟道气中的二氧化碳,与废水中游离的钙离子结合也可以得到碳酸钙沉淀。
1.2凝聚沉淀上一道工序主要去除废水中的钙、镁离子,经过一级澄清池过滤后,所得废水中还有较多地悬浮物和胶体。
向其中加入凝聚剂(如聚合铁、聚丙烯酰胺等),充分搅拌使凝聚剂与悬浮物充分接触并进行一段时间的反应,可以得到絮凝体。
将废水转入二级澄清池中静置,等待絮凝体沉淀,再通过固液分离,能够清除掉废水中超过90%的悬浮物。
1.3物理过滤经过化学沉淀和凝聚沉淀两道工序后,使废水完全软化,悬浮胶体总量明显减少。
考虑脱硫废水的水质波动较大,为了保证后续处理工序的废水净化效果,还需要在两次沉淀后加入一道过滤工序。
根据废水成分决定选择过滤方法,常见的有微滤、超滤,要求更高的选择纳滤。
不同过滤方法有各自的应用优势,例如选择内压错流式管式微滤,在内部压力作用下,管内液体获得超高的流动速度,使废水中的杂质颗粒无法穿透滤膜,达到截留、净化的目的。
脱硫废水零排放技术与工艺路线探讨脱硫废水是指烟气脱硫过程中含有SO2、NOx、颗粒物等污染物的废水,其中SO2是脱硫废水的主要成分。
由于脱硫废水的高含盐量、高COD浓度、高酸度等特点,其直接排放将对环境造成严重危害,因此脱硫废水零排放技术和工艺路线是当前烟气脱硫工艺研究的重点之一。
(1)深度处理技术脱硫废水深度处理技术包括化学氧化法、生化处理法、膜技术等。
化学氧化法主要是指利用氧化剂将污染物氧化成水溶性化合物,如利用高锰酸钾(KMnO4)、过硫酸钠(Na2S2O8)等将污染物氧化成CO2和H2O;生化处理法主要是指利用微生物将有机物降解成无机物的过程,包括好氧生物法、厌氧生物法等;膜技术主要是指利用膜分离技术,如超滤、纳滤、反渗透等,将脱硫废水中的污染物分离出去,使水质达到排放标准。
(2)软化-沉淀法软化-沉淀法主要是通过钙、镁离子软化水质,使含硬度物质的脱硫废水中的污染物沉淀出来,在低pH值条件下加入沉淀剂,如氢氧化铁、氢氧化铝等,使污染物沉淀成状。
(1)石灰-石膏法石灰-石膏法是目前国内外最为成熟的脱硫废水处理工艺路线之一。
其处理流程包括:酸性脱硫废水→石灰中和→石膏沉淀→石膏干化→石膏中和→脱水→废水处理后的脱硫废水。
通过这一工艺路线,可以实现脱硫废水零排放。
(2)氧化还原法氧化还原法主要是指利用还原剂将废水中的硫代硫酸盐还原成硫酸盐,如利用亚硫酸钠(Na2SO3)、亚硫酸氢钠(NaHSO3)等还原剂进行还原反应。
还原后的硫酸盐再经由氧化剂氧化成硫酸,在通过石灰中和和沉淀,最终实现零排放。
(3)电化学法电化学法也是脱硫废水零排放的重要工艺路线之一。
其工艺原理是通过电解反应,将脱硫废水中的有机物、SO2等污染物转化为易于生物降解的无机物,实现废水处理再循环利用。
优点是废水置换率高、处理效果稳定等。
总之,随着环保政策逐步趋严,脱硫废水零排放技术和工艺路线的研究和应用将成为未来烟气脱硫技术发展的重要方向。
脱硫废水零排放工艺摘要脱硫废水是燃煤、燃油等工业生产过程中产生的一种污水。
传统的脱硫废水处理工艺中存在着排放污染物的问题,对环境造成了严重的影响。
为了解决这一问题,提出了脱硫废水零排放工艺。
该工艺通过对脱硫废水进行综合处理和资源化利用,实现了废水的零排放。
本文将介绍脱硫废水零排放工艺的原理、关键技术和应用前景。
1. 引言脱硫废水是燃煤、燃油等工业生产过程中产生的一种含有高浓度硫酸盐的废水,其中含有大量的SO2、SO3等有害物质。
传统的脱硫废水处理工艺主要采用化学方法,如中和沉淀法、氧化法、吸附法等。
但是这些方法存在着处理效果不稳定、排放污染物含量较高的问题,对环境造成了严重的影响。
为了解决这一问题,提出了脱硫废水零排放工艺。
2. 脱硫废水零排放工艺原理脱硫废水零排放工艺的原理是通过多种技术手段对废水进行综合处理和资源化利用,从而实现废水的零排放。
主要包括以下几个步骤:2.1 废水预处理脱硫废水在进入处理系统之前需要进行预处理,包括沉淀、过滤等工艺。
这些工艺能够去除废水中的固体颗粒物和悬浮物,保证后续处理过程的顺利进行。
2.2 硬件设备配置脱硫废水零排放工艺需要借助一系列硬件设备来完成废水的处理和资源化利用。
主要包括曝气池、生物膜反应器、浓缩器、脱水设备等。
这些设备能够有效地去除废水中的污染物,以及将污染物转化为可回收利用的物质。
2.3 生物脱硫过程在脱硫废水零排放工艺中,通过生物脱硫过程可以将废水中的硫酸盐等有害物质转化为硫元素,从而达到脱硫的效果。
这一过程一般通过在生物膜反应器中注入适量的氧气和硫酸盐,利用微生物的作用进行反应。
2.4 污泥处理和资源化利用脱硫废水零排放工艺中产生的污泥需要进行处理和资源化利用。
常见的方法包括浓缩、脱水和焚烧等。
脱水后的污泥可以作为肥料或填埋材料使用,焚烧后可以用于能源回收。
3. 关键技术和应用前景脱硫废水零排放工艺依赖于多种关键技术的支持,包括生物膜反应器技术、污泥处理技术、脱水设备技术等。
湿法脱硫工程中废水零排放工艺湿法脱硫工程中废水零排放工艺湿法脱硫是燃煤电厂大规模减少硫氧化物排放的主要技术之一。
然而,在湿法脱硫过程中,会产生大量的废水。
如何处理和处置这些废水,使其达到零排放的要求,是当前湿法脱硫工程中面临的重要课题。
湿法脱硫过程中产生的废水主要包含脱除污染物后的水和吸收剂再生过程中的废液。
其中,脱除污染物后的水主要含有少量的污染物氧化产物、石膏颗粒和氨水;吸收剂再生过程中的废液则包含了高浓度的二氧化硫和吸收剂。
针对这两种废水的特点和成分,湿法脱硫工程中的废水零排放工艺可以分为两个主要部分,即“脱污”和“再生”。
在脱污方面,通过预处理、沉淀、过滤等工艺对脱硫污染物水进行处理,以达到排放标准。
首先,对含有污染物氧化产物的废水进行预处理,将其中的悬浮颗粒物通过沉淀或过滤去除。
随后,对含有石膏颗粒的废水进行脱水处理,通过离心机或压滤机将颗粒物脱水并回收,以减少废水量。
最后,对含有氨水的废水进行气浮、吸附等工艺处理,将氨水与空气接触,使其挥发,并经过净化设备后排放。
在废液再生方面,主要针对吸收剂再生过程中的废液进行处理和回收。
吸收剂再生废液中包含大量的二氧化硫,可以通过蓄热再生装置将其加热至气化温度,进而将二氧化硫和饱和蒸汽共同进入反应器,通过催化剂的作用进行反应,最终使废液中的二氧化硫转化为硫和二氧化硫。
通过这种方式,可以实现对废液中二氧化硫的回收和再利用,减少对环境的污染。
除了上述废水处理和再生工艺,湿法脱硫工程中还需要合理设计和运用各种装置和设备,以实现废水零排放。
比如,可以通过合理的管道连接和分流系统,将废水送入相应的处理设施,并将处理后的废水回收利用;同时,也可以利用沉淀池、过滤器、蓄热再生装置等设备,提高废水处理和再生效率。
总结起来,湿法脱硫工程中的废水零排放工艺是一个复杂而重要的课题。
通过合理的脱污和再生工艺,以及适当的装置和设备设计,可以有效处理和回收废水,实现废水零排放。
脱硫废水零排放新型处理工艺介绍摘要:目前国内大部分燃煤电厂处理脱硫废水的主要方法是药絮凝沉淀工艺,但是这个方法已经不能适用于燃煤电厂的实际需要。
本文介绍了脱硫废水的深度处理工艺和零排放处理工艺与含硫废水零排放新处理工艺应用要点。
关键词:脱硫废水:零排放:新型处理工艺:结晶工艺1脱硫废水深度处理工艺目前,煤炭加工行业广泛采用膜浓缩法、蒸发浓缩法和结晶法,用法很常见。
1 .1膜浓缩法膜浓缩方法包括多种工艺,例如反渗透、微滤和纳滤。
迄今为止,该技术在废水处理领域取得了优异的应用效果。
在处理过程中可以恢复燃煤电厂传统处理的脱硫废水的质量,使用的方法主要是渗透和反渗透。
一是反渗透工艺,在压力之下通过半透膜的作用阻隔水中的各种杂质而获得纯净水。
该工艺也可应用于聚合有机溶液的预浓缩,会得到很好的结果。
二是正渗透工艺。
该过程的原理类似于反渗透,同样,利用自然渗透压差,将浓盐水中的水分子挤出。
同时,保留废水中的其他杂质,并采用其他工艺分离杂质。
它进行分离,最终达到净化的目的。
此过程中的抽取液是可重现的利用,正渗透工艺不需要高压泵,系统能耗相对较低。
1.2蒸发浓缩该工艺在工业中得到广泛应用。
燃煤电厂脱硫废物浓缩处理中最广泛使用的工艺是多效蒸发、机械蒸汽再压缩和热蒸汽再压缩等,锅炉产生的蒸汽是传统多功能蒸发器的热量。
加热后蒸汽不进入冷凝器,而是作为第二效的传热介质,重复使用并重复此步骤后,形成多蒸发系统。
1.3结晶工艺最有效的结晶系统是强制循环结晶装置,它可以在处理过程中轻松缩放,适用于液体和高切液体。
处理流程如下:用泵抽盐水人进入结晶器,在泵的带动下与浓盐水混合后进入加热器。
循环盐水从切线进入结晶器,实现连续结晶目的。
一小部分盐水蒸发形成内部晶体,但大部分盐水蒸发,它进入加热器并泵送含有晶体的小股盐水用于随后的脱水和干燥,使用干燥装置。
2脱硫废水和零排放特征及难点2.1脱硫废水的特征脱硫吸收剂回收浓缩后,脱硫废水具有以下特点。
工艺方法——脱硫废水零排放工艺工艺简介与脱硫废水零排放工艺相关的技术较多,主要包括预处理(除重金属、硬度等)、膜浓缩减量以及蒸发结晶、烟道蒸发、低温闪蒸、浓液干燥等技术。
通常情况下,采用一种或几种技术组合使用。
1、预处理→膜浓缩→蒸发结晶工艺脱硫废水经过预处理除去重金属、钙镁等结垢离子,出水进入管式膜过滤系统或陶瓷超滤膜去除悬浮物,以满足后续膜法处理的进水要求,采用纳滤(NF)分盐,将纳滤浓水返回至预处理系统,纳滤产水采用DTRO碟管式反渗透系统或MBC正渗透系统进行膜浓缩,以减少后续蒸发结晶系统的进水量,进而减少整个零排放处理系统的投资。
蒸发结晶系统采用MVR或多效蒸发结晶器,以降低运行能耗。
结晶器中产出的盐主要为NaCl,其纯度可大于97.5%,达到工业盐干盐二级标准,结晶盐可以外售。
2、预处理→膜浓缩→烟道蒸发工艺脱硫废水经过预处理除去重金属、钙镁等结垢离子,经过膜法浓缩减量后进入烟道喷洒蒸发。
预处理和膜浓缩系统与上述第一种工艺相似,不同的是,根据浓缩液后处理选择的方式不同,系统不产生结晶盐,无需加纳滤进行分盐。
膜浓缩系统的产水直接回收利用,浓缩液进行烟道蒸发,利用高温烟气将雾化后的废水液滴蒸干,废水中的污染物形成细小固体结晶随烟气中的灰尘进入电除尘器被电极扑捉,进入除尘器灰斗外排,从而除去污染物,系统无结晶盐的产生,部分水分在脱硫塔中重新凝结被回收利用,最大程度节水节能,达到脱硫废水的零排放,目前烟道蒸发工艺主要分为主烟道蒸发和旁路烟道蒸发两种技术。
3、低温闪蒸→浓液干燥工艺脱硫废水不需预处理系统,直接利用低温烟气的热量对脱硫废水进行预热,而后经过多效闪蒸浓缩,浓缩物浓度可在线自动可调,浓缩后的浓液进入流化表面干燥机蒸发干燥,产生的粉尘及水蒸气随烟气引入电除尘前烟道,利用电除尘捕捉氯离子和其他固态颗粒及金属元素,蒸发的水蒸汽进入脱硫塔。
闪蒸浓缩过程中产生水蒸汽,经过凝结后可回收至脱硫工艺水或其它用途补水。
工艺方法——湿法脱硫废水零排放处理技术工艺简介一、化学积淀作业处理法废水零排放处理技术是当下较为先进的处理技术。
废水零排放即采用封闭式用水系统,该系统的实质是不向外部排放废水,通过科学、合理的循环流程,利用内部水封闭外排的原理进行处理后回用,这样不仅提高了处理效率,还大大提高水资源利用率,有助于保护生态环境。
从理论角度来讲,废水零排放可以完全实现,但由于资金与技术问题的影响,该技术基本无法彻底实现零排放,只能最大限度地接近零排放要求。
现阶段,我国的脱硫废水主要运用化学积淀作业处理方式,这种方式虽然直接有效,但经过化学积淀作业处理后,废水中依然含有较重的高浓度有害物质,这种物质无法再生利用,只能及时排除。
这样不仅大大浪费了水资源,而且排放的有害物质提升了水资源的化学成分含量,通过各渠道引流直接对土壤与生态环境造成威胁。
同时,这对水中生物与陆上生物造成严重影响,如鱼、虾等,进而影响整个生物链,因此化学积淀作业处理方法逐渐被限制使用。
二、蒸发法当下,我国废水零排放处理中最常见的是蒸发法。
该方法在脱硫废水处理过程中效果显著。
蒸发法的实质是通过对废水进行高温加热,经过高温加热后,废水会出现沸腾现象,废水会随着沸腾而逐渐蒸发,变成水蒸气,水蒸气经过冷却与分解又重新完成水的转变过程,转变后的水回用到相应的资源内,进而达到循环利用的目的。
其中,有害物质会随着蒸发变成固体形式,逐渐残留在废液中,最后以晶体的形式向外排出。
蒸发法应用领域较为广泛,在化工领域具有较高的使用价值。
蒸发法还可以与其他工艺联合运用,其主要优点体现在加热速度快、可操作性强、作业处理简单、消耗能源较低等,在化工与废水处理中较为常用。
相关技术人员已经将混凝沉淀技术、高效蒸发技术科学、合理地运用到脱硫废水处理中,为实现废水零排放奠定了坚实的技术基础。
三、烟道处理法烟道处理方法是将废水进行技术性喷雾处理,使其雾体进入特定的烟道内,然后通过烟道蒸发的方式对废水进行处理作业,进而达到相应的要求。
脱硫废水零排放处理技术分析本文对脱硫废水的来源、特点、常规处理工艺以及零排放处理工艺开展了分析,并对不同脱硫废水零排放的处理工艺的优缺点开展了比照分析,指出各工艺的技术优势和发展前景。
目前,国家对环境保护越来越重视,环保标准也越来越全面,越来越严格。
对电力行业烟气污染物排放也有明确规定,其中SO2的排放浓度限值也越来越低。
现国内大部分脱硫项目采用石灰石-石膏湿法脱硫技术,这种技术会产生脱硫废水,传统的脱硫废水处理工艺虽然对废水中的部分污染物有一定的处理能力,但是无法去除废水中的氯离子和盐。
随着脱硫废水排放标准越来越严格,脱硫废水零排放已经成为必然发展趋势。
常规脱硫废水处理工艺1.1脱硫废水来源石灰石-石膏湿法脱硫技术原理是石灰石浆液与SO2反应生成石膏实现对SO2的去除。
为了到达一定的SO2脱除效率往往需要石灰石浆液在系统中不断循环,增加与SO2的接触时间,而浆液中的水在不断循环过程中会不断富集重金属和氯离子,为了保证脱硫系统的连续稳定运行,必须从系统中排放一部分废水,防止重金属和氯离子的富集。
脱硫废水一般来自于脱硫系统的石膏旋流器溢流或真空皮带脱水机的滤布冲洗水和滤液水。
1.2脱硫废水特点1)成分复杂、水质波动大脱硫废水来水水质与煤质、工艺水水质、氧化空气量、石膏品质等因素有关,这些因素造成了脱硫废水成分复杂,且其中任一方面因素的变化都会导致脱硫废水水质的变化。
2)氯离子含量高、腐蚀性强脱硫系统在运行过程中会不断富集氯离子,脱硫系统运行时一般控制氯离子浓度在15000~20000ppm时排放废水,因此,脱硫废水氯离子含量高,具有很强的腐蚀性,对设备、管道的防腐蚀要求高。
3)硬度大、易结垢石灰石-石膏湿法脱硫技术造成排放的脱硫废水中的Ca2+、Mg2+及SO42-含量非常高,脱硫废水硬度大、易结垢。
4)含盐量高脱硫废水的含盐量很高,一般在20000~60000mg/L之间。
5)悬浮物含量高脱硫废水中的悬浮物主要受煤质和脱硫系统运行工况变化的影响,一般在5000~10000mg/L,极端情况下悬浮物含量会更高。