高分子科学简史
- 格式:pdf
- 大小:106.92 KB
- 文档页数:3
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类重要的材料,具有广泛的应用领域。
本文将从高分子材料的起源开始,概述其发展历程,并探讨未来的发展趋势。
一、高分子材料的起源1.1 古代高分子材料的应用在古代,人们已经开始使用高分子材料。
例如,古埃及人使用胶质物质制作胶合剂,用于修补陶器和建筑物。
1.2 高分子材料的科学发现高分子材料的科学发现可以追溯到19世纪。
1833年,法国科学家布朗提出了“高聚物”这个概念,并成功合成了天然高分子材料,如橡胶和纤维素。
1.3 高分子材料的工业化应用随着科学技术的发展,高分子材料的工业化应用逐渐增多。
20世纪初,合成高分子材料的工业化生产取得了重大突破,如合成橡胶和塑料的工业化生产。
二、高分子材料的发展历程2.1 高分子材料的分类高分子材料可以分为塑料、橡胶和纤维三大类。
塑料主要用于制造各种制品,橡胶主要用于制造胶制品,纤维主要用于纺织和制造复合材料。
2.2 高分子材料的改性和功能化随着科学技术的不断进步,人们对高分子材料进行了改性和功能化处理,使其具备更多的优良性能,如增强材料的强度、改善材料的耐热性等。
2.3 高分子材料的应用领域扩展高分子材料的应用领域不断扩展,涵盖了汽车工业、电子工业、医疗器械、航空航天等多个领域。
高分子材料的应用推动了相关行业的发展。
三、高分子材料的未来发展趋势3.1 绿色环保的发展方向未来,高分子材料的发展将更加注重环保性能。
人们将致力于研发可降解的高分子材料,减少对环境的污染。
3.2 高性能材料的研究与应用随着科学技术的不断进步,人们对高分子材料的研究将更加深入,开发出更多的高性能材料,满足不同领域的需求。
3.3 多功能材料的发展未来,高分子材料将朝着多功能材料的方向发展。
人们将研发具有多种功能的高分子材料,以满足不同应用领域的需求。
四、结论高分子材料经历了漫长的发展历程,取得了巨大的成就。
未来,高分子材料将继续发展,并朝着绿色环保、高性能和多功能等方向不断进步。
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维等。
本文将对高分子材料的发展历程以及未来发展趋势进行详细的探讨。
二、高分子材料的发展历程1. 早期发展阶段高分子材料的早期发展可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有一定的弹性和韧性,但存在着一些缺陷,如耐候性差、易老化等。
2. 合成高分子材料的突破20世纪初,合成高分子材料的研究取得了重大突破。
1907年,化学家蔡斯勒发现了合成橡胶的方法,这标志着合成高分子材料的时代的开始。
随后,聚合物的合成方法不断改进,如聚乙烯、聚丙烯等材料的合成,为高分子材料的广泛应用奠定了基础。
3. 高分子材料的工业化应用20世纪中叶,高分子材料开始在工业领域得到广泛应用。
塑料制品、橡胶制品、纤维制品等在日常生活中得到了广泛应用。
高分子材料的特点,如轻质、耐腐蚀、绝缘性能好等,使其成为替代传统材料的理想选择。
4. 高分子材料的改性与功能化近年来,高分子材料的改性与功能化成为研究的热点。
通过添加改性剂、填充剂等,可以改善高分子材料的性能,如增加强度、提高耐热性等。
同时,高分子材料的功能化也受到了广泛关注,如具有自愈合能力的材料、具有导电性能的材料等。
三、高分子材料的未来发展趋势1. 绿色环保随着环保意识的提高,高分子材料的绿色环保性将成为未来发展的重要趋势。
研究人员将致力于开发可降解高分子材料,以减少对环境的影响。
同时,通过改进合成方法和降低能源消耗,减少对环境的污染。
2. 高性能未来高分子材料的发展将注重提高其性能。
研究人员将致力于开发具有更高强度、更好耐热性、更低摩擦系数等性能的高分子材料,以满足不同领域的需求。
3. 智能化高分子材料的智能化将成为未来的发展方向。
研究人员将致力于开发具有自愈合能力、自感应能力、自适应能力等智能功能的高分子材料。
这些材料可以在受到外界刺激时实现自我修复或自我调节,具有广泛的应用前景。
高分子科学发展简史人类的进化和社会进步的历史,始终与人类对天然高分子材料的加工和利用的进步过程密不可分。
棉、麻、丝、毛的加工纺织,造纸,鞣革和生漆调制等分别是人类对天然高分子进行物理加工和化学加工的早期例证,虽然当时并未提出高分子的概念。
直到19世纪中后期,西方化学工作者才扩大了对天然高分子进行化学改性的范围,以下对高分子科学发展史中的重要事件作一简述:1839年,对天然橡胶进行硫化加工;1868年,赛璐璐(硝化纤维素)问世;1898年,粘胶纤维问世;1907年,酚醛树脂问世;1911年,丁钠橡胶问世。
酚醛树脂和丁钠橡胶分别是高分子科学建立以前人类合成的第一个缩聚物和第一个加聚物。
20世纪初期,虽然当时仍未正式提出高分子的概念,但是已经取得的一些化学研究成果开始酝酿着高分子科学的诞生。
例如当时人们终于研究明白,天然橡胶是由异戊二烯构成;淀粉和纤维素是由葡萄糖构成;蛋白南是由氨基酸构成等等。
这些研究成果对于高分子科学的建立起到了直接催化和促进作用。
20世纪20年代是高分子科学诞生的年代,1920年,德国人H.Staudinger 首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖,他被公认为高分子科学的始祖。
1925年,聚醋酸乙烯酯(PVAc)实现工作化;1928年,聚甲基丙烯酸甲酯(有机玻璃,PMMA)和聚乙烯醇(PVA)问世;1931年,聚氯乙烯(PVC)、氯丁橡胶问世;1934年,美国人W.H.Carothers 成功地合成尼龙-66,并于1938年实现工业化。
稍后他的学生P.J.Flory 提出了聚合反应的等活性理论,并提出聚酯动力学和连锁聚合反应机理,从而获得1974 年度诺贝尔化学奖。
1939年,低密度聚乙烯(LDPE)即高压聚乙烯问世;1940年,丁苯橡胶(SBR)、丁基橡胶问世;1941年,聚对苯二甲酸乙二醇酯(涤纶,PET)问世;1943年,聚四氟乙烯(PTFE)问世;1948年,维尼纶问世;1950年,聚丙烯腈(腈纶,PAN)问世;1955年,顺丁橡胶问世;1953年,德国人K.Ziegler和意大利人G. Natta各自独立地采用络合催化剂成功地合成出高密度聚乙烯(HDPE)即低压聚乙烯以及聚丙烯(PP),并于1955年实现工业化。
高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。
下面将介绍高分子材料的发展历程。
1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。
2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。
1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。
随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。
3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。
在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。
例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。
4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。
通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。
这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。
二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。
1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。
研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。
同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。
2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。
例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。
同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。
高分子科学历史1. 高分子学说创立以前高分子的发展1.1 天然橡胶及其硫化工艺英国人把原产于巴西的橡胶树引种到了东南亚,使橡胶树得以推广。
当时的橡胶主要用于制造防雨布、防雨鞋等,但是无法克服夏天发粘、冬天变脆的问题,难于真正推广应用。
1839年美国人Goodyear受当时钢铁工业发展的启示,开始尝试用各种化学品对橡胶进行改性,但是始终不太成功,包括用硫磺。
后来一次偶然性的事故给他带来了成功,他在研究保存橡胶的方法时,不小心把橡胶和硫磺的混合物洒在了热火炉上,他把它刮起来、冷却后发现这东西再没有了粘性、而且还具有弹性、不再溶解,他沿着这条路线走下去,终于发明了橡胶的硫化技术。
但是他本人并没有获得好处,为了获得专利权他打了好几年的官司,身背20多万美元的债务,穷困交加,死于1860年。
他死后,官司胜诉,1898年美国建立了第一家汽车轮胎公司,为了纪念Goodyear该公司就以其名字作为商标,至今仍然是世界上最大的轮胎生产企业,中文一般翻译为“固特异”轮胎。
也正是由于他的贡献,所有橡胶的交联技术统称为“硫化”不管用不用硫磺。
1.2 赛璐珞和赛璐玢瑞士科学家舍拜恩是一个实验迷,他除了在实验室进行实验以外,*还把实验室搬到了自己的厨房。
一次实验时,他不小心将盛有浓硝酸和浓硫酸混酸的烧瓶打破,酸液流到了地上,他顺手拿起夫人的围裙擦掉了酸液,并用水冲洗后,开始在火炉上烘烤,结果围裙在没有很干的情况下突然着了火,这令舍拜恩非常震惊。
他开始设计实验让纤维素和硝酸/硫酸反应,发现是硝酸与纤维素发生了反应,而硫酸只是催化剂,因此他发明了硝酸纤维素。
它极易燃烧,剧烈燃烧可以发生爆炸,而且基本没有烟,逐渐代替了黑火药成为炸药,当时的欧洲很多国家建立了被称为火棉炸药的生产企业,但是硝酸纤维素太容易燃烧了,造成了很多爆炸事故,损失惨重,诺贝尔发明了TNT炸药后,它作为炸药方面的应用被遗弃。
当时美国的贵族们流行打台球,台球最初由象牙制造,价格昂贵,同时来源受到极大限制,有一家公司出资1万美元悬赏寻找制造台球的原料。
高分子材料的发展历程及未来发展趋势高分子材料是一类以聚合物为基础的材料,具有重要的应用价值和广泛的应用领域。
本文将详细介绍高分子材料的发展历程以及未来的发展趋势。
一、发展历程1. 早期发展阶段(20世纪初-20世纪30年代)在20世纪初,人们开始研究可塑性高分子材料,如塑料。
1907年,白朗宁发明了世界上第一个合成塑料——尼龙。
随后,人们开始研究其他合成塑料材料,如聚乙烯、聚丙烯等。
这一时期的高分子材料主要应用于日常生活用品和包装材料。
2. 高分子材料的快速发展(20世纪40年代-20世纪80年代)在第二次世界大战期间,高分子材料得到了快速发展。
人们开始研究高分子材料的结构和性能,并开发了更多种类的高分子材料,如聚氯乙烯、聚苯乙烯、聚碳酸酯等。
这些材料具有优异的物理和化学性能,被广泛应用于汽车、电子、建筑等领域。
3. 高分子材料的功能化发展(20世纪90年代至今)随着科学技术的进步,人们开始对高分子材料进行功能化改性,使其具有更多的特殊性能和应用功能。
例如,人们通过添加纳米材料、改变分子结构等方法,使高分子材料具有优异的导电性、热稳定性、抗菌性等特殊功能。
此外,人们还研究了生物可降解高分子材料,以应对环境问题和可持续发展的需求。
二、未来发展趋势1. 绿色环保未来,高分子材料的发展趋势将更加注重绿色环保。
人们将致力于研究生物可降解高分子材料,以替代传统的塑料材料。
这些生物可降解材料可以在自然环境中迅速分解,减少对环境的污染。
此外,人们还将研究可回收利用的高分子材料,以实现资源的循环利用。
2. 高性能未来,高分子材料的发展将趋向于高性能化。
人们将继续研究功能化改性的方法,使高分子材料具有更多的特殊性能,如高强度、高导电性、高热稳定性等。
这将推动高分子材料在电子、航空航天、能源等领域的应用。
3. 多功能化未来,高分子材料将趋向于多功能化的发展。
人们将研究制备具有多种特殊功能的高分子材料,以满足不同领域的需求。
高分子化学发展简史人们在研究高分子化合物的制备及应用过程中,建立了高分子科学,而高分子科学的建立,又推动了高分子化学工业的发展。
高分子化学的发展,体现在以下两个方面:高分子工业:早期的高分子化合物主要是一些天然产物,如纤维素、淀粉、蛋白质、天然橡胶、生漆、桐油漆等,其形态有棉、麻、木、纸张、果实、丝、毛、革、虫胶等。
进入19世纪,人们开始对天然高分子化合物进行改性并试图人工合成。
1839年,Goodyear发明了天然橡胶的硫化,使之用于制作轮胎。
1868年,Hyatt发明了硝化纤维素,1870年进行了工业化生产。
1907年,德国合成出酚醛树脂。
20世纪初,一些聚合物如丁钠橡胶(1911~1913年)、聚醋酸乙酯(1925年工业化)、醇酸树脂(1926年)、脲醛树脂(1929年)等已被合成出来。
20世纪30~40年代,是高分子科学的创立时期。
高分子科学的创立,又推动了高分子工业的发展。
这期间有大量的高分子材料出现,如PVC(1931)、PS(1934)、LDPE(1939)、ABS (1948)等塑料;氯丁胶(1931)、丁基胶(1940)、丁苯胶(1940) 等橡胶;尼龙-66 (1938)、PET(1941)、维纶(1948)等纤维。
20世纪50~60年代是高分子工业的大发展时期,期间新产品不断出现。
如SBS(50年代)、HDPE (1953~55)、PP (1955~57)、BR(1959)、PC(1957)、PPO(1964)、Polysulfone (1965)、PBT(1970)、聚芳酰胺Nomex纤维(1967—1972)、异戊橡胶(1962)、乙丙橡胶(1961)等。
70年代,高分子工业向着高效化、自动化、大型化方向发展,出现了230m3的PVC 悬浮聚合釜、30万吨级的PE、PP工厂等。
同时还发展了高分子共混物(高分子合金),如ABS、MBS、HIPS等,以及高分子复合材料如碳纤维复合材料等。
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类具有高分子结构的材料,具有独特的物理性质和化学性质。
随着科学技术的发展,高分子材料在各个领域得到广泛应用,如医药、电子、航空航天等。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
一、高分子材料的发展历程1.1 早期发展阶段在20世纪初期,高分子材料的研究主要集中在合成橡胶和塑料方面。
最早的合成高分子材料是由化学家发现的,如合成橡胶和聚乙烯等。
1.2 高分子材料的应用拓展随着科学技术的不断进步,高分子材料的应用领域逐渐扩大,如高分子纤维、高分子涂料、高分子膜等,广泛应用于纺织、建筑、航空等领域。
1.3 高分子材料的研究成果高分子材料的研究成果不断涌现,如聚合物合成技术的改进、高分子材料性能的优化等,为高分子材料的应用提供了坚实的基础。
二、高分子材料的未来发展趋势2.1 绿色环保未来高分子材料的发展趋势将更加注重绿色环保,提倡可降解高分子材料的研究和应用,减少对环境的污染。
2.2 高性能材料未来高分子材料将朝着高性能材料的方向发展,如高强度、高韧性、高温耐受性等,以满足各个领域对材料性能的需求。
2.3 智能化材料未来高分子材料的发展将趋向于智能化材料,如具有自修复功能、自感应功能等,以满足未来科技发展对材料的需求。
三、高分子材料的应用前景3.1 医疗领域高分子材料在医疗领域的应用前景广阔,如生物医用材料、医用高分子膜等,为医疗器械和医疗治疗提供了新的解决方案。
3.2 电子领域高分子材料在电子领域的应用前景也很广泛,如柔性电子材料、有机光电材料等,为电子产品的发展提供了新的可能性。
3.3 航空航天领域高分子材料在航空航天领域的应用前景也十分广泛,如高强度高韧性的高分子复合材料,为航空航天器件的制造提供了新的选择。
四、高分子材料的挑战与机遇4.1 挑战高分子材料在研发过程中面临着一些挑战,如材料的稳定性、可降解性等问题,需要不断进行研究和改进。
高分子材料的发展历程及未来发展趋势引言:高分子材料是一类由大量重复单元组成的大分子化合物,具有广泛的应用领域。
本文将介绍高分子材料的发展历程,并展望其未来的发展趋势。
一、发展历程1. 早期发展阶段高分子材料的研究起源于19世纪末20世纪初,当时主要研究天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和可塑性,但缺乏稳定性和耐久性。
2. 合成高分子材料的突破1920年代至1930年代,德国化学家赫尔曼·斯托德尔成功合成了世界上第一个合成高分子材料——聚合物。
这一突破开启了合成高分子材料的新时代。
随后,聚合物的合成方法不断改进,推动了高分子材料的快速发展。
3. 高分子材料的广泛应用20世纪50年代至70年代,高分子材料的应用领域不断扩大。
聚合物被广泛用于塑料制品、纤维材料、涂料、胶粘剂等领域。
同时,高分子材料的性能也得到了极大的提升,如力学性能、耐热性、耐腐蚀性等。
二、未来发展趋势1. 绿色环保未来高分子材料的发展将更加注重环境友好性。
研究人员将致力于开发可降解的高分子材料,以减少对环境的污染。
同时,节能减排和资源循环利用也将成为高分子材料研究的重点。
2. 功能性材料随着科技的进步,高分子材料将朝着功能性方向发展。
例如,研究人员正在开发具有特殊功能的高分子材料,如自修复材料、智能材料和生物医用材料。
这些材料将在医疗、电子、能源等领域发挥重要作用。
3. 纳米技术的应用纳米技术的发展将为高分子材料带来新的突破。
通过纳米级的改变,高分子材料的性能可以得到进一步提升。
例如,纳米复合材料具有优异的力学性能和导电性能,将成为未来高分子材料的重要研究方向。
4. 多功能复合材料未来高分子材料的发展将趋向多功能化。
研究人员将探索不同材料的复合,以获得更好的性能和应用。
例如,高分子基复合材料可以结合金属、陶瓷等材料的优点,具有更高的强度和耐用性。
5. 智能化和自适应性未来高分子材料将朝着智能化和自适应性方向发展。
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和多样的物理、化学性质。
自20世纪初以来,高分子材料在各个领域中得到广泛应用,并在科学技术的推动下不断发展。
本文将介绍高分子材料的发展历程以及未来发展的趋势。
一、早期发展阶段1.1 天然高分子材料的发现- 人们早在古代就开始使用天然高分子材料,如皮革、天然橡胶等。
- 1839年,美国化学家查尔斯·戴克斯特尔发现了天然橡胶的弹性,并将其命名为“弹性体”。
1.2 合成高分子材料的诞生- 1907年,美国化学家莱昂纳德·巴斯德成功合成了世界上第一个合成高分子材料——酚醛树脂。
- 1920年代,德国化学家赫尔曼·斯托德尔合成了聚氯乙烯(PVC)。
1.3 高分子材料的应用拓展- 1930年代,高分子材料开始应用于塑料制品、橡胶制品等领域。
- 1940年代,高分子材料在航空、航天等高科技领域得到广泛应用。
二、中期发展阶段2.1 高分子材料的改性与合金化- 1950年代,人们开始将高分子材料进行改性,以改善其性能。
- 1960年代,高分子材料与其他材料进行合金化,形成了高分子合金材料。
2.2 高分子材料的新型结构与功能- 1970年代,人们开始研究高分子材料的新型结构,如共聚物、交联聚合物等。
- 1980年代,高分子材料开始展现出多种新的功能,如导电、光学、生物相容性等。
2.3 高分子材料的环保与可持续发展- 1990年代,人们开始关注高分子材料的环境影响,并提出了环保的研究方向。
- 21世纪初,高分子材料的可持续发展成为研究的热点,如生物可降解材料的研究与应用。
三、近期发展阶段3.1 高分子材料的纳米化与智能化- 近年来,人们将高分子材料进行纳米化处理,以获得更好的性能。
- 同时,高分子材料的智能化也成为研究的重点,如自修复材料、自感应材料等。
3.2 高分子材料的多功能与多场耦合- 近期,高分子材料的多功能化与多场耦合成为研究的热点,如光电、磁电、压电等多种功能的结合。
高分子材料的发展史高分子材料,作为一种重要的材料类型,其发展历史可以追溯到19世纪末20世纪初。
在当时,人们对于材料的需求日益增加,传统材料已经无法满足人们的需求,于是高分子材料应运而生。
高分子材料是由大量重复单元组成的材料,其分子量较大,具有良好的机械性能、耐磨性能、耐腐蚀性能等特点,因此被广泛应用于各个领域。
20世纪初,人们开始研究合成高分子材料,最早的合成高分子材料是通过聚合反应得到的。
1907年,德国化学家巴赫曼成功合成了世界上第一个合成高分子材料——聚丙烯。
这标志着高分子材料的合成进入了实际阶段。
随后,人们陆续合成了聚乙烯、聚氯乙烯等高分子材料,为高分子材料的发展奠定了基础。
随着合成技术的不断进步,高分子材料的种类也不断增加。
20世纪50年代,人们成功合成了聚酰胺、聚碳酸酯等高性能高分子材料,这些高分子材料具有优异的力学性能和耐高温性能,被广泛应用于航空航天、电子、汽车等领域。
此后,高分子材料的研究和应用进入了快速发展阶段,新型高分子材料不断涌现,为人类社会的发展做出了重要贡献。
随着科技的不断进步,高分子材料的性能和应用领域也在不断拓展。
近年来,人们成功研发出了一系列功能性高分子材料,如形状记忆高分子材料、自修复高分子材料等,这些材料不仅具有传统高分子材料的优良性能,还具有新颖的功能特性,为人们的生活带来了诸多便利。
可以预见,随着科技的不断发展,高分子材料的研究和应用将会迎来更加广阔的发展空间。
未来,高分子材料有望在能源、环保、生物医药等领域发挥更加重要的作用,为人类社会的可持续发展做出更大的贡献。
总的来说,高分子材料的发展历程可以看作是一部科技进步的历史。
从最早的合成到功能性高分子材料的研发,每一个阶段都凝聚着科学家们的智慧和努力。
高分子材料的发展史告诉我们,科技创新是推动社会进步的重要动力,相信在不久的将来,高分子材料将会迎来更加美好的发展前景。
高分子材料的发展历程及未来发展趋势高分子材料是一类由大量重复结构单元组成的聚合物材料,具有重要的应用价值和广泛的应用领域。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
一、高分子材料的发展历程1. 早期阶段(19世纪末-20世纪初)在19世纪末至20世纪初,人们开始研究天然高分子材料,如橡胶和纤维素。
1884年,美国化学家约瑟夫·普利斯特利发现了硝化纤维素,为合成高分子材料奠定了基础。
2. 合成高分子材料的突破(20世纪20年代-40年代)20世纪20年代至40年代,合成高分子材料取得了重大突破。
1928年,英国化学家亚历山大·弗莱明发现了聚合物材料聚乙烯,开创了合成高分子材料的新时代。
随后,聚合物材料如聚丙烯、聚苯乙烯等相继问世。
3. 高分子材料的广泛应用(20世纪50年代-70年代)20世纪50年代至70年代,高分子材料得到了广泛的应用。
聚合物材料在塑料制品、橡胶制品、纤维材料等领域得到了大规模的应用,推动了工业的发展和生活的改善。
4. 高分子材料的功能性和特殊性发展(20世纪80年代至今)20世纪80年代至今,高分子材料的研究重点逐渐转向功能性和特殊性。
人们开始研究和开发具有特殊功能的高分子材料,如高强度聚合物材料、高温耐性聚合物材料、导电聚合物材料等。
这些材料在航空航天、电子、医疗等领域发挥着重要作用。
二、高分子材料的未来发展趋势1. 绿色环保未来,高分子材料的发展将更加注重绿色环保。
人们将致力于开发可降解的高分子材料,减少对环境的污染。
同时,将推动高分子材料的回收利用,实现资源的循环利用。
2. 高性能高分子材料的未来发展将更加注重高性能。
人们将致力于开发具有更高强度、更好耐热性和更好导电性的高分子材料,以满足不同领域的需求。
3. 功能性未来,高分子材料的发展将更加注重功能性。
人们将致力于开发具有特殊功能的高分子材料,如自修复材料、传感材料等,以满足不同领域的需求。
高分子科学简史
人类的进化和社会进步的历史,始终与人类对天然高分子材料的加工和利用的进步过程密不可分。
棉、麻、丝、毛的加工纺织,造纸,鞣革和生漆调制等分别是人类对天然高分子进行物理加工和化学加
工的早期例证,虽然当时并未提出高分子的概念。
直到19世纪中后期,西方化学工作者才扩大了对天然高分子进行化学改性的范围,以下对高分子科学发展史中的重要事件作一简述:
1839年,对天然橡胶进行硫化加工;
1868年,赛璐璐(硝化纤维素)问世;
1898年,粘胶纤维问世;
1907年,酚醛树脂问世;
1911年,丁钠橡胶问世。
酚醛树脂和丁钠橡胶分别是高分子科学建立以前人类合成的第一
个缩聚物和第一个加聚物。
20世纪初期,虽然当时仍未正式提出高分子的概念,但是已经取得的一些化学研究成果开始酝酿着高分子科学的诞生。
例如当时人们终于研究明白,天然橡胶是由异戊二烯构成;淀粉和纤维素是由葡萄糖构成;蛋白南是由氨基酸构成等等。
这些研究成果对于高分子科学的建立起到了直接催化和促进作用。
20世纪20年代是高分子科学诞生的年代,1920年,德国人
H.Staudinger首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖,他被公认为高分子科学的始祖。
1925年,聚醋酸乙烯酯(PVAc)实现工作化;
1928年,聚甲基丙烯酸甲酯(有机玻璃,PMMA)和聚乙烯醇(PVA)问世;
1931年,聚氯乙烯(PVC)、氯丁橡胶问世;
1934年,美国人W.H.Carothers 成功地合成尼龙-66,并于1938年
实现工业化。
稍后他的学生 P.J.Flory 提出了聚合反应的等活性理论,并提出聚酯动力学和连锁聚合反应机理,从而获得1974 年度诺贝尔化学奖。
1939年,低密度聚乙烯(LDPE)即高压聚乙烯问世;
1940年,丁苯橡胶(SBR)、丁基橡胶问世;
1941年,聚对苯二甲酸乙二醇酯(涤纶,PET)问世;
1943年,聚四氟乙烯(PTFE)问世;
1948年,维尼纶问世;
1950年,聚丙烯腈(腈纶,PAN)问世;
1955年,顺丁橡胶问世;
1953年,德国人K.Ziegler和意大利人G. Natta各自独立地采用络合催化剂成功地合成出高密度聚乙烯(HDPE)即低压聚乙烯以及聚丙烯(PP),并于1955年实现工业化。
今天这两种聚合物已经成为产量最大、用途最广的合成高分子材料。
1963年,两人成为诺贝尔化学奖的获得者。
1974年,美国Rockefeller大学著名生物化学家R.B.Merrifield将功能化的聚苯乙烯(PS)用于多肽和蛋白质的合成,大大提高了涉及生命物质合成的效率并缩短了合成时间,开创了功能高分子材料在生命物质合成领域作出的突出贡献,1984年度的诺贝尔化学奖授予了他。
2000年,日本人白川英树、美国人艾伦.黑格和艾伦.马克迪尔米德等有关导电高分子材料——掺杂聚乙炔的研究和应用成果突破了“合成聚合物都是绝缘体”的传统观念,开创了高分子功能化研究和应用的新领域。
为此他们获得了自20世纪诺贝尔奖设立以来高分子科学领域的第五个诺贝尔化学奖。
总而言之,20世纪20~40年代是高分子科学建立和发展的时期;30~50年代是高分子材料工业蓬勃发展的时期;60年代以来则是高分子材料大规模工业化、特种化、高性能化和功能化的时期。
作为新兴材料科学的一个分支,高分子材料目前已经渗透到工业、农业、国防、商业、医药以及人们的衣、食、住、行的各个方面,正如一篇科
普文章所述,“在大街上你曾见过一个绝对不与合成高分子材料打交道的人吗?”答案肯定是NO。
由于历史的原因,1950年以前我国的高分子科学和工业几乎是一片空间。
当时国内没有一所高等学校设立高分子专业,更没有开设任何与高分子科学与工程相关的课程。
当时除上海、天津等地有几家生产“电木”制品(酚醛树脂加木粉热压成型的电器元件等)和油漆的小型作坊以外,国内没有一家现代意义的高分子材料生产厂。
1954~1955年,国内首批高分子理科专业和工科专业分别在北京大学和成都工学院(后者现合并组建为四川大学)相继创立。
时至今日,全国各层次的高等学校中设置高分子科学、材料与工程专业和开设高分子课程的学校在百所以上。
近50年来为国家培养出了大批高分子专业人才,大大地促时了高分子工业的发展。
从20世纪50年代开始,国内一批中小型塑料、合成橡胶、化学纤维和涂料工厂相继投入生产。
20世纪60~80 年代是我国高分子材料工业飞速发展的时期,一大批万吨乃至10万吨以上级别的大型PE、PP、PVC、PS、ABS、SBS 以及其他类别的高分子材料生产和加工和大型企业在全国各地相继建成投产。
其中,上海金山、南京扬子、江苏仪征、山东齐鲁、北京燕山、湖南岳阳以及天津、兰州、吉林等地已经成为我国重要的大型高分子材料生产基地。
今天,我国在高分子科学基础研究、专业技术人才培养以及各种高分子材料的生产。