十字相乘法
- 格式:docx
- 大小:31.07 KB
- 文档页数:16
十字相乘法的运算技巧十字相乘法,就是把一个二次三项式化为两个因式相乘的形式,是一元二次方程解法之一。
“十字相乘法”:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
对于某些首项系数是1的二次三项式2x Px q++【2()x a b x ab+++】的因式分解:即:一般地,∵2()()()x a x b x a b x ab++=+++,∴2()()()x a b x ab x a x b+++=++.这就是说,对于二次三项式2x Px q++,若能找到两个数a、b,使,, a b p a b q+=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b++=+++=++.(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个........数的积,且其和等于一次项系数,...............通常要借助画十字交叉线的办法来确定,故称十字相乘法。
)对于首项系数不是1的二次三项式:十字相乘法相对来说难学一些,但是一旦学会了它,用它来解题,会给我们带来很多方便。
一、十字相乘法的特点:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:①有些题目用十字相乘法来解比较简单,但并不适用于每一道题。
②十字相乘法只适用于二次三项式类型的题目。
二、十字相乘法的应用举例:例1. 十字相乘法的图解及待定系数已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.分析:用十字相乘法分解这个二次三项式有如下的图解:8-5=3=-m解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20∴-m=3m=-3(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?)再如例2:把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6 所以m²+4m-12=(m-2)(m+6)请观察比较例题中的各题,你能发现把常数q分解成两个整数a、b之积时的符号规律吗?⑴若q>0,则a、b同号.当p>0时a、b同为正,当p<0时a、b同为负.⑵若q<0,则a、b异号.当p>0时a、b中的正数绝对值较大,当p<0时a、b中的负数绝对值较大.⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解.例3、因式分解与系数的关系若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )A.5个B.6个C.8个D.4个分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n 为整数)因为16=2×8,16=(-2)×(-8)16=4×4,16=(-4)×(-4)16=1×16,16=(-1)×(-16)所以k=±10,±8,±16答案:B(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大) 例4.分组分解后再用十字相乘把2x2-8xy+8y2-11x+22y+15分解因式解:原式=(2x2-8xy+8y2)-(11x-22y)+15=2(x-2y)2-11(x-2y)+15=[(x-2y)-3][2(x-2y)-5]=(x-2y-3)(2x-4y-5)说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.例5.换元法与十字相乘法把(x2+x+1)(x2+x+2)-6分解因式分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.解:(x2+x+1)(x2+x+2)-6=[(x2+x)+1][(x2+x)+2]-6=(x2+x)2+3(x2+x)-4=(x2+x+4)(x2+x-1)说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.再如、例6、把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].(试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析)例6.因式分解与十字相乘法已知(x2+y2)(x2-1+y2)=12求:x2+y2的值解:(x2+y2)(x2-1+y2)=12(x2+y2)[(x2+y2)-1]-12=0(x2+y2)2-(x2+y2)-12=0[(x2+y2)-4][(x2+y2)+3]=0∵x2+y2≥0∴(x2+y2)+3≠0∴(x2+y2)-4=0∴x2+y2=4说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。
十字相乘法的解法1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1 -21 ╳6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。
当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳-4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:因为 1 -31 ╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
相乘法十字相乘法
(原创实用版)
目录
1.相乘法和十字相乘法的概念
2.相乘法的运算规则
3.十字相乘法的运算规则
4.相乘法和十字相乘法的应用
5.结论
正文
相乘法和十字相乘法是数学中常用的两种乘法方法。
相乘法是指两个数相乘得到一个积,而十字相乘法则是一种特殊的乘法运算,主要用于解线性方程组。
相乘法的运算规则比较简单,就是将两个数相乘得到一个积。
例如,2 乘以 3 等于 6,这就是一个相乘法的运算。
在数学中,相乘法被广泛应用于各种计算和公式中。
十字相乘法则是一种特殊的乘法运算,它主要用于解线性方程组。
十字相乘法的运算规则是,将一个数分成两个数,然后将这两个数分别与另一个数相乘,最后将四个积相加得到一个和。
例如,解方程组 x+3y=6 和2x+4y=10,我们可以使用十字相乘法。
首先,将第一个方程中的 x 分成 2 和 1,然后将 3y 分成 4y 和 y,得到 2y+4y=6,解得 y=1。
接着,将第二个方程中的 2x 分成 x 和 x,将 4y 分成 3y 和 y,得到 x+3y=10,代入 y=1,解得 x=7。
这样,我们就解出了方程组的解。
相乘法和十字相乘法在实际应用中都有广泛的应用。
相乘法被广泛应用于各种计算和公式中,而十字相乘法则主要用于解线性方程组,是数学中的一种重要方法。
完整版)十字相乘法在进行因式分解时,首先要考虑能否提取公因式,然后再考虑运用公式或十字相乘法,最后考虑分组分解法。
对于还能继续分解的多项式因式,仍然要用这一步骤反复进行。
以上步骤可以用口诀来概括:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”。
二次三项式是指多项式ax+bx+c,其中a为二次项,b为一次项,c为常数项。
例如,x-2x-3和x+5x+6都是关于x的二次三项式。
在多项式x-6xy+8y中,如果把x看作常数,它就是关于y的二次三项式;如果把y看作常数,它就是关于x 的二次三项式。
同样地,在多项式2ab-7ab+3中,如果把ab 看作一个整体,它就是关于ab的二次三项式。
还有多项式(x+y)+7(x+y)+12,把x+y看作一个整体,就是关于x+y的二次三项式。
十字相乘法是一种分解二次三项式的方法。
对于二次项系数为1的二次三项式x+(a+b)x+ab=(x+a)(x+b),方法的特征是“拆常数项,凑一次项”。
当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同。
例如,对于7x+(-8x),我们可以得到原式=(x+7)(x-8)。
另外,对于x^2-10x+16,我们可以将其分解为(x-2)(x-8)。
对于二次项系数不是1的二次三项式ax^2+bx+c=a1x^2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),它的特征是“拆两头,凑中间”。
当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同。
例如,对于-2x+(-8x),我们可以得到原式=-10x,而对于2x^2-11x-6,我们可以将其分解为(2x+1)(x-6)。
十字相乘法解题格式摘要:1.十字相乘法简介2.十字相乘法的基本原理3.十字相乘法的解题步骤4.十字相乘法的应用实例5.总结正文:【1.十字相乘法简介】十字相乘法是一种常用的数学解题方法,尤其在代数运算中具有很高的实用价值。
它主要通过将两个多项式的系数进行交叉相乘,再相加,从而得出两个多项式相等或者某一多项式的值。
这种方法因为运算简单且易于理解,所以在学生中广受欢迎。
【2.十字相乘法的基本原理】十字相乘法的基本原理是将两个多项式的系数进行交叉相乘,再相加。
具体来说,就是将多项式A(x) 和B(x) 的系数分别按行和列排列,然后进行交叉相乘并相加,得出结果C(x)。
如果C(x) 等于多项式A(x)B(x),则说明两个多项式相等;如果C(x) 等于多项式A(x) 或者B(x),则说明多项式A(x) 或者B(x) 的值可以通过十字相乘法求出。
【3.十字相乘法的解题步骤】十字相乘法的解题步骤主要分为三步:(1)将两个多项式的系数分别按行和列排列;(2)进行交叉相乘并相加,得出结果;(3)判断结果是否等于多项式A(x)B(x),或者等于多项式A(x) 或者B(x),从而得出结论。
【4.十字相乘法的应用实例】例如,我们要求解多项式A(x)=2x^2+3x 和B(x)=x+4 的乘积,可以通过十字相乘法来进行。
首先,将两个多项式的系数按行和列排列:2 3x 4然后,进行交叉相乘并相加:2x 6x+ 3x 12-------2x^2 6x+ 3x 12-------2x^2 + 3x可以看出,结果正好等于多项式A(x)B(x),即2x^2+3x。
【5.总结】十字相乘法是一种简单实用的数学解题方法,尤其适用于代数运算。
通过将两个多项式的系数进行交叉相乘并相加,可以快速求出两个多项式相等或者某一多项式的值。
十字相乘法顺口溜
1. 十字相乘法呀,真神奇,算起来那叫一个快!就像孙悟空的七十二变,看我给你变一变,比如分解x²+5x+6,一下子就能变成(x+2)(x+3)啦!
2. 嘿,十字相乘法顺口溜,那可是解题的好帮手!好比一把钥匙开一把锁,遇到x²+3x-4,咱就能轻松搞定,变成(x-1)(x+4)呀!
3. 哇塞,十字相乘法顺口溜太好用啦!就像有了魔法棒一样,看分解x²-2x-3,轻松变成(x-3)(x+1),厉害吧!
4. 十字相乘法顺口溜,这可不得了!如同给你装上了翅膀,比如算x²+6x+8,马上得出(x+2)(x+4),是不是很牛!
5. 哎呀呀,十字相乘法顺口溜,简直妙不可言!就像找到了宝藏的地图,碰到x²-5x+6,一下子就知道是(x-2)(x-3)啦!
6. 嘿嘿,十字相乘法顺口溜,可太有意思啦!好像给你指引方向的明灯,算x²-3x+2,马上变成(x-1)(x-2)咯!
7. 哇哦,十字相乘法顺口溜,这也太好用了吧!就像拥有了超能力,看分解x²+4x-5,轻松变成(x-1)(x+5),牛不牛!
8. 十字相乘法顺口溜,那真是绝了!如同给你开了外挂,比如算x²-4x-12,迅速得出(x-6)(x+2),厉害吧!
9. 哟呵,十字相乘法顺口溜,真的超厉害!就像有了秘密武器,分解
x²+7x+10,一下子就是(x+2)(x+5)啦!
10. 哈哈,十字相乘法顺口溜,简直太棒啦!好像是解题的神器,算x²-7x+12,轻松得出(x-3)(x-4)呀!
我的观点结论:十字相乘法顺口溜真的是非常实用的工具,能让我们在数学计算中事半功倍,大家一定要好好掌握呀!。
十字相乘法第一篇:十字相乘法十字相乘法分解因式1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1-2 1╳6 所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。
当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 2 5 ╳-4 所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解:因为 1-3 1 ╳-5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解:因为 2-5 3 ╳ 5 所以原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目例5把14x²-67xy+18y²分解因式分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y 解: 因为 2-9y 7 ╳-2y 所以14x²-67xy+18y²=(2x-9y)(7x-2y)例 6 把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x-(28y²-25y+3)4y-3 7y ╳-1 =10x²-(27y+1)x-(4y-3)(7y-1)=[2x-(7y-1)][5x +(4y-3)] 2-(7y – 1)5 ╳ 4y4y ╳-3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x-7y)(5x +4y),再把(2x-7y)(5x +4y)-(x-25y)-3用十字相乘法分解为[(2x-7y)+1] [(5x-4y)-3].例7:解关于x方程:x²-3ax + 2a²–ab-b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解解:x²-3ax + 2a²–ab-b²=0 x²-3ax +(2a²–ab-b²)=0 x²-3ax +(2a+b)(a-b)=0 1-b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1-(2a+b)1 ╳-(a-b)所以 x1=2a+b x2=a-b如何使用十字相乘法分解因式及练习题形如2X2表示的是2X的平方例1 把2x2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=1×3==(-3)×(-1)=(-1)×(-3).用画十字交叉线方法表示下列四种情况:1 1 2 3 1×3+2×1 =5 1 3 2 1 1×1+2×3 =7 1 -1 2 -3 1×(-3)+2×(-1)=-5 1 -3 2 -11×(-1)+2×(-3)=-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.解 2x2-7x+3=(x-3)(2x-1).一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 a2 c2 a1a2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.例2 把6x2-7x-5分解因式.分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式.解6x2-7x-5=(2x+1)(3x-5).指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是1 -3 1 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5).例3 把5x2+6xy-8y2分解因式.分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 -4 1×(-4)+5×2=6 解5x2+6xy-8y2=(x+2y)(5x-4y).指出:原式分解为两个关于x,y的一次式.例4 把(x-y)(2x-2y-3)-2分解因式.分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y)2-3(x-y)-2 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1).1 -2 2 +1 1×1+2×(-2)=-3 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.三、课堂练习1.用十字相乘法分解因式:(1)2x2-5x-12;(2)3x2-5x-2;(3)6x2-13x+5;(4)7x2-19x-6;(5)12x2-13x+3;(6)4x2+24x+27.2.把下列各式分解因式:(1)6x2-13xy+6y2;(2)8x2y2+6xy-35;(3)18x2-21xy+5y2;(4)2(a+b)2+(a+b)(a-b)-6(a-b)四、小结1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:(1)正确的十字相乘必须满足以下条件:a1 c1 在式子中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜向的 a2 c2 两个数必须满足关系a1c2+a2c1=b.(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项.(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数,)只需把它分解成两个正的因数.2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式.3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4.五、作业 1.用十字相乘法分解因式:(1)2x2+3x+1;(2)2y2+y-6;(3)6x2-13x+6;(4)3a2-7a-6;(5)6x2-11xy+3y2;(6)4m2+8mn+3n2;(7)10x2-21xy+2y2;(8)8m2-22mn+15n2.2.把下列各式分解因式:(1)4n2+4n-15;(2)6a2+a-35;(3)5x213;(4)4x2+15x+9(5)15x2+x-2;(6)6y2+19y+10;-20y2;(8)7(x-1)2+4(x-1)(y+2)-20(y+2)-8x--9y(7)20第二篇:9.15十字相乘法教案9.15十字相乘法(1)西南位育单萍【教学目标】1.通过学生自己探究、小组讨论,探索形如x2+px+q的二次三项式的因式分解的基本方法(十字相乘法);2.通过学生自行尝试和小组互助的形式,探究非标准形式的十字相乘法因式分解的步骤和注意要点;3.进一步培养学生的观察力、解决数学问题的能力、以及培养小组合作的能力。
【教学重难点】正确使用十字相乘法进行因式分解【教学过程】一、游戏时间(随机抽查学生回答)口答计算结果:(x+1)(x+2)(x+1)(x-2)(x+2)(x+3)(x-2)(x-3)(x+4)(x+5)(x-1)(x+3)(x-2)(x+5)(x-1)(x-2)(x-1)(x-3)(x-3)(x-5)二、探究时间我们已经学习过提取公因式法,平方差公式法,完全平方公式法对多项式进行因式分解成几个整式乘积的形式。