2013年高考真题——理科数学(山东卷)Word版含答案
- 格式:doc
- 大小:649.00 KB
- 文档页数:5
2013年山东卷理 【选择题】【1】.复数z 满足(3)(2i)5z --=(z 为虚数单位),则z 的共轭复数z 为 A. 2i + B.2i - C. 5i + D. 5i -【2】.已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是 A.1 B. 3 C. 5 D. 9【3】.已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f A. -2 B. 0 C. 1 D.2【4】.已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 A.512π B. 3π C. 4π D. 6π【5】.将函数sin(2)ϕ=+y x 的图像沿x 轴向左平移8π个单位后,得到一个偶函数的图像,则ϕ的一个可能取值为 A.34π B. 4π C. 0 D. 4π- 【6】.在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为A. 2B. 1C. 13-D. 12- 【7】.给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件 【8】.函数cos sin =+y x x x 的图像大致为【9】.过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为A. 230+-=x yB.230--=x yC.430--=x yD.430+-=x y【10】.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 A.243 B.252 C. 261 D.279【11】.抛物线211:(0)2=>C y x p p的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M 若1C 在点M 处的切线平行于2C 的一条渐近线,则=p【12】.设正实数,,x y z 满足22340.-+-=xxy y z 则当xy z 取得最大值时,212+-x y z的最大值为 A. 0 B. 1 C. 94D.3 【填空题】【13】.执行下图所示的程序框图,若输入ε的值为0.25,则输出的n 的值为_______.【14】.在区间[-3,3]上随机取一个数x ,使得121x x +--≥成立的概率为______.【15】.已知向量AB 与AC 的夹角为0120,且||3,|| 2.AB AC ==若λ=+AP AB AC ,且⊥AP BC ,则实数λ的值为____________.【16】.定义“正对数”:0,01,lnln ,1.+<<⎧=⎨≥⎩x x x x 现有四个命题:①若0,0>>a b ,则ln ()ln ++=b a b a ; ②若0,0>>a b ,则ln()ln ln +++=+ab a b ;③若0,0>>a b ,则ln ()ln ln +++≥-a a b b; ④若0,0>>a b ,则ln()ln ln ln 2++++≤++a b a b .其中的真命题有__________.(写出所有真命题的编号) 【解答题】【17】. (本小题满分12分)设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且76,2,cos .9+===a c b B . (1)求,a c 的值; (2)求sin()-A B 的值.【18】. (本小题满分12分)如下图所示,在三棱锥-P ABQ 中,PB ⊥平面ABQ ,==BA BP BQ ,,,,D C E F 分别是,,,AQ BQ AP BP 的中点,2=AQ BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(1)求证://AB GH ;(2)求二面角--D GH E 的余弦值。
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)文科综合试题图1示意某流域开发的三个阶段(a)和三条流量变化曲线(b)。
读图回答1-2题。
1,该流域开发过程中A 降水量增加B 蒸发量增加C 下渗减少D 地表径流减少2,假设该流域三个阶段都经历了相同的一次暴雨过程,在P处形成的流量变化过程为图1b①②③分别对应的是A Ⅰ、Ⅱ、ⅢB Ⅱ、Ⅰ、ⅢC Ⅲ、Ⅱ、ⅠD Ⅰ、Ⅲ、Ⅱ图2示意我国植被的地带性分布,读图回答3-4题3.图中②为A 草原B 荒漠C 针叶林D 针阔混交林4,我国东部森林植被的东西宽度在南北方向发生变化,其主导因素是A 纬度B 洋流C 地形D 季风气温的日变化一般表现为最高值出现在14时左右,最低值出现在日出前后。
图3示意某区域某日某时刻的等温线分布,该日丙地的正午太阳高度达到一年中最大值。
读图回答5-6题。
5.下列时刻中,最有可能出现该等温线分布状况的是A 6时B 9时C 12时D 14时6.该日A 日落时刻甲地早于乙地B 日落时刻甲地晚于乙地C 正午太阳高度甲地大于乙地D 正午太阳高度甲地小于乙地图4示意东欧城市的典型空间结构。
读图回答7-8题。
7.图中①、②、③代表的依次是A 工业区、别墅区、绿化区B 绿化区、工业区、别墅区C 绿化区、别墅区、工业区D 别墅区、绿化区、工业区8.该城市A .老城区地租最高B 中心向西南方向移动C 空间形态变化受交通影响D 仓储式购物中心地处中心商务区9.《周礼·考工记》载:建造王城,九里见方,四周各三门,南北和东西大道各九条,宫城之左为宗庙,右为社稷,前为朝,后为市。
它体现的主要思想是A.中央集权B.中正有序C.敬天法祖D.君权神授10.《汉书·食货志》记载:“贾人有市籍,及家属,皆无得名田,Array以便农。
敢犯令,没人田货。
”该禁令的主要目的是A.限制商人经营范围B.增加赋税收入C.加强商人户籍管理D.保护小农经济11.自秦汉至宋元,中国政治制度变革的总体趋势是A.地方政府的自主性逐渐被削弱B.国家行政权逐渐转移到君主手中C.宰相逐渐退出权力中心D.世卿世禄的贵族政治逐渐被打破12.图5文字节选自一则清代档案史料。
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x ∈R },N={-1,0,1,2,3},则M ∩N=(A ){0,1,2} (B){-1,0,1,2}(C ){-1,0,2,3} (D){0,1,2,3}(2)设复数z 满足(1-i )z=2 i ,则z=(A )-1+i (B )-1-i (C )1+i (D )1-i(3)等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1=(A ) 13 (B )- 13 (C ) 19 (D )- 19(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l ⊥m ,l ⊥n ,l ⊄α内,l ⊄β内,则( )(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l(5)已知(1+ax )(1+x)5的展开式中x 2的系数为5,则a=(A )-4 (B )-3 (C )-2 (D )-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1+ 12+ 13+…+ 110(B )1+ 12!+ 13!+…+ 110!(C )1+ 12+ 13+…+ 111(D )1+ 12!+ 13!+…+ 111!(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) 14 (B) 12 (C)1 (D)2(10)已知函数f(x)=x 3+ax 2+bx+,下列结论中错误的是(A )∃x α∈R,f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若x B 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y 2=3px(p>0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,3),则C 的方程为(A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0),将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-√22,1/2)( C)(1-√22,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z = (A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A 【解析】设2bi 2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524 (C )34 (D )1112【答案】D【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选D(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。
所以选A(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
2013年山东高考数学试题一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( D )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y |x∈A, y∈A }中元素的个数是( C )A. 1B. 3C. 5D.9(A)-2 (B)0 (C)1 (D)2(6)在平面直角坐标系xOy中,M为不等式组:2x y20x2y103x y80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM斜率的最小值为C(7)给定两个命题p、q,若﹁p是q的必要而不充分条件,则p是﹁q的 B (A)充分而不必条件(B)必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(8)函数y=xcosx + sinx 的图象大致为 D(A ) (B ) (C) (D)(9)过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 A(A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0(10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 B(A )243 (B )252 (C )261 (D )279于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p= D(15)已知向量AB 与AC 的夹角为120,且||3,||2,AB AC ==若 ,AP AB AC λ=+且AP BC ⊥,则实数λ的值为712(16)定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=②若0,0a b >>,则ln ()ln ln ab a b +++=+③若0,0a b >>,则ln ()ln ln a a b b +++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有: ①③④ (写出所有真命题的编号)三、解答题:本大题共6小题,共74分.(Ⅰ)求证:AB//GH ;(Ⅱ)求二面角D-GH-E 的余弦值 .解答:(1)因为C 、D 为中点,所以CD//AB同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ ,所以CD//平面EFQ ,又CD ⊂平面PCD,所以CD//GH ,又AB//CD ,所以AB//GH.(2)由AQ=2BD ,D 为AQ 的中点可得,△ABQ 为直角三角形,以B 为坐标原点,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系,设AB=BP=BQ=2,可得平面GCD 的一个法向量为1(0,2,1)n =,平面EFG 的一个法向量为2(0,1,2)n =,可得4cos5α==,(2)由题意可知X的可能取值为:3,2,1,0相应的概率依次为:14416,,,,所以EX=7解答:(1)由S4=4S2,a2n=2a n+1,{a n}为等差数列,可得,11,2a d==所以21na n=-2.71828是自然对数的底数,(1)求()f x的单调区间,最大值;(2)讨论关于x的方程|ln|()x f x=根的个数.直于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0),求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公定值. 1||||PF PM PF PM ⋅=2||||PF PM PF PM ⋅,1||PF PM PF ⋅=2||PF PM PF ⋅,设204x ≠,将向量坐标代入并化简得:m (23000416)312x x x -=-,因为204x ≠,。
绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(理工类)本试题卷共6页,22题,其中第15、16题为选考题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号码条粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选凃其它答案标号。
答在试卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定位置用统一提供的2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数z=i1i2+(i 为虚数单位)的共轭复数对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知全集为R ,集合A=⎭⎬⎫⎩⎨⎧≤1)21(2x ,B={}0862≤+-x x x ,则A ∩R ∂B=A.{}0x ≤xB. {}42x ≤≤x C. {0≤x x <2或x >}4 D. {0x <x ≤2或x ≥}43.再一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.(-p )∨(-q ) B. p ∨(-q ) C. (-p )∧(-q ) D.p ∨q4.将函数y=3cosx+sinx (x ∈R )的图像向左平移m (m >0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是A.12π B. 6π C. 3πD 65π5.已知0<θ<4π,则双曲线C 1:1sin cos 2222=-θθy x 与C 2: 1tan sin sin 22222=-θθθx y 的 A.实轴长相等 B.虚轴长相等 C.焦距相等 D.离心率相等6.已知点A (-1,1)、B (1,2)、C (-2,1)、D (3,4),则向量在方向上的投影为 A.223 B. 2153 C. -223D .- 21537.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+t125+(t 的单位:s ,v 的单位:m/s )行驶至停止。
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n nn nn n n n c a b a a a b c +++++===,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2mq D.数列{}n c 为等比数列,公比为mmq【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31-(C)91 (D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得 ()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________. 【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2nn n nS a n N *=--∈则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32-15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=-两边同时积分得:1111122222211.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n -18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=-2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n1--32-1121-n 222+=+++n n n ()( ____.【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n ∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明: (Ⅰ)对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f nx y x n n n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一xxx xxxx x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n nnn n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nx x x x x x f x x nn n n n n n n p n n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x nx x x x x nx x x x x pn pn n pn np n p n p n p n p n nn n n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnnp n np n np n np n p n n +++++++++=+++++++++ nx x npn np n n 1-111<⇒<+-=+.法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=, 3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意;若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k kk k n -+<≤()()()k N +∈时,11k nak -=(-),记12n n S a a a =++ ()n N+∈,对于l N+∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m )32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)( 故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d dd dd a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105ma a a +++=-或,不存在这样的正整数m ;若3q =,12111919110310mma a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}na的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}n c 的前n项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n n n R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414nnn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和∴d n n na S n 2)1(-+=(1)∵0=c ∴d n a nS b n n 21-+==∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-dad ∴0)21(21=-d a d ∵0≠d ∴d a 21=∴a d 2=∴a n a n n na d n n na S n 222)1(2)1(=-+=-+=∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222= ∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得:11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d由①式得:d d 211=∵ 0≠d ∴ 01≠d由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn ad n n cn nS b n n ++-=+=22222)1(,cn ad n ca d n cad n n ++--+-++-=2222)1(22)1(22)1(cn ad n c ad n ++--+-=222)1(22)1(. (※)若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-ad n c,而22)1(ad n +-≠0,故0=c .经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1nn nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦. 由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =. (2)证明:由于2212,(2)n n nn a n b n a +==+.则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (2222)11111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n+=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174na a a +++<.【答案】.(1) 解:2121233n n S a n n n+=---,n N *∈.∴ 当1n =时,112212221233a S a a ==---=-又11a =,24a ∴= (2)解:2121233n n S a n n n+=---,n N *∈.∴ ()()321112122333n n n n n n S na n n n na ++++=---=-①∴当2n ≥时,()()()111213n n n n n S n a =-+=--②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+ 111n na a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥当1n =时,上式显然成立. 2*,n a n n N ∴=∈ (3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立.②当2n =时,121117144a a +=+<,∴原不等式亦成立.③当3n ≥时, ()()()()221111,11n n n nn n >-⋅+∴<-⋅+()()()2221211111111111121324211na a a nn n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭ 1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174na a a +++<.35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列. (Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}na +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减: .)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- (qq a qqa a S nnn -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q qq a q na S n n(Ⅱ) 使用反证法.设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n nn n qa q a a a1,0111111=≠⇒+=+⇒-q a qa q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}na +不是等比数列.。
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年山东高考数学试题
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数为( D ) A. 2+i B.2-i C. 5+i D.5-i
(2)设集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( C )
(6)在平面直角坐标系xOy 中,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪
+-≥⎨⎪+-≤⎩
,所表示的区域上一动点,则直线
(A )充分而不必条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件
(8)函数y=xcosx + sinx 的图象大致为 D
(A ) (B ) (C) (D)
(9)过点(3,1)作圆(x-1)2
+y 2
=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 A (A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0 (10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 B
(A )243 (B )252 (C )261 (D )279
M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p=
(15)已知向量
AB
与AC 的夹角为120
,且||3,||2,AB AC ==若 ,AP AB AC λ=+ 且AP BC ⊥ ,则实数λ的值为 7
12
(16)定义“正对数”:0,01
ln
ln ,
1x x x x +
<<⎧=⎨≥⎩,现有四个命题:
①若0,0a b >>,则ln ()ln b a b a ++= ②若0,0a b >>,则ln ()ln ln ab a b +++=+
③若0,0a b >>,则ln ()ln ln a
a b b +++≥-
④若0,0a
b >>,则ln ()ln ln ln 2a b a b ++++≤++
其中的真命题有: ①③④ (写出所有真命题的编号)
如图所示,在三棱锥P-ABQ 中,PB ⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH 。
(Ⅰ)求证:AB//GH ;
(Ⅱ)求二面角D-GH-E 的余弦值 . 解答:(1)因为C 、D 为中点,所以CD//AB 同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ , 所以CD//平面EFQ ,又CD ⊂平面PCD,所以 CD//GH ,又AB//CD ,所以AB//GH.
(2)由AQ=2BD ,D 为AQ 的中点可得,△ABQ 为直角三角形,以B 为坐标原点,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系,设AB=BP=BQ=2,可得平面GCD 的一个法向量为
1(0,2,1)n =
,平面
EFG
的一个法向量为2(0,1,2)
n =
,可得
4cos
5
α=
=,(19)本小题满分12分
(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为
(2)由题意可知X 的可能取值为:3,2,1,0 相应的概率依次为:
14416,,,9272727,所以EX=7
9
(20)(本小题满分12分)
设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1
解答:(1)由S 4=4S 2,a 2n =2a n +1,{a n }为等差数列,可得,1
1,2a d ==
所以21n
a n =-
(1)求
()f x 的单调区间,最大值;
(2)讨论关于x 的方程|ln
|()x f x =
根的个数.
线被椭圆C 截得的线段长为l. (Ⅰ)求椭圆C 的方程;
(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0),求m 的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点, 设直线PF 1,PF 2
将向量坐标代入并化简得:m (2
3000416)312x x x -=-,因为2
04x ≠,。