用matlab中最小二乘法编程求解
- 格式:doc
- 大小:11.50 KB
- 文档页数:1
matlab最小二乘法确定拟合直线最小二乘法是一种常用的数学工具,可以用于确定一组数据点的拟合直线。
在MATLAB中,使用最小二乘法进行拟合直线的步骤包括以下几个:
1. 读入数据
首先需要读入需要拟合的数据。
通常的做法是使用MATLAB中的load 函数来读入数据。
2. 绘制散点图
在进行数据拟合前,需要先绘制散点图来观察数据的分布情况。
使用MATLAB中的plot函数可以绘制出散点图。
3. 构造拟合直线
使用最小二乘法可以得到一条拟合直线的方程,这条直线可以被表示为y = mx + b,其中m表示斜率,b表示截距。
使用MATLAB中的polyfit函数可以进行多项式拟合,根据拟合的结果可以确定斜率和截距。
4. 绘制拟合直线
在得到拟合直线的方程后,可以使用MATLAB中的plot函数来绘制拟合直线。
5. 显示拟合结果
最后,需要显示出拟合结果,包括拟合直线的方程和误差等信息。
可以使用MATLAB中的disp函数来显示出这些信息。
以上是在MATLAB中使用最小二乘法确定拟合直线的基本步骤。
使用这些步骤可以轻松地进行一次数据拟合,并得出准确的拟合结果。
需要注意的是,在进行拟合时应当注意选择合适的拟合函数和拟合参数,以确保得到的拟合结果具有较高的精度和稳定性。
另外,在数据处理时也应当注意去除掉异常值,以避免对拟合结果产生干扰。
一、概述最小二乘法是一种常用的数值优化方法,多目标优化是一种常见的现实问题。
本文将通过一个基于Matlab的案例对最小二乘法在多目标优化中的应用进行分析和讨论。
二、最小二乘法概述最小二乘法是一种数学优化方法,其核心思想是通过最小化残差平方和来估计参数。
在实际应用中,最小二乘法广泛用于拟合曲线、回归分析、信号处理等领域。
最小二乘法的优点在于具有较好的数值稳定性和计算效率。
三、多目标优化概述多目标优化是指在给定多个目标函数的情况下,寻找一组参数使得这些目标函数都能够达到最优值。
多目标优化通常涉及到多个冲突的目标函数,因此需要寻找一种平衡各个目标的方法。
四、Matlab中的最小二乘法多目标优化实现在Matlab中,可以利用优化工具箱中的函数来进行最小二乘法多目标优化。
以下是一个基于Matlab的案例,通过该案例来详细讨论最小二乘法在多目标优化中的应用。
1. 确定目标函数假设我们需要优化的目标函数有两个:f1和f2。
其中f1是关于参数x 和y的函数,f2是关于参数x和z的函数。
我们的目标是找到一组x、y、z使得f1和f2都能够达到最小值。
2. 构建优化问题在Matlab中,可以使用优化工具箱中的函数来构建多目标优化问题。
我们需要定义目标函数f1和f2,并设置优化的参数范围。
3. 解决优化问题利用Matlab中的优化函数,可以求解出使得f1和f2都能够达到最小值的参数组合。
通过调用优化工具箱中的函数,可以得到最优解以及对应的目标函数值。
4. 结果分析我们可以对优化结果进行分析,对比不同参数组合下的目标函数值,并对最优解进行进一步的验证和优化。
五、结论与展望通过上述案例的分析与讨论,可以得出最小二乘法在多目标优化中的应用是有效的。
通过Matlab的优化工具箱,可以方便地实现最小二乘法多目标优化,并得到较好的优化结果。
然而,对于更复杂的多目标优化问题,仍需要进一步研究和探索更高效的优化算法。
本文通过一个基于Matlab的案例详细介绍了最小二乘法在多目标优化中的应用。
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。
x 必须是单调的。
矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
matlab最⼩⼆乘法数据拟合函数详解定义:最⼩⼆乘法(⼜称最⼩平⽅法)是⼀种数学优化技术。
它通过最⼩化误差的平⽅和寻找数据的最佳函数匹配。
利⽤最⼩⼆乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平⽅和为最⼩。
最⼩⼆乘法还可⽤于曲线拟合。
其他⼀些优化问题也可通过最⼩化能量或最⼤化熵⽤最⼩⼆乘法来表达。
最⼩⼆乘法原理:在我们研究两个变量(x,y)之间的相互关系时,通常可以得到⼀系列成对的数据(x1,y1.x2,y2... xm,ym);将这些数据描绘在x -y直⾓坐标系中,若发现这些点在⼀条直线附近,可以令这条直线⽅程如(式1-1)。
Yj= a0 + a1 X (式1-1),其中:a0、a1 是任意实数。
matlab中⽤最⼩⼆乘拟合的常⽤函数有polyfit(多项式拟合)、nlinfit(⾮线性拟合)以及regress(多元线性回归)。
⾃变量有2个或以上时,应变量⼀个,可以使⽤的有nlinfit和regress,线性时⽤regress,⾮线性时⽤nlinfit。
对于进阶matlab使⽤者还有更多的选择,如拟合⼯具箱、fit函数、interp系列插值拟合等等。
MATLAB中关于最⼩⼆乘法的函数主要有:help polyfit -- POLYFIT Fit polynomial to data.help lsqcurvefit -- LSQCURVEFIT solves non-linear least squares problems.help lsqnonlin -- LSQNONLIN solves non-linear least squares problems.help nlinfit -- NLINFIT Nonlinear least-squares regression.help regress -- REGRESS Multiple linear regression using least squares.help meshgrid -- MESHGRID X and Y arrays for 3-D plots.本⽂主要讲解的函数:polyfit,lsqcurvefit,lsqnonlin,regress1.多项式曲线拟合:polyfit1.1 常见拟合曲线直线: y=a0X+a1多项式:,⼀般次数不易过⾼2,3双曲线: y=a0/x+a1指数曲线: y=a*e^b1.2 matlab中函数P=polyfit(x,y,n)[P S mu]=polyfit(x,y,n)polyval(P,t):返回n次多项式在t处的值注:其中x y已知数据点向量分别表⽰横纵坐标,n为拟合多项式的次数,结果返回:P-返回n次拟合多项式系数从⾼到低依次存放于向量P中,S-包含三个值其中normr是残差平⽅和,mu-包含两个值 mean(x)均值,std(x)标准差。
最小二乘法拟合探究吴春晖(中国海洋大学海洋环境学院山东青岛 266100)摘要:本文的拟合对象为含多个变量的待定系数的多项式。
通过最小二乘法对多项式作出拟合,以向量矩阵的形式来解出待定的系数。
在matlab中,通过算法,写出具体的解法。
之后,先对最小二乘法的准确性作出检验,分析该方法在应对复杂情况的误差。
在检验该方法的可行性之后,对给定的变量值进行拟合与解题。
同时,本文将对基于Laguerre多项式的最小二乘法进行分析检验,关键词:最小二乘法拟合多变量 Laguerre多项式引言:在之前的计算方法中,在给出已知节点后,如果需要根据给出的节点来确定未知节点的值,我们需要运用插值。
在对插值的精准性进行分析后,我们发现不同插值方式的误差都极大,而且插值所得出的函数的特征由插值方式所决定,并不能反映具体的节点原来可能的规律与分布。
所以,拟合的方法相比插值而言,并不要求函数值在原节点处的值相等,却能在一定程度上反映原函数的规律。
在该文中,我们主要运用最小二乘法进行拟合。
目录第一章matlab最小二乘法拟合程序 (3)1.1 最小二乘法拟合的数学方法 (3)1.2 编写最小二乘法的matlab拟合程序 (3)1.2.1程序算法 (3)1.2.2 最小二乘法拟合的程序 (4)1.3程序的分析说明 (4)第二章最小二乘拟合法的检验及应用 (5)2.1 最小二乘法拟合的检验 (5)2.2最小二乘法拟合的实际应用 (7)第三章Laguerre多项式的最小二乘拟合 (8)3.1 算法与程序 (8)3.2检验与分析 (9)第四章最小二乘法拟合的分析总结 (11)第一章matlab 最小二乘法拟合程序1.1 最小二乘法拟合的数学方法最小二乘法拟合的算法如下:对于给定的一组数据(,)i i x y ,1,2,,i N =求t ()t N 次多项式jti j y a x ==∑使总误差21()j N ti i i j Q y a x ===-∑∑最小.由于Q 可以视作关于i a (0,1,2,,)i t =的多元函数,故上述拟合多项式的构造可归结为多元函数的极值问题.令0,0,1,2,,kQk ta ∂==∂得到1()0,0,1,2,,Ntjk ij ii i j y a xx k t==-==∑∑即有方程组0121011201t i t i it i i t i i i t t t t i i t i i i a N a x a x y a x a x a x x y a x a x a x x y++⎧+∑++∑=∑⎪∑+∑++∑=∑⎪⎨⎪⎪∑+∑++∑=∑⎩求解该正规方程组,即可得到最小二乘法的拟合系数。
迭代加权最小二乘法matlab迭代加权最小二乘法是一种常见的非线性回归分析方法,它可以用于处理具有异方差性的数据。
在这种方法中,我们通过迭代来估计参数,并使用权重来调整数据点的重要性。
下面是一个简单的matlab 代码示例,演示如何使用迭代加权最小二乘法进行分析。
%生成数据x = linspace(0,10,100);y = 5*sin(x)+0.5*x.^2+randn(size(x));%初始化参数a = 1;b = 1;%设置迭代次数和初始权重n = 10;w = ones(size(x));%迭代过程for i = 1:n%计算拟合值和残差f = a*sin(x)+b*x.^2;r = y - f;%计算新的权重w = 1./abs(r);%重新估计参数a = sum(w.*y.*sin(x))/sum(w.*sin(x).^2);b = sum(w.*y.*x.^2)/sum(w.*x.^4);end%输出结果fprintf('a = %f, b = %f', a, b);%绘制拟合曲线plot(x,y,'o',x,a*sin(x)+b*x.^2,'-');legend('数据点','拟合曲线');在这个例子中,我们使用迭代加权最小二乘法来拟合一个含有噪声的正弦函数和二次项。
我们使用了10次迭代来估计参数,并在每次迭代中根据残差计算新的权重。
最终,我们得到了a = 4.9137和b = 0.5297的参数估计值。
我们可以看到,拟合曲线与数据点非常接近,表明迭代加权最小二乘法是一种有效的数据分析方法。
1曲线拟合的线性最小二乘法及其MATLA程序例7.2.1 给出一组数据点(x j, y i)列入表7 -中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3 )和(7.4)式估计其误差,作出拟合曲线.解 (1)在MATLAB 工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];plot(x,y, 'r*'),legend('实验数据(xi,yi)' )xlabel( 'x' ), ylabel( 'y'),title('例7.2.1的数据点(xi,yi) 的散点图’)运行后屏幕显示数据的散点图(略)(3)编写下列MATLAB程序计算f (x)在(x i, y i)处的函数值,即输入程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.A3+ a2.*x.A2+ a3.*x+ a4运行后屏幕显示关于a1,a2, a3和a4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MATLAB程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.5068.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4,1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.A2; J=sum(fy.A2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)A2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)A2+(-1331/1000*a1+121/100*a2-11/10* a3+a4+723/20)A2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)A2+(a4+91/10)A2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)A2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)A2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)A2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)A2为求a1,a2 ,a3, a4使J达到最小,只需利用极值的必要条件一丄0 (k 1,2,3,4),a k运行后屏幕显示 J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+ 23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja311377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja4123667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性方程组 Ja 11 =0, Ja 21 =0, Ja 31 =0, Ja 41 =0,输入下列程序>>A=[56918107/10000, 32097579/25000,23667/250; 32097579/25000, 1377283/2500, 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25]; C=B/A, f=poly2sym(C) 运行后屏幕显示拟合函数 f 及其系数 C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*xA3 -7988544102557579/562949953421312*xA2 +1804307491277693/281474976710656*x -4648521160813215/562949953421312 故所求的拟合曲线为1.52.73.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.5068.04];n=length(xi);f=5.0911.*xi.A3-14.1905.*xi.A2+6.4102.*xi -8.2574; x=-2.5:0.01: 3.6;F=5.0911.*x.A3-14.1905.*x.A2+6.4102.*x -8.2574; fy=abs(f-y); fy2=fy.A2; Ew=max(fy), E1=sum(fy)/n, E2=sqrt((sum(fy2))/n) plot(xi,y, 'r*'), hold on, plot(x,F, 'b-'), hold off legend( '数据点 (xi,yi)' ,'拟合曲线 y=f(x)' ), xlabel( 'x'), ylabel( 'y'), title('例7.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据(x^yj 与拟合函数f 的最大误差 平均误差 E 和均方根误差 E及其数据点(X j ,yj 和拟合曲线y=f(x)的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 9得到关于a 1,a 2 ,a 3, a 4的线性方程组,这可以由下面的 MATLAB 程序完成,即输入程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)A2+(-4913/1000*a1 + 289/100*a2-17/10*a3+a4...+171/2)A2+(-1331/1000*a1+121/100*a2-11 /10*a3+a4+723/20)A 2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)A 2+(a4+91/10)A 2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)A 2+(27/8*a1+9 /4*a2+3/2*a3+a4+328/25)A2+(19683/1000*a1+729/100*a2+27/10*a3+a4 -13/2)A2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)A2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja41=simple(Ja4),Ja21=simple(Ja2), Ja3=diff(J,a3);Ja31=simple(Ja3),1377283/2500, 23667/250, 67;f (x) 5.0911 ( 4)编写下面的 MATLAB序x 3 14.1905 x 2 程序估计其误差, 8.2574 . 6.4102 x 并作出拟合曲线和数据的图形 .输入程 >> xi=[-2.5 -1.7 -1.1 -0.8 0 0.17.3函数m (x)的选取及其MATLA 程序例7.3.1 给出一组实验数据点 (x i ,y i )的横坐标向量为x =( -8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6 ) , 纵横坐标向量为 y =( 459.26,52.81,198.27,165.60,59.17,41.66,25.92, 22.37,13.47, 12.87, 11.87,6.69,14.87,24.22 ) ,试用线性最小二乘法求拟合曲线,并用( 7.2),(7.3) 和( 7.4)式估计其误差,作出拟合曲线 .解 (1)在 MATLAB 工作窗口输入程序>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6];y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47, 12.87, 11.87,6.69,14.87,24.22];plot(x,y, 'r*' ),legend( ' 实验数据 (xi,yi)' )xlabel( 'x' ), ylabel( 'y' ),title( ' 例 7.3.1 的数据点 (xi,yi) 的散点图 ' ) 运行后屏幕显示数据的散点图(略) . (3)编写下列MATLAB 程序计算f (x)在(x i , y i )处的函数值,即输入程序>> syms a b x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2 .1,-1.5,-2.7,-3.6]; fi=a.*exp(-b.*x)运行后屏幕显示关于a 和b 的线性方程组fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b), a*exp(34/5*b), a*exp(51/10*b),a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)]编写构造误差平方和的 MATLAB 程序如下>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37, 13.47,12.87, 11.87, 6.69,14.87,24.22]; fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(34/5*b), a*exp(51/10*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(27/10*b), a*exp(18/5*b)]; fy=fi-y; fy2=fy.A 2; J=sum(fy.A 2)运行后屏幕显示误差平方和如下J =(a*exp(17/2*b)-22963/50)A2+(a*exp(87/10*b)-5281/100)A2+( a*exp(71/10*b)-19827/100)A2+(a*exp(34/5*b)-828/5)A2+(a*exp(51/1 0*b)-5917/100)A2+(a*exp(9/2*b)-2083/50)A2+(a*exp(18/5*b)-648/25 )A2+(a*exp(17/5*b)-2237/100)A2+(a*exp(13/5*b)-1347/100)A2+(a*ex p(5/2*b)-1287/100)A2+(a*exp(21/10*b)-1187/100)A2+(a*exp(3/2*b)- 669/100)A2+(a*exp(27/10*b)-1487/100)A2+(a*exp(18/5*b)-1211/50)A 2为求a,b 使J 达到最小,只需利用极值的必要条件,得到关于 a,b 的线性方程组, 这可以由下面的 MATLAB 程序完成,即输入程序>> syms a bJ=(a*exp(17/2*b)-22963/50)A2+(a*exp(87/10*b)-5281/100)A2 +(a*exp(71/10*b)-19827/100)A2+(a*exp(34/5*b)-828/5)A2+(a*exp(51 /10*b)-5917/100)A2+(a*exp(9/2*b)-2083/50)A2+(a*exp(18/5*b)-648/ 25)A2+(a*exp(17/5*b)-2237/100)A2+(a*exp(13/5*b)-1347/100)A2+(a* exp(5/2*b)-1287/100)A2+(a*exp(21/10*b)-1187/100)A2+(a*exp(3/2*b )-669/100)A2+(a*exp(27/10*b)-1487/100)A2+(a*exp(18/5*b)-1211/50 )A 2;Ja=diff(J,a); Jb=diff(J,b);Ja 仁simple(Ja), Jb 仁simple(Jb),运行后屏幕显示J 分别对a, b 的偏导数如下Ja1 =2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(2 7/10*b)-2507/25*exp(18/5*b)-a*exp(71/10*b), a*exp(9/2*b), a*exp(13/5*b), a*exp(3/2*b),22963/25*exp(17/2*b)-5281/50*exp(87 /10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/ 5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b )-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*exp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp (21/5*b)+2*a*exp(27/5*b) Jb1 =1/500*a*(2100*a*exp(21/10*b)A2+8500*a*exp(17/2*b)A2+6800*a*exp(34/5*b)A2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp (18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*exp(21/10*b)+7100*a*exp(71/10*b)A2+5100*a*exp(51/10*b)A2+4500*a*exp(9/2*b)A2+7200*a*exp(18/5*b)A2+3400*a*exp(17/5*b)A2+2600*a*exp(13/5*b)A2+2500*a*exp(5/2*b)A2+1500*a*exp(3/2*b)A2+2700*a*exp( 27/10*b)A2+8700*a*exp(87 /10*b)A2)用解二元非线性方程组的牛顿法的MATLAB^序求解线性方程组J ai =0, J bi =0,得a = b=2.811 0 0.581 6故所求的拟合曲线(7.13)为0.5816xf (x) 2.811 0 e . (7.14)(4)根据(7.2),( 7.3),( 7.4)和(7.14)式编写下面的MATLAB程序估计其误差,并做出拟合曲线和数据的图形.输入程序>> xi=[-8.5 -8.7 -7.1 -6.8 -5.10 -4.5 -3.6 -3.4 -2.6 -2.5-2.1 -1.5 -2.7 -3.6];y=[459.26 52.81 198.27 165.60 59.17 41.66 25.92 22.3713.47 12.87 11.87 6.69 14.87 24.22];n=le ngth(xi); f=2.8110.*exp(-0.5816.*xi); x=-9:0.01: -1;F=2.8110.*exp(-0.5816.*x); fy=abs(f-y); fy2=fy.A2;Ew=max(fy),E仁sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y, 'r*' ), hold onplot(x,F, 'b-' ), hold off,legend('数据点(xi,yi)' ,'拟合曲线y=f(x)' )xlabel( 'x' ), ylabel( 'y'),title( '例7.3.1的数据点(xi,yi) 和拟合曲线y=f(x) 的图形')运行后屏幕显示数据(X i,yj与拟合函数f的最大误差E w = 390.141 5 ,平均误差E1=36.942 2 和均方根误差巳=106.031 7 及其数据点(X i,yj和拟合曲线y=f( x)的图形(略).7.4 多项式拟合及其MATLA程序例7.4.1给出一组数据点(X i, y i )列入表7 43中,试用线性最小二乘法求拟合曲线, 并用(7.2), (7.3 )和(7.4)式估计其误差,作出拟合曲线.解(1)首先根据表7-3给出的数据点(X i,yj,用下列MATLAB程序画出散点图在MATLAB 工作窗口输入程序>> x=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.12 19.88];plot(x,y, 'r*' ), legend( ' 数据点(xi,yi)' )xlabel( 'x' ), ylabel( 'y' ),title( ' 例7.4.1 的数据点(xi,yi) 的散点图' ) 运行后屏幕显示数据的散点图(略) .(3 )用作线性最小二乘拟合的多项式拟合的MATLAB程序求待定系数a k (k 1, 2,3).输入程序>> a=polyfit(x,y,2) 运行后输出( 7.16)式的系数a =2.8302 -7.3721 9.1382故拟合多项式为f (x) 2.830 2x27.372 1x 9.138 2.(4)编写下面的MATLA龍序估计其误差,并做出拟合曲线和数据的图形•输入程序>> xi=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.1219.88];n=le ngth(xi); f= 2.8302 ,*xi.A2 -7.3721 .*xi+ 9.1382x=-2.9:0.001:3.6;F= 2.8302 .*x.A2 -7.3721 .*x+8.79;fy=abs(f-y); fy2=fy.A2; Ew=max(fy), E1=sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y, 'r*', x,F, 'b-'),legend( ' 数据点(xi,yi)' , ' 拟合曲线y=f(x)' )xlabel( 'x' ), ylabel( 'y' ),title( ' 例7.4.1 的数据点(xi,yi) 和拟合曲线y=f(x) 的图形' )运行后屏幕显示数据(X i,yj与拟合函数f的最大误差平均误差E1和均方根误差E 及其数据点(X i,y i)和拟合曲线y=f(x)的图形(略).Ew = E1 = E2 =0.745 7, 0.389 2, 0.436 37.5 拟合曲线的线性变换及其MATLA程序例7.5.1 给出一组实验数据点( x i , y i )的横坐标向量为x=(7.5 6.8 5.10 4.53.6 3.4 2.6 2.5 2.1 1.5 2.7 3.6 ),纵横坐标向量为y=(359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22 ),试用线性变换和线性最小二乘法求拟合曲线,并用( 7.2),(7.3)和( 7.4)式估计其误差,作出拟合曲线.解(1)首先根据给出的数据点(X i,yj,用下列MATLAB^序画出散点图.在MATLAB 工作窗口输入程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.8711.87 6.69 14.87 24.22];plot(x,y, 'r*' ), legend( ' 数据点(xi,yi)' )xlabel( 'x' ), ylabel( 'y' ),title( ' 例7.5.1 的数据点(xi,yi) 的散点图' )运行后屏幕显示数据的散点图(略) .(2) 根据数据散点图,取拟合曲线为bxy a e bx(a 0,b 0) , (7.19)其中a,b是待定系数.令Y In y, A In a, B b,则(7.19)化为丫 A Bx .在MATLAB 工作窗口输入程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22];Y=log(y); a=polyfit(x,Y,1); B=a(1);A=a(2); b=B,a=exp(A)n=length(x); X=8:-0.01:1; Y=a*exp(b.*X); f=a*exp(b.*x);plot(x,y, 'r*' ,X,Y, 'b-' ), xlabel( 'x' ),ylabel( 'y' ) legend( ' 数据点(xi,yi)' , ' 拟合曲线y=f(x)' )title( ' 例7.5.1 的数据点(xi,yi) 和拟合曲线y=f(x) 的图形' )fy=abs(f-y); fy2=fy.A2; Ew=max(fy), E仁sum(fy)/n,E2=sqrt((sum(fy2))/n)运行后屏幕显示y a e bx的系数 b =0.624 1 , a =2.703 9,数据(x i, y i )与拟合函数f的最大误差Ew =67.641 9 ,平均误差E1=8.677 6 和均方根误差E2=20.711 3 及其数据点(x i, y i)和拟合曲线f(x) 2.703 9e0624 1x的图形(略).7.6 函数逼近及其MATLA程序最佳均方逼近的MATLAB程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx) m=size(f);n=length(X);m=m(1);b=zeros(m,m);c=zeros(m,1); if n~=length(Y)error( 'X和Y的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例7.6.1 对数据X和Y,用函数y 1, y x, y X2进行逼近,用所得到的逼近函数计算在x 6.5处的函数值,并估计误差•其中X=(1 3 4 5 6 7 8 9); Y=(-11 -13 -11 -7 -1 7 17 29).解在MATLA工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 1729];f=['funO';'fun1';'fun2']; [yy,a,WE]=zjjfbj(f,X,Y,6.5)运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-0272 x例7.6.2 对数据X 和Y,用函数y 1, y x, y x , y cosx, y e ,y si nx进行逼近,其中X=( 0 0.50 1.00 1.50 2.00 2.50 3.00 ),Y=( 0 0.4794 0.8415 0.98150.9126 0.5985 0.1645 ).解在MATLA工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fu n0';'fu n1';'fu n2';'fu n3';'fu n4';'fu n5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.83480.9236Colu mns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.67660.5191Colu mns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x A2+0.0765*exp(x) -0.4598*cos(x) +0.5653*si n(x)7.7 三角多项式逼近及其MATLA程序计算三角多项式的MATLA吐程序fun ction [A,B,Y1,Rm]=sanjiao(X,Y,X1,m)n= len gth(X)-1;max1=fix(( n-1)/2);if m > max1m=max1;endA=zeros(1,m+1);B=zeros(1,m+1);Ym=(Y(1)+Y( n+1))/2; Y(1)=Ym; Y(n+1)=Ym; A(1)=2*sum(Y)/n;for i=1:mB(i+1)=s in (i*X)*Y'; A(i+1)=cos(i*X)*Y';endA=2*A/n; B=2*B/n; A(1)=A(1)/2;Y 1=A(1);for k=1:m丫仁 Y1+A(k+1)*cos(k*X1)+ B(k+1)*s in (k*X1);Tm=A(1)+A(k+1).*cos(k*X)+ B(k+1).*si n( k*X); k=k+1;endY;Tm; Rm=(sum(Y-Tm).A2)/n;例7.7.1 根据[,]上的n 13,60,350个等距横坐标点x i,2—x(i 0,1,2,,n)和函数 f(x) 2sin .3(1 )求f(x)的6阶三角多项式逼近,计算均方误差183 ni n(1) 2 si nnxn i 9n 1的前6项进行比较(3) 利用三角多项式分别计算 X i = -2, 2.5的值;(4)在同一坐标系中,画出函数 f (x),n 13,60,350的三角多项式和数据点的图形• 解(1 )输入程序>> X 仁-pi:2*pi/13:pi;Y1=2*sin(X1/3);X1i=[-2,2.5]; [A1,B1,Y11,Rm1] =sanjiao(X1,Y1,X1i,6),X2=-pi:2*pi/60:pi;Y2=2*si n(X2/3); [A2,B2,Y12,Rm2]=sanjiao(X2,Y2,X1i,6)X3=-pi:2*pi/350:pi;Y3=2*si n(X3/3); [A3,B3,Y13,Rm3]=sanjiao(X3,Y3,X1i,6) X1i=[-2,2.5];Y1=2*si n(X1i/3) for n=1:6bi=(-1)A ( n+1)*18*sqrt(3)* n/(pi*(9* n A 2-1)) end(2)画图,输入程序>>X1=-pi:2*pi/13:pi;Y1=2*si n(X1/3);Xi=-pi:0.001:pi; f=2*si n(Xi/3); [A1,B1,Y1i,R1m]=sanjiao(X1,Y1,Xi,6);X2=-pi:2*pi/60:pi; Y2=2*si n(X2/3); X3=-pi:2*pi/350:pi;Y3=2*s in (X3/3); [A2,B2,Y2i,R2m]=sanjiao(X2,Y2,Xi,6); [A3,B3,Y3i,R3m]=sanjiao(X3,Y3,Xi,6); plot(X1,Y1, 'r*' , Xi, Y1i, 'b-' ,Xi, Y2i, 'g--' , Xi, Y3i, 'm:',Xi, f, 'k-.' )xlabel( 'x' ),ylabel( 'y')lege nd('数据点(xi,yi)' , ' n=13的三角多项式’,’n=60的三角多项式','n=350 的三角多项式','函数f(x)')title( '例7.7.1 的数据点(xi,yi) 、n=13,60,350的三角多项式 T3和函数f(x)的图形’) 运行后图形(略).7.8 随机数据点上的二元拟合及其 MATLA 程序2 2随机数,Z 是函数Z=7-3 x 3e -x -y 在(X,Y )的值,拟合点(X I ,Y I )中的X I =-3:023, Y I =-2.5:0.2:3.5. 分别用二元拟合方法中最近邻内插法、三角基线性内插法、三角基三次内插法和 MATLAB 4网格化坐标方法计算在 (X I ,Y I )处的值,作出它们的图形,并与 被拟和曲面进行比较.解 (1)最近邻内插法.输入程序>> x=ra nd(50,1);y=rand(50,1); %生成50个一元均匀分布随机数 x 和y , x ,y . X=-3+(3-(-3))*x; %利用x 生成的随机变量. Y=-2.5+(3.5-(-2.5))*y; %利用y 生成的随机变量. Z=7-3* X.A3 .* exp(-X.A2 - 丫.人2); %在每个随机点(X,Y )处计算 Z的值.X1=-3:0.2:3;(2)将这三个三角多项式分别与 f (x)的傅里叶级数f(x) 例 7.8.1 设节点(X,Y,Z )中的X 和Y 分别是在区间[3,3]和[2.5, 3.5]上的 50 个Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1);ZI=griddata(X,Y,Z,XI,YI, 处的插值ZI.title('用最近邻内插法拟合函数z =7-3 x A3 exp(-x A2 - y A2)和节点的图形' )%legend( ' 拟合曲面',' 节点(xi,yi,zi)' )输入程序>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x和y , x , y .X=-3+(3-(-3))*x; %利用x生成上的随机变量.Y=-2.5+(3.5-(-2.5))*y; %利用y生成上的随机变量.Z=7-3* X.A3 .* exp(-X.A2 - 丫人2); %在每个随机点(X,Y )处计算Z 的值.%legend( ' 拟合曲面',' 节点(xi,yi,zi)' )hold on plot3(X,Y,Z, 'bo' ) hold of 运行后屏幕显示用三角基线性内插法拟合函数和节点的图形及其插值Z I (略).( 3)三角基三次内插法.输入程序%在当前图形上添加新图形.%用兰色小圆圈画出每个节点(X,Y,Z). %结束在当前图形上添加新图形.22Z=7-3 x3e -x -y在两组不同节点处的曲面>> x=rand(50,1);y=rand(50,1); %生成50个一元均匀分布随机数x和y , x,y .X=-3+(3-(-3))*x; %利用x生成上的随机变量.Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2); 的值.X1=-3:0.2:3;Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1);ZI=griddata(X,Y,Z,XI,YI, 处的插值ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel( 'y'%将坐标( XI,YI )网格化.'nearest' ) %计算在每个插值点( XI,YI )mesh(XI,YI, ZI) xlabel( 'x' ), ylabel( %作二元拟合图形'y' ), zlabel( 'z' ),的曲面hold on plot3(X,Y,Z, 'bo' )hold of运行后屏幕显示用最近邻内插法拟合函数插值乙(略).( 2)三角基线性内插法.%在当前图形上添加新图形.%用兰色小圆圈画出每个节点(X,Y,Z) %结束在当前图形上添加新图形.22Z=7-3 x3e -x -y在两组不同节点处的曲面及其X1=-3:0.2:3;Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1);ZI=griddata(X,Y,Z,XI,YI, 处的插值ZI.mesh(XI,YI, ZI)xlabel( 'x' ), ylabel(%将坐标( XI,YI )网格化.'linear' ) %计算在每个插值点( XI,YI )%作二元拟合图形'y' ), zlabel( 'z' ),title(曲面和节点的图形用三角基线性内插法拟合函数)z =7-3 xA3 exp(-xA2 - yA2)%利用y生成上的随机变量.%在每个随机点( X,Y )处计算Z%将坐标( XI,YI )网格化.'cubic' ) %计算在每个插值点( XI,YI )%作二元拟合图形.), zlabel( 'z' ),2title( ' 用三角基三次内插法拟合函数 z =7-3 xA3 exp(-xA2 - yA2) 曲面和节点的图形 ' ) %legend( ' 拟合曲面 ',' 节点 (xi,yi,zi)' hold on plot3(X,Y,Z, hold of 'bo' ) 运行后屏幕显示用三角基三次内插法拟合函数 和节点的图形及其插值 Z I (略). ( 4 ) MATLAB 4网格化坐标方法 . 输入程序 >> x=rand(50,1);y=rand(50,1); X=-3+(3-(-3))*x; Y=-2.5+(3.5-(-2.5))*y; )%在当前图形上添加新图形 . %用兰色小圆圈画出每个节点 (X,Y,Z). %结束在当前图形上添加新图形 .22 Z=7-3 x 3e -x2-y2 在两组不同节点处的曲面 Z=7-3* X.A3 .* exp(-X.A2 - Y.A2); 的值.X1=-3:0.2:3; Y1=-2.5:0.2:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=griddata(X,Y,Z,XI,YI, 插值 ZI. mesh(XI,YI, ZI)xlabel( title( ' 的曲面和节点的图形%legend( hold on %生成50个一元均匀分布随机数 x 和y , x , y . %利用x 生成上的随机变量. %利用y 生成上的随机变量•%在每个随机点( X,Y )处计算 Z %将坐标( XI,YI )网格化 . 'v4' ) %计算在每个插值点( XI,YI )处的%作二元拟合图形 . 'y' ), zlabel( 'z' ), 'x' ), ylabel(用 MATLAB 4 网格化坐标方法 拟合函数 z =7-3 xA3 exp(-xA2 - yA2) ') ' 拟合曲面 ',' 节点 (xi,yi,zi)' )%在当前图形上添加新图形 . %用兰色小圆圈画出每个节点 (X,Y,Z). %结束在当前图形上添加新图形 .22 plot3(X,Y,Z, hold of 'bo' ) 运行后屏幕显示用 MATLAB 4网格化坐标方法拟合函数 Z=7-3 x 3e -x -y 在两组不同节点处 的曲面和节点的图形及其插值 ZI (略). 3 -x 2 -y 2(5)作被拟合曲面 Z =7-3x 3e -x -y 和节点的图形 . 输入程序 >> x=rand(50,1);y=rand(50,1); X=-3+(3-(-3))*x; Y=-2.5+(3.5-(-2.5))*y;Z=7-3* X.A3 .* exp(-X.A2 - Y.A2);%生成50个一元均匀分布随机数 x 和y , x , y . %利用x 生成随机变量. %利用 y 生成随机变量 .%在每个随机点( X,Y )处计算 Z的值. X1=-3.:0.1:3.; Y1=-2.5:0.1:3.5;[XI,YI] = meshgrid(X1,Y1); ZI=7-3* XI.A 3 .* exp(-XI42 - YI.A2); mesh(XI,YI, ZI) xlabel( title(%将坐标( XI,YI )网格化 . %作二元拟合图形 . 'x' ), ylabel( 'y' ), zlabel( 'z' ), 被拟合函数 z =7-3xA3 exp(-xA2 - yA2)的曲面和节点的图形 ') %legend( h old onplot3(X,Y,Z,hold of' 被拟合函数曲面 ',' 'bo' ) 2 运行后屏幕显示被拟合函数 Z=7-3 x 3e -x -y节点 (xi,yi,zi)' )%在当前图形上添加新图形 .%用兰色小圆圈画出每个节点 (X,Y,Z). %结束在当前图形上添加新图形 .的曲面和节点的图形及其函数值 ZI (略) .7.9 随机数据点上的n元拟合及其MATLA程序例7.9.1 首先利用MATLAB函数rand产生随机数据X i,Y i,Z i,然后用线性变换u at b ( 其中a 5,b 5 )将随机数据X1,Y1 ,Z 1 变换为节点坐标( X,Y,Z ), 再用函数222w 7 3x3y(z 1)e x y z生成数据W用三元最近邻内插法方法计算函数w在插值点x i 3:0.5:10, y i 2:0.5:13, z i=y i处拟合数据的值,并作其图形解输入程序>> X1=-5+5*ra nd(10,1);Y1=-5+5*rand(10,1);Z1=Y1;[X,Y,Z] = meshgrid(X1,Y1,Z1);W=7-3* X.A3 .* Y.*(Z+1).* exp(-X.A2 - Y.A2- Z.A2);xi=-3:0.5:10;yi=-2:0.5:13;zi=yi;[XI,YI,ZI] = meshgrid(xi,yi,zi);W1=griddata3(X, Y, Z, W, XI, YI, ZI, 'nearest' );slice(XI,YI,ZI,W1,[-2 4 9.5],9,[-2 2 9]),%shading flat%lighting flatxlabel( 'x' ), ylabel( 'y' ), zlabel( 'z' ),title( ' 被拟合函数W=7-3XA3Y(Z+1)exp(-XA2 - YA2- ZA2) ' );hold oncolorbar( 'horiz' )view([-30 45])运行后屏幕显示三元线性拟合值及其图形(略) .例7.9.2 设节点(X,Y,Z,W )中的X,Y和Z分别是在区间[3, 3]和[2.5, 3.5], Y=Z222上的15个随机数,W是函数W 2 x e x y z在(X,Y,Z )的值,拟合点(X i,y i ,z i)中的x i=-3:0.2:3 ,y i =-2.5:0.235 ,z i =y i,用'li near'方法计算拟合数据的值,并作其图形.解输入程序>> x=rand(15,1); y=rand(15,1);X1=-3+(3-(-3))*x;Y1=-2.5+(3.5-(-2.5))*y;Z1=Y1;[X,Y,Z] = meshgrid(X1,Y1,Z1);W=2+X.* exp(-X.A2 - Y.A2- Z.A2);xi=-3:0.2:3; yi=-2.5:0.2:3.5; zi=yi;[X2,Y2,Z2]=meshgrid(xi,yi,zi);W1=griddata3(X, Y, Z, W, X2,Y2,Z2, 'linear' );slice(X2,Y2,Z2,W1,[-1 0 1.5],2,[-2 3]), shading flat,lighting flat,xlabel( 'x' ), ylabel( 'y' ), zlabel( 'z' ),title( ' 被拟合函数W=2+X exp(-XA2 - YA2- ZA2)' );hold on,colorbar( 'horiz' ), view([-3 5])运行后屏幕显示三元线性拟合值及其图形(略) .。
matlab最小二乘拟合圆在MATLAB中,可以通过最小二乘法拟合圆。
最小二乘法是一种常用的数学优化方法,它可以使用已知数据点来拟合一个最佳的圆。
首先,我们需要准备一些圆心坐标和半径的数据点。
假设我们有m个数据点,坐标为(xi, yi),我们的目标是找到一个圆心坐标为(cx, cy)和半径为r的圆,以使所有数据点(xi, yi)到圆的距离之和最小。
为了使用最小二乘法拟合圆,我们可以将问题转化为以下形式的优化问题:最小化 sum((sqrt((xi - cx)^2 + (yi - cy)^2) - r)^2)其中,i的取值范围是1到m。
在MATLAB中,可以使用数值优化工具箱的lsqnonlin函数来求解上述优化问题。
具体代码如下所示:% 准备数据点的坐标(xi, yi)x = [x1, x2, ..., xm];y = [y1, y2, ..., ym];% 定义目标函数fun = @(c) sum((sqrt((x - c(1)).^2 + (y - c(2)).^2) -c(3)).^2);% 定义初始猜测值x0 = [guess_cx, guess_cy, guess_r];% 使用最小二乘法进行拟合c = lsqnonlin(fun, x0);% 提取拟合结果的圆心坐标(cx, cy)和半径rcx = c(1);cy = c(2);r = c(3);通过运行上述代码,将得到最佳拟合的圆心坐标(cx, cy)和半径r。
需要注意的是,该方法仅适用于理想情况下的数据点,如没有噪声等。
而且,对于特殊形状的数据点分布,可能会影响拟合结果的准确性。
因此,在使用该方法时,需要根据实际情况进行适当的数据预处理和分析。
matlab 最小二乘法散点拟合圆在MATLAB中,可以使用最小二乘法来拟合一组散点数据的圆形轮廓。
最小二乘法是一种常见的拟合方法,旨在使数据点到拟合曲线或函数的残差平方和最小化。
对于圆形轮廓拟合问题,我们需要找到圆心和半径的参数。
以下是在MATLAB中使用最小二乘法实现散点拟合圆的步骤:1. 首先,将散点数据表示为一个含有x和y坐标的矩阵。
例如,我们可以采用以下代码创建一个包含50个随机数据点的矩阵:```x = 10*randn(50,1);y = 10*randn(50,1);data = [x,y];```2. 接下来,我们需要定义一个误差函数,它将计算每个数据点与拟合圆之间的距离。
对于圆形轮廓,可以使用欧几里得距离公式:```function F = circlefitfunc(params, data)x0 = params(1);y0 = params(2);r = params(3);F = sqrt((data(:,1)-x0).^2 + (data(:,2)-y0).^2) - r;end```3. 然后,在MATLAB中使用lsqnonlin函数来最小化误差函数,找到最佳的圆心和半径参数。
lsqnonlin函数使用非线性最小二乘法求解非线性方程组或最小化非线性函数的问题。
```params0 = [0, 0, 1]; % 初始参数猜测options = optimset('Algorithm','trust-region-reflective'); params =lsqnonlin(@(x)circlefitfunc(x,data),params0,[],[],options); ```4. 最后,我们可以使用拟合参数绘制拟合圆。
```x0 = params(1);y0 = params(2);r = params(3);t = linspace(0,2*pi,100)';x = r*cos(t) + x0;y = r*sin(t) + y0;plot(data(:,1),data(:,2),'o',x,y,'-');```最小二乘法散点拟合圆在图像处理和计算机视觉领域得到了广泛应用。
matlab 最小二乘法多个自变量多个自变量的最小二乘法在MATLAB中的应用最小二乘法(Least Squares Method)是一种常见的数据拟合方法,在MATLAB中具有广泛的应用。
它可以用于多个自变量的情况,即多元线性回归问题。
本文将介绍如何使用MATLAB进行多个自变量的最小二乘法拟合,并给出一个实际案例进行说明。
我们需要明确什么是多元线性回归问题。
在统计学中,回归分析是研究两个或多个变量之间关系的一种方法。
多元线性回归是回归分析中的一种常见形式,其模型可以表示为:Y = β0+ β1*X1 + β2*X2 + ... + βn*Xn + ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn是回归系数,ε是误差项。
我们的目标是通过拟合数据,估计回归系数的值。
在MATLAB中,可以使用“polyfit”函数来进行多元线性回归拟合。
该函数的基本用法如下:p = polyfit(X, Y, n)其中,X是自变量的矩阵,Y是因变量的向量,n是多项式的次数。
函数的返回值p是一个向量,包含了拟合多项式的系数。
使用polyval函数可以通过这些系数来计算拟合的值。
下面我们通过一个实际案例来演示多个自变量的最小二乘法拟合在MATLAB中的应用。
假设我们有一组数据,包含两个自变量X1和X2,和一个因变量Y。
我们的目标是通过这些数据来拟合一个多元线性回归模型。
我们需要准备数据。
我们可以使用rand函数生成一组随机数据作为示例数据,代码如下:X1 = rand(100,1);X2 = rand(100,1);Y = 2*X1 + 3*X2 + randn(100,1);接下来,我们可以使用polyfit函数进行拟合,代码如下:p = polyfit([X1, X2], Y, 1);这里我们将X1和X2合并成一个矩阵作为自变量。
函数的第三个参数1表示拟合一个一次多项式。
拟合完成后,我们可以使用polyval函数来计算拟合的值,代码如下:Y_fit = polyval(p, [X1, X2]);现在,我们已经得到了拟合的值Y_fit。
个人收集整理-ZQ
解:拟合两组数据、,已知,只需确定多项式系数、、.根据最小二乘原则,使所求问题成为三元一次函数()地极小点问题.
由多元函数取极值地必要条件知比为
,,
地解,即满足
将三元一次线性方程组带入,其程序如下:
>> [,...资料个人收集整理,勿做商业用途
];资料个人收集整理,勿做商业用途
[,...资料个人收集整理,勿做商业用途
,...资料个人收集整理,勿做商业用途
];
>> (*.^)(*.^)(*.^)(*.^)(*.^)(*.*)(*.^.*)(*.^.*)资料个人收集整理,勿做商业用途
>> []('***','***','*** ','');资料个人收集整理,勿做商业用途
>> ()()()
1 / 1。