高考数学艺术生百日冲刺专题18不等式选讲测试题378
- 格式:doc
- 大小:3.19 MB
- 文档页数:70
2018年高考数学复习演练第十八章不等式选讲(含2014-2017年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学复习演练第十八章不等式选讲(含2014-2017年真题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学复习演练第十八章不等式选讲(含2014-2017年真题)的全部内容。
不等式选讲考点不等式选讲1。
(2017•新课标Ⅰ,23)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.1.(1)解:当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x= 的二次函数,g(x)=|x+1|+|x﹣1|= ,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x= ,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].2。
(2017•新课标Ⅱ,23)已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.2.证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥( + )2=(a3+b3)2≥4,当且仅当= ,即a=b=1时取等号,(Ⅱ)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2 ,∴(a+b)3﹣2≤ ,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.3.(2017•新课标Ⅲ,23)已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.3。
【高中数学】数学《不等式选讲》试卷含答案一、141.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B 【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集. 【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。
专题18不等式选讲测试题【高频考点】绝对值不等式的求解,喊绝对值的函数的最值的求解,利用绝对值不等式求最值或解决与绝对值不等式相关的恒成立问题,有解,不等式的证明等。
【考情分析】本单元在高考中是选考部分,命题形式是解答题,全国卷分值是10分,考查含绝对值不等式的证明与求解,求参数分范围,不等式的证明等。
【重点推荐】第12题考察绝对值不等式的解法以及绝对值不等式的几何意义的应用。
1(2018•衡阳三模)设函数f(x)=|x﹣1|+|x﹣a|,a∈R.(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值范围.【解析】:(1)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,或,或,解得:x≤0或 x≥5.故不等式f(x)≥5的解集为 {x|x≤0,或 x≥5 }.……………(5分)(2)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.……………(8分)由题意得:|a﹣1|≥4,解得 a≤﹣3,或a≥5.……………(10分)2. (2018•郑州三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;因为a2﹣2a+3=(a﹣1)2+2>0,所以a2>2a﹣3,且|x﹣a2|+|x﹣2a+3|≥|(x﹣a2)﹣(x﹣2a+3)|=|a2﹣2a+3|=a2﹣2a+3,①当2a﹣3≤x≤a2时,①式等号成立,即.(7分)又因为,②当时,②式等号成立,即.(8分)所以,整理得,5a2﹣8a﹣4>0,(9分)解得或a>2,即a的取值范围为.(10分)。
高三数学《不等式选讲专题复习题》含答案典型题一【母题原题1】【2018「新课标1,理23]已知月行=|支+1|-|四-4.(1)当口 = 1时,求不等式》1的解集;(2)若尤E(OJ;时不等式『(X)Ax成立,求a|的取值范围.工解析】分析二1代人函数解析式,求得/5)二|工七11 —口-1|,利用零点分段符解析式化为'—乙x M —L代工)二2工-1《工< L a然后利用分段函数,分情况讨论求得不等式又外8 1的解集为骁|工> ;)J ,2.XV1.⑵根据题中所给的IE GU),其中一个绝对值符号可以去掉,不等式FCOAX可以化为时分情况讨论即可求得姑果.r—乙X£—L详解:a)当a= 1时,rw= k + ii - |X-II,即= 2x-i<x< iL 25之1.故不等式100 > 1的解量为毯w > H◎)当苒E寸I1+ 1| - I做一1| A1成立等价于当了曰〔0/冲tl© -II <工成立.若& w 口,贝虺3 E GU对陋-l|>b若比2―1|<1的解集为口《工匕巳所以;之和故口<口且2.综上,口的取值范围为@司,点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号, 之后进行分类讨论,求得结果 .【母题原题2】【2017「新课标1,理23]已知函数f(x)=-x2+ax+4,g(x)=|x+ 1|+|x-1|.⑴当a=1时,求不等式f(x)福(x)的解集;(2)若不等式f(x)到x)的解集包含卜-1,1],求a的取值范围.【解析】(1 )当u=l时不等式加冰M痔价于好工+,+11 +gT9 ①当爪-1时⑪式化为由3x4口无解;当4a口时XD式化为壮-工-25人而-1勺aL:当I>1时。
专题19考前模拟卷一.选择题1.设集合M={x|x2﹣x>0},N={x|<1},则()A.M∩N=∅B.M∪N=∅C.M=N D.M∪N=R【答案】C【解析】:M={x|x2﹣x>0}={x|x>1或x<0},N={x|<1}={x|x>1或x<0},则M=N,故选:C.2.已知是虚数单位,,且,则( )A. B. C. D.【答案】A【解析】由,得,,即,故选A.3.在区间[0,2]上随机取一个数x,使的概率为()A.B.C.D.【答案】A【解析】:∵0≤x≤2,∴0≤≤π,∵sin≥,∴≤≤,即≤x≤,∴P==.故选:A.4.(2018•威海二模)已知命题p:“∀a>b,|a|>|b|”,命题q:“”,则下列为真命题的是()A.p∧q B.¬p∧¬q C.p∨q D.p∨¬q【答案】C【解析】:∵命题p:“∀a>b,|a|>|b|”是假命题,命题q:“”是真命题,∴p∨q是真命题.故选:C.5.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月最高C. 从两图看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月看,该省在2018年快递业务收入同比增长率逐月增长【答案】D6.(2019•泉州期中)已知等差数列{a n}的前n项和为S n,则“S n的最大值是S8”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】:等差数列{a n}的前n项和为S n,则“S n的最大值是S8”⇔a8>0,a9<0.则“”⇔.∴S n的最大值是S8”是“”的充要条件.故选:C.7.已知点P(2,1)是抛物线C:x2=my上一点,A,B是抛物线C上异于P的两点,A,B在x轴上的射影分别为A1,B1,若直线PA与直线PB的斜率之差为1,D是圆(x﹣1)2+(y+4)2=1上一动点,则△A1B1D 的面积的最大值为()(2)若b,a,c成等差数列,△ABC的面积为2,求a.【解析】:(1)∵asinB=bsin(A+).∴由正弦定理可得:sinAsinB=sinBsin(A+).∵sinB≠0,∴sinA=sin(A+).∵A∈(0,π),可得:A+A+=π,∴A=.…………6分(2)∵b,a,c成等差数列,∴b+c=,∵△ABC的面积为2,可得:S△ABC=bcsinA=2,∴=2,解得bc=8,∴由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccos=(b+c)2﹣3bc=(a)2﹣24,∴解得:a=2.………………12分18.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.(1)若,证明:BE⊥CD;(2)若,求点E到平面SBD的距离.【解析】(1)因为,所以,在线段CD上取一点F使,连接EF,BF,则EF∥SD且DF=1.因为AB=1,A B∥CD,∠ADC=90°,所以四边形ABFD为矩形,所以CD⊥BF.又SA⊥平面ABCD,∠ADC=90°,所以SA⊥CD,AD⊥CD.因为AD∩SA=A,所以CD⊥平面SAD,所以CD⊥SD,从而CD⊥EF.因为BF∩EF=F,所以CD⊥平面BEF.又BE平面BEF,所以CD⊥BE.…………5分(2)解:由题设得,,又因为,,,所以,设点C到平面SBD的距离为h,则由V S—BCD=V C—SBD得,因为,所以点E到平面SBD的距离为.…………12分19. .2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(ⅰ)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.【解析】(1)平均数.前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x,则(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位数为35.…………5分(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y.则从中任选2人共有如下15个基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).至少有1人年龄不低于60岁的共有如下9个基本事件:(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).记“这2人中至少有1人年龄不低于60岁”为事件A,故所求概率.…………9分(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88,故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.……12分20.已知椭圆E:(a>b>0)过点P(),其上顶点B(0,b)与左右焦点F1,F2构成等腰三角形,且∠F1BF2=120°.(Ⅰ)求椭圆E的方程;(Ⅱ)以点B(0,b)为焦点的抛物线C:x2=2py(p>0)上的一动点P(m,y p),抛物线C在点P处的切线l与椭圆E交于P1P2两点,线段P1P2的中点为D,直线OD(O为坐标原点)与过点P且垂直于x轴的直线交于点M,问:当0<m≤b时,△POM面积是否存在最大值?若存在,求出最大值,若不存在说明理由.【解析】:(Ⅰ)由已知得:a=2b,+=1,解得b2=1,a2=4.故椭圆E的方程为:+y2=1.………………4分(Ⅱ)抛物线C的焦点B(0,1),则其方程为x2=4y.y′=x.于是抛物线上点P(m,),则在点P处的切线l的斜率为k=y′|x=m=,故切线l的方程为:y﹣=(x﹣m),即y=x﹣.…………6分由方程组,消去y,整理后得(m2+1)x2﹣m3x+﹣4=0.由已知直线l与椭圆交于两点,则△=m6﹣4(m2+1)(﹣4)>0.解得0≤m2<8+4,其中m=0是不合题意的.∴﹣<m<0,或0<m<.设P1(x1,y1),P2(x2,y2),则x D==.…………8分代入l的方程得y D=.故直线OD的方程为:x,即y=﹣x.当x=m时,y=﹣,即点M.△POM面积S=|PM|•m=m=+m.∵S′=m2+>0,故S关于m单调递增.∵0<m≤1,∴当m=1时,△POM面积最大值为.…………12分21已知函数.(1)若函数f(x)在[1,+∞)上是单调递减函数,求a的取值范围;(2)当-2<a<0时,证明:对任意x∈(0,+∞),.【解析】 (1)解:由题意得.即在上恒成立,所以.…………3分(2)证明:由(1)可知,所以在上单调递增,在上单调递减,因为,所以,所以,即,即,所以.…………12分22.(10分)以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.23. 设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.【解析】:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|=,画出图象如图,(Ⅱ)由(Ⅰ)知,当x=﹣时,函数f(x)取得最大值为m=.∵a2+2c2+3b2=m==(a2+b2)+2(c2+b2)≥2ab+4bc,∴ab+2bc≤,当且仅当a=b=c=1时,取等号,故ab+2bc的最大值为.。
专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。
2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。
3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。
一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6} 【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a<b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x 的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x ﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a 分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q 一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分专题2函数测试题命题报告:3.高频考点:函数的性质(奇偶性单调性对称性周期性等),指数函数、对数函数、幂函数的图像和性质,函数的零点与方程根。
高三数学不等式选讲专项测试题含答案(120分钟 每小题10分,共15小题,总分150分)1.设a ,b ,c ,d 均为正数,且a +b =c +d , 证明:(I )(1)ab >cd ,则a +b >c +d ;(II )a +b >c +d 是|a -b |<|c -d |的充要条件.2.【2017课标II ,理23】已知330,0,2a b a b >>+=. 证明:(I )55()()4a b a b ++≥;(II )2a b +≤。
3.已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (I )当a =1时,求不等式f (x )≥g (x )的解集;(II )若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.4.已知函数f (x )=|x +1|-2|x -a |,a >0.(I )当a =1时,求不等式f (x )>1的解集;(II )若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.5.对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .(I )求m 的值;(II )解不等式|x -1|+|x -2|≤m .6.已知函数f (x )=|x +1|-|x -2|.(I )求不等式f (x )≥1的解集;(II )若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.7. 设0,0a b >>,且11a b a b+=+. 证明:(I )2a b +≥; (II )22a a +<与22b b +<不可能同时成立.8.(黑龙江省大庆市2013届高三第二次模拟考试数学(理)试题)已知函数a x x x f 212)(-+-=.(I)当1=a 时,求3)(≤x f 的解集;(II)当[]2,1∈x 时,3)(≤x f 恒成立,求实数a 的集合.9.(吉林省吉林市2013届高三三模(期末)试题 数学理 )设()|3||4|.f x x x =-+-(Ⅰ)求函数)(2)(x f x g -=的定义域;(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.10.【2018年全国卷Ⅲ理】设函数.(I )画出的图像;(II )当,,求的最小值.11.(2013年新课标Ⅱ卷数学(理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.12.(黑龙江省哈六中2013届高三第二次模拟考试数学理)已知c b a ,,均为正数(I )证明:36)111(2222≥+++++cb ac b a ,并确定c b a ,,如何取值时等号成立; (II )若1=++c b a ,求131313+++++c b a 的最大值.13.【山东省济南省2018届三模】已知函数 .(I )解不等式; (II )若,且,证明:,并求时,的值.14.【2015高考福建,理21】已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221149a b c ++的最小值.15.【2015高考陕西,理24】已知关于x 的不等式x a b +<的解集为{}24x x <<. (I )求实数a ,b 的值;(II 12at bt +的最大值.参考答案1.[解析] (1)∵a,b,c,d为正数,且a+b=c+d,欲证a+b>c+d,只需证明(a+b)2>(c+d)2,也就是证明a+b+2ab>c+d+2cd,只需证明ab>cd,即证ab>cd.由于ab>cd,因此a+b>c+d. ………………5分(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd. 由(1),得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd. 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件. ………………10分【类题通法】1.本题将不等式证明与充要条件的判定渗透命题,考查推理论证能力和转化与化归的思想方法,由于两个不等式两边都是正数,可通过两边平方来证明.2.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.3.分析法证明的思路是“执果索因”,其框图表示为:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件2.【解析】……5分(2)因为()()()()()3322323332332432,4a b a a b ab b ab a b a b a b a b +=+++=+++≤+++=+所以()38a b +≤,因此2a b +≤。
数学《不等式》复习知识要点一、选择题1.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.2.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭,当且仅当13a =时等号成立; 当10a <时,111133232222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭,当且仅当13a =-时等号成立;∴实数d 的取值范围为(,3][3,)-∞-⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.3.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.4.已知函数())22log 1f x x x =+,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】 2210,x x x x x x +≥-=所以定义域为R ,因为()22log 1f x x x =++,所以()f x 为减函数 因为()22log 1f x x x=++,())22log 1f x x x -=+,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=,所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭, 因为9926b a b a a b a b+≥⨯=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.5.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A .85B .8C .165D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =.故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.6.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.7.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B C D .32【答案】B 【解析】 【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B-=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.8.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ). A.35+ B.45+ C.25+ D【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭45+=当且仅当3n m m n=,即3m n=,即23(2)x y x y-=+即97333,1515x y+-==时取等号.故选:B.【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.9.若实数,x y满足不等式组2,36,0,x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩则3x y+的最小值等于()A.4B.5C.6D.7【答案】A【解析】【分析】首先画出可行域,利用目标函数的几何意义求z的最小值.【详解】解:作出实数x,y满足不等式组236x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x yx y+-=⎧⎨-=⎩得(1,1)A,由3z x y=+得3y x z=-+,平移3y x=-,易知过点A时直线在y上截距最小,所以3114minz=⨯+=.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.12.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟…,则x y y +的取值范围是( )A.12, 23⎡⎤⎢⎥⎣⎦B.20,3⎛⎤⎥⎝⎦C.11,3⎛⎤--⎥⎝⎦D.3,22⎡⎤⎢⎥⎣⎦【答案】B【解析】【分析】作出不等式121x yx+⎧⎨-⎩剟…表示的平面区域,整理得:x yy+1xy=+,利用yx表示点(),x y 与原点的连线斜率,即可求得113xy-<-…,问题得解.【详解】将题中可行域表示如下图,整理得:x yy+1xy=+易知ykx=表示点(),x y与原点的连线斜率,当点(),x y在()1.3A-处时,ykx=取得最小值-3.且斜率k小于直线1x y+=的斜率-1,故31k-≤<-,则113xy-<-…,故23x yy+<….故选B【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.13.已知离散型随机变量X服从二项分布~(,)X B n p,且()4E X=,()D X q=,则11p q+的最小值为()A .2B .52C .94D .4【答案】C 【解析】 【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值.【详解】离散型随机变量X 服从二项分布()X B n p :,, 所以有()4E X np ==,()()1D X q np p ==-(,所以44p q +=,即14qp +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号.故选C . 【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.14.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭,因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.15.若两个正实数x ,y 满足142x y +=,且不等式2m 4yx m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可, 142x y +=Q,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭,当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min yx +=, 则由22m m ->得220m m -->,即()()120m m +->, 得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞, 故选D . 【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.16.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( ) A.3BC.3D.【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.17.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.20.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( )A.11,4⎡⎤-⎢⎥⎣⎦B.1,14⎡⎤⎢⎥⎣⎦C.12,4⎡⎤-⎢⎥⎣⎦D.1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】由函数的解析式可得函数的最小值为:()11f=,则要考查的不等式转化为:2154m m≤-,解得:114m≤≤,即实数m的取值范围为1,14⎡⎤⎢⎥⎣⎦.本题选择B选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.。
【最新】高考数学《不等式选讲》练习题一、141.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .9- B .9C .10D .0【答案】B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy= 时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.2.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞U B .(][),31,-∞-+∞U C .(][),13,-∞-+∞U D .(][),04,-∞+∞U【答案】B 【解析】 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
【详解】根据绝对值三角不等式,得1(1)()1x x a x x a a ++-≥+--=+∴()1f x x x a =++-的最小值为1a +()2f x ≥Q 恒成立,∴等价于()f x 的最小值大于等于2,即12a +≥ ∴12a +≥或12a +≤-,1a ≥或3a ≤-,故选B 。
【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围。
3.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+, 即3223x x ax a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.4.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.5.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.6.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20C .15D .16【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数.【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.7.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.8.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+-24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.9.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。
专题18不等式选讲测试题【高频考点】绝对值不等式的求解,喊绝对值的函数的最值的求解,利用绝对值不等式求最值或解决与绝对值不等式相关的恒成立问题,有解,不等式的证明等。
【考情分析】本单元在高考中是选考部分,命题形式是解答题,全国卷分值是10分,考查含绝对值不等式的证明与求解,求参数分范围,不等式的证明等。
【重点推荐】第12题考察绝对值不等式的解法以及绝对值不等式的几何意义的应用。
1(2018•衡阳三模)设函数f(x)=|x﹣1|+|x﹣a|,a∈R.(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值范围.【解析】:(1)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,或,或,解得:x≤0或 x≥5.故不等式f(x)≥5的解集为 {x|x≤0,或 x≥5 }.……………(5分)(2)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.……………(8分)由题意得:|a﹣1|≥4,解得 a≤﹣3,或a≥5.……………(10分)2. (2018•郑州三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;因为a2﹣2a+3=(a﹣1)2+2>0,所以a2>2a﹣3,且|x﹣a2|+|x﹣2a+3|≥|(x﹣a2)﹣(x﹣2a+3)|=|a2﹣2a+3|=a2﹣2a+3,①当2a﹣3≤x≤a2时,①式等号成立,即.(7分)又因为,②当时,②式等号成立,即.(8分)所以,整理得,5a2﹣8a﹣4>0,(9分)解得或a>2,即a的取值范围为.(10分)精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
专题18不等式选讲测试题
【高频考点】绝对值不等式的求解,喊绝对值的函数的最值的求解,利用绝对值不等式求最值或解决与绝对值不等式相关的恒成立问题,有解,不等式的证明等。
【考情分析】本单元在高考中是选考部分,命题形式是解答题,全国卷分值是10分,考查含绝对值不等式的证明与求解,求参数分范围,不等式的证明等。
【重点推荐】第12题考察绝对值不等式的解法以及绝对值不等式的几何意义的应用。
1(2018•衡阳三模)设函数f(x)=|x﹣1|+|x﹣a|,a∈R.
(1)当a=4时,求不等式f(x)≥5的解集;
(2)若f(x)≥4对x∈R恒成立,求a的取值范围.
【解析】:(1)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,
等价于,或,或,
解得:x≤0或 x≥5.
故不等式f(x)≥5的解集为 {x|x≤0,或 x≥5 }.……………(5分)
(2)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)
所以:f(x)min=|a﹣1|.……………(8分)
由题意得:|a﹣1|≥4,
解得 a≤﹣3,或a≥5.……………(10分)
2. (2018•郑州三模)已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
因为a2﹣2a+3=(a﹣1)2+2>0,所以a2>2a﹣3,
且|x﹣a2|+|x﹣2a+3|≥|(x﹣a2)﹣(x﹣2a+3)|=|a2﹣2a+3|=a2﹣2a+3,①
当2a﹣3≤x≤a2时,①式等号成立,即.(7分)
又因为,②
当时,②式等号成立,即.(8分)
所以,整理得,5a2﹣8a﹣4>0,(9分)
解得或a>2,即a的取值范围为.(10分)
模块检测题(一)
(时间:90分钟分值:100分)
一、选择题(本题包括15个小题,每小题3分,共45分。
每小题仅有一个选项符合题意)
1.(2017·全国Ⅲ卷)下列说法正确的是()
A.植物油氢化过程中发生了加成反应
B.淀粉和纤维素互为同分异构体
C.环己烷与苯可用酸性KMnO4溶液鉴别
D.水可以用来分离溴苯和苯的混合物
解析:植物油氢化过程发生油脂与氢气的加成反应,A正确;淀粉和纤维素的聚合度不同,造成它们的分子式不同,所以不是同分异构体,B错误;环己烷与苯都不与酸性KMnO4溶液反应,所以不能用该方法鉴别环己烷与苯,C错误;溴苯与苯互溶,不能用水分离溴苯和苯的混合物,D错误。
答案:A
2.氧可与许多元素形成化合物,下列有关叙述错误的是()
A.水分子的结构式为
B.氧与氟形成的化合物(OF2)中,氧元素的化合价为-2价
C.Na2O2的电子式为
D.在MgO晶体中,O2-的结构示意图可表示为。