辽宁省丹东市第七中学2017届九年级(下)第一次模拟考试数学试题(含答案)
- 格式:doc
- 大小:622.65 KB
- 文档页数:15
丹东七中2016-2017下学期九年级第一次模拟考试数学试卷考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1.3-的倒数是( )A 3 B31 C 31- D 3- 2.2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为( )A 6.76×106B 6.76×105C 67.6×105D 0.676×106 3.右图所示,几何体的左视图为( )A B C D4.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A 8,6 B 7,6 C 7,8 D 8,75.下列计算结果正确的是( )A 248a a a =÷ B 632a a a =⋅ C 623)(a a = D 6328)2(a a =-6.二元一次方程组⎩⎨⎧=-=+425y x y x ,的解为( )A ⎩⎨⎧==;,41y x B⎩⎨⎧==;,32y x C ⎩⎨⎧==;,23y x D ⎩⎨⎧==.,14y x7.如图,在□ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF=2,则BC 长为( )第3题图AEFDBC第7题图A 8B 10C 12D 148.如图,在△ABC 中,AD 和BE 是高,∠ABE =45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE =∠BAD . 有下列结论:①FD=FE ;②AH=2CD ;③BC ·AD=2AE 2; ④S △ABC =4S △ADF .其中正确的有( )A 1个B 2 个C 3 个D 4个二、填空题(每小题3分,共24分)9.分解因式:=-x xy 2 .10.不等式组⎪⎩⎪⎨⎧<->-.,32126x x x 的解集为 .11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是 . 12.反比例函数xk y 1-=的图象经过点(2,3),则k = . 13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x ,则可列方程为 . 14.观察下列数据:2-,25 ,310-,417,526-,…,它们是按一定规律排列的,依照此规律,第11个数据是 .15.如图,正方形ABCD 边长为3,连接AC ,AE 平分 ∠CAD ,交BC 的延长线于点E ,F A ⊥AE ,交CB 延长 线于点F ,则EF 的长为 .H DFACE G B第8题图第15题图ADBFCE16.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列6个结论正确的有____个 ①ac<0 ②2a+b=0 ③4a+2b+c>0 ④对于任意x 均有ax 2+bx ≥a+b ⑤3a+c=0 ⑥b+2c<0⑦当x>1时,y 随着x 的增大而减小三、解答题(每小题8分,共16分)17.计算:01)2016()21(12360sin 4-+--+︒-π18.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2 、C 2的坐标.四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文第18题图第16题图学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题: (1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数; (3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.21.如图,平行四边形ABCD 中,AB=3,BC=5,∠B=60°,G 是CD 的中点,E 是边AD 上第19题图的动点,EG 的延长线与BC 的延长线交于点F. (1)求证:四边形CEDF 是平行四边形;(2)① 当AE= 时,四边形CEDF 是矩形; ② 当AE= 时,四边形CEDF 是菱形.五、(每小题10分,共20分)22.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.第22题图E AADCBGEF第21题图六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端,测得仰角为︒48,再往建筑物的方向前进6米到达D 处,测得仰角为︒64,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米) (参考数据: sin48°≈107,tan48°≈1011,sin64°≈109,tan64°≈2)24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种..果树x (棵),它们之间的函数关系如图所示. (1)求y 与x 之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量w (千克)最大?最大产量是多少?BDCA建筑 物第23题图七、(本题12分)25.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量和位置关系并证明。
2017年辽宁省丹东市中考数学试卷一、选择题(每小题3分,共24分)1.(3分)-5的相反数是()A,— B.5 C.-—D.- 5552.(3分)一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“静"字相对的汉字是()网闾A.细B.心C.规D.范3.(3分)据《中国教育报》近期报道,4年来全国在义务教育阶段经费累计投入2.37万亿元,数据2.37万亿用科学记数法表示为()亿.A. 2.37X103B. 2.37X104C. 2.37X105D.0.237X1064.(3分)下列事件是必然事件的是()A,车辆随机经过一个路口,遇到红灯B.任意买一张电影票,座位号是2的整数倍,C.在地球上,上抛出去的篮球会下落D.打开电视机,任选一个频道,正在播放世乒赛5.(3分)如图,直线11/712,则a=()70120。
、A.160°B.150°C.140°D.130°6.(3分)下列计算结果正确的是()A.m3+m4=m7B.(m3)4=m81C.m44-m3=mD.m4«m3=m127.(3分)如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好与AF的中点重合,AE交CD于点H,若BC=2如,则HC的长为()8.(3分)在ZXABC中,ZBAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=-(x>0)经过点C.将AABC沿y轴向■上平移m个单X位长度,使点A恰好落在双曲线上,则m的值为()A.2B.2扼C.3D.3^2二、填空题(每小题3分,共24分)9.(3分)因式分解:3ax2-3ay4=.10.(3分)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数是.11.(3分)如图,在AABC中,ZC=90°,AB=5,AD是^ABC的角平分线,若CD=扼,则ZXABD的面积为.(3y—7c r八的解集为2-5x<2x-------13.(3分)如图,菱形ABCD的对角线AC、BD相交于点0,M、N分别为边AB、BC的中点,连接MN.若MN=1,BD=2扼,则菱形的周长为.14.(3分)某班共有学生45人,其中男生的2倍比女生的3倍少10人.设该班的男生有x人,女生有y人,请列出满足题意的方程组.15.(3分)如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为______.16.(3分)如图,在AABC中,ZA=90°,AC=3,AB=4.动点P从点A出发以每秒1个单位长度,的速度沿A3B匀速运动;同时动点Q从点B出发以每秒4个单位长度的速度沿B9C9A匀速运动.当点Q到达点A时,P、Q两点同时停止运动,过点P的一条直线与BC交于点D.设运动时间为t秒,当t为秒时,将APBD沿PD翻折,使点B恰好与点Q重合.O三、解答题(每小题8分,共16分)17.(8分)计算:(3-71)0-(§)<+|2-柢|+2cos45°18.(8分)在平面直角坐标系中,AABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出^ABC关于y轴对称的左A1B1C1;(2)将AABC绕点B逆时针旋转90。
2017年辽宁省丹东XX中学中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.02.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.(x6)2=x8D.1÷﹣1=3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的()A.众数B.方差C.平均数D.频数5.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°6.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A 对应.若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0)B.(3,﹣1)C.(3,0)D.(﹣1,3)7.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.78.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式:a3﹣4a2b+4ab2= .10.南海是我国固有领海,南海面积超过东海、黄海、渤海面积的总和,约为360万平方千米.360万平方千米用科学记数法可表示为平方千米.11.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.12.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有3个红球,且一次摸出一个球是红球的概率为,那么袋中的球共有个.13.不等式组的解集为.14.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC 于D,则∠CBD的度数为°.15.如图,一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为平方分米.16.在平面直角坐标系xOy中,已知反比例函数y=(k≠0)满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+k都经过点P,且|OP|=,则实数k的值.三、解答题(每题8分,共16分)17.先化简,再求值:,其中x=3tan30°+1.18.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点都在小方格的格点上.现以点D,E,F,G,H中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△ABC相似且相似比为1:2.(2)在图乙中画出一个三角形与△ABC的面积比为1:4但不相似.19.我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?请通过计算说明理由.20.钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓(参考数据:sin42°≈0.67,鱼岛东西两端点MN之间的距离(结果精确到0.1km).cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)21.在复习《反比例函数》一课时,同桌的小峰和小轩有一个问题观点不一致:情境:随机同时掷两枚质地均匀的骰子(骰子六个面上的点数分别代表1,2,3,4,5,6).第一枚骰子上的点数作为点P(m,n)的横坐标,第二枚骰子上的点数作为P(m,n)的纵坐标.小峰认为:点P(m,n)在反比例函数y=图象上的概率一定大于在反比例函数y=图象上的概率;小轩认为:P(m,n)在反比例函数y=和y=图象上的概率相同.问题:(1)试用列表或画树状图的方法,列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.22.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.六、(每题10分,共20分)23.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD 于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)若弦AD=10,AC=16,求⊙O的半径.24.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s (千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?七、(本题12分)25.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想: = ,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求的值.(用含α的式子表示)八、(本题14分)26.如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D 的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2017年辽宁省丹东XX中学中考数学模拟试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14 C.D.0【考点】实数大小比较.【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.2.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.(x6)2=x8D.1÷﹣1=【考点】负整数指数幂;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据去括号法则,幂的乘方,底数不变指数相乘;负整数指数次幂等于正整数指数次幂的倒数对各选项分析判断后利用排除法求解.【解答】解:A、﹣(﹣a+b)=a﹣b,故本选项错误;B、3a3﹣3a2不能运算,故本选项错误;C、(x6)2=x12,故本选项错误;D、1÷()﹣1=1÷=,故本选项正确.故选D.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.4.小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的()A.众数B.方差C.平均数D.频数【考点】统计量的选择.【分析】根据方差的含义和求法,可得:小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的方差.【解答】解:小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明7天体温的方差.故选:B.5.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【考点】平行线的性质.【分析】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选A.6.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A 对应.若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0)B.(3,﹣1)C.(3,0)D.(﹣1,3)【考点】坐标与图形变化﹣平移.【分析】根据平移的性质,结合已知点A,B的坐标,知点A的横坐标加上了4,纵坐标减小了1,所以A点的平移方法是:先向右平移4个单位,再向下平移1个单位,则B的平移方法与A点相同,即可得到答案.【解答】解:∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:先向右平移2个单位,再向下平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,2)平移后B′的坐标是:(3,﹣1).故选B.7.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原计划每天加工x套,则提高效率后每天加工(1+20%)x套,根据共用了18天完成任务,列方程即可.【解答】解:设原计划每天加工x套,则提高效率后每天加工(1+20%)x 套,由题意得, +=18.故选A.二、填空题(每小题3分,共24分)9.分解因式:a3﹣4a2b+4ab2= a(a﹣2b)2.【考点】提公因式法与公式法的综合运用.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.10.南海是我国固有领海,南海面积超过东海、黄海、渤海面积的总和,约为360万平方千米.360万平方千米用科学记数法可表示为 3.6×106平方千米.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:360万平方千米=3.6×106平方千米.故答案为:3.6×106.11.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为62°.【考点】圆周角定理;三角形内角和定理.【分析】连接OB.根据等腰△OAB的两个底角∠OAB=∠OBA、三角形的内角和定理求得∠AOB=124°;然后由圆周角定理求得∠C=62°.【解答】解:连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°﹣2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故答案是:62°.12.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有3个红球,且一次摸出一个球是红球的概率为,那么袋中的球共有9 个.【考点】概率公式.【分析】利用红球的概率公式列出方程求解即可.【解答】解:设袋中共有x个球,根据概率公式得:=,x=9.答:袋中的球共有9个.13.不等式组的解集为﹣1<x≤1 .【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:由(1)得,x>﹣1,由(2)得,x≤1,故原不等式组的解集为:﹣1<x≤1.14.如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC 于D,则∠CBD的度数为45 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故填45.15.如图,一把打开的雨伞可近似的看成一个圆锥,伞骨(面料下方能够把面料撑起来的支架)末端各点所在圆的直径AC长为12分米,伞骨AB长为9分米,那么制作这样的一把雨伞至少需要绸布面料为54π平方分米.【考点】圆锥的计算.【分析】利用圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可求解.【解答】解:∵圆锥的底面半径为AC=6分米,母线AB为9分米,∴圆锥的侧面积=π×6×9=54π.故答案为:54π.16.在平面直角坐标系xOy中,已知反比例函数y=(k≠0)满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+k都经过点P,且|OP|=,则实数k的值不存在.【考点】反比例函数与一次函数的交点问题.【分析】由反比例函数y=(k≠0),当x<0时,y随x的增大而减小,可判断k>0,设P(x,y),则P点坐标满足反比例函数与一次函数解析式,即xy=2k,y+x=k,又因为OP2=x2+y2,将已知条件代入,列方程求解.【解答】解:∵反比例函数y=(k≠0),当x<0时,y随x的增大而减小,∴k>0,设P(x,y),则xy=2k,y+x=k,∵x、y为实数,x、y可看作一元二次方程m2﹣km+2k=0的两根,∴△=3k2﹣8k≥0,解得k≥或k≤0(舍去),又∵OP2=x2+y2,∴x2+y2=7,即(x+y)2﹣2xy=7,(k)2﹣4k=7,解得k=﹣1或,而k≥,故不存在满足条件的k.故答案为:不存在.三、解答题(每题8分,共16分)17.先化简,再求值:,其中x=3tan30°+1.【考点】分式的化简求值;特殊角的三角函数值.【分析】将原式除式的第一项分子分母同时乘以x+3,然后利用同分母分式的减法法则计算,将被除式分母利用平方差公式分解因式,除式分母利用平方差公式分解因式,分子利用完全平方公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,然后利用特殊角的三角函数值求出x的值,将x的值代入化简后的式子中计算,即可求出原式的值.【解答】解:÷(﹣)=÷[﹣]=÷=•=,当x=3tan30°+1=3×+1=+1时,原式===.18.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点都在小方格的格点上.现以点D,E,F,G,H中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△ABC相似且相似比为1:2.(2)在图乙中画出一个三角形与△ABC的面积比为1:4但不相似.【考点】作图—相似变换.【分析】(1)根据三角形与△ABC相似且相似比为1:2,得出对应边长度即可得出答案;(2)根据三角形与△ABC的面积比为1:4但不相似,得出新三角形面积即可.【解答】解:(1)如图甲所示:(2)如图乙所示.四、(每题10分,共20分)19.我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是100 株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?请通过计算说明理由.【考点】条形统计图;扇形统计图.【分析】(1)根据扇形统计图可得乙种树苗所占的百分比,再用总数×乙种树苗所占的百分比,即可计算其株数;(2)根据扇形统计图求得丙种树苗的株数,再根据其成活率是89.6%,进行计算其成活数,再进一步补全条形统计图;(3)通过计算每一种的成活率,进行比较其大小.【解答】解:(1)500×(1﹣25%﹣25%﹣30%)=100(株);(2)500×25%×89.6%=112(株),补全统计图如图;(3)甲种树苗成活率为:×100%=90%,乙种果树苗成活率为:×100%=85%,丁种果树苗成活率为:×100%=93.6%,∵93.6%>90%>89.6%>85%,∴应选择丁种品种进行推广,它的成活率最高,为93.6%.20.钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓(参考数据:sin42°≈0.67,鱼岛东西两端点MN之间的距离(结果精确到0.1km).cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)【考点】解直角三角形的应用﹣方向角问题.【分析】在Rt△ACM和在Rt△BCN中,利用正切函数解答.【解答】解:在Rt△ACM中,tan∠CAM=tan42°==1,∴AC≈16km,∴BC=AC﹣AB=16﹣4=12km,在Rt△BCN中,tan∠CBN=tan56°=,∴CN≈17.76km,∴MN≈3.4km.答:钓鱼岛东西两端MN之间的距离约为3.4km.五.(每题10分,共20分)21.在复习《反比例函数》一课时,同桌的小峰和小轩有一个问题观点不一致:情境:随机同时掷两枚质地均匀的骰子(骰子六个面上的点数分别代表1,2,3,4,5,6).第一枚骰子上的点数作为点P(m,n)的横坐标,第二枚骰子上的点数作为P(m,n)的纵坐标.小峰认为:点P(m,n)在反比例函数y=图象上的概率一定大于在反比例函数y=图象上的概率;小轩认为:P(m,n)在反比例函数y=和y=图象上的概率相同.问题:(1)试用列表或画树状图的方法,列举出所有点P(m,n)的情形;(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)分别利用列表法以及画树状图列举出所有可能即可;(2)利用反比例函数图象上点的性质,以及概率公式求出判断谁的观点正确即可.【解答】解:(1)列表得:123456 1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)画树状图:.(2)一共有36种可能的结果,且每种结果的出现可能性相同,点(2,4),(4,2)在反比例函数y=的图象上,点(1,6),(2,3),(3,2),(6,1)在反比例函数y=的图象上,则点P(m,n)在在反比例函数y=的图象上的概率为,在反比例函数y=的图象上的概率都为: =,故两人的观点都不正确.22.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)根据关键描述语“购买甲、乙两种树苗共800株,”和“购买两种树苗共用21000元”,列出方程组求解.(2)先找到关键描述语“这批树苗的成活率不低于88%”,进而找到所求的量的等量关系,列出不等式求出甲种树苗的取值范围.(3)再根据题意列出购买两种树苗的费用之和与甲种树苗的函数关系式,根据一次函数的特征求出最低费用.【解答】解:(1)设购买甲种树苗x株,则乙种树苗y株,由题意得:解得答:购买甲种树苗500株,乙种树苗300株.(2)设甲种树苗购买z株,由题意得:85%z+90%≥800×88%,解得z≤320.答:甲种树苗至多购买320株.(3)设购买两种树苗的费用之和为m,则m=24z+30=24000﹣6z,在此函数中,m随z的增大而减小所以当z=320时,m取得最小值,其最小值为24000﹣6×320=22080元答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为22080元.六、(每题10分,共20分)23.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD 于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)若弦AD=10,AC=16,求⊙O的半径.【考点】切线的性质;线段垂直平分线的性质.【分析】(1)根据切线的性质得DF⊥DE,再利用平行线的性质可判断DF⊥AC,然后根据垂径定理即可得到结论;(2)连结AO,如图,先利用勾股定理计算出GD=6,设圆的半径为r,则OG=r ﹣6,再在Rt△AOG中利用勾股定理得到r2=(r﹣6)2+82,然后解方程求出r即可.【解答】(1)证明:∵DE是⊙O的切线,且DF过圆心O,∴DF⊥DE,又∵AC∥DE,∴DF⊥AC,∴DF垂直平分AC;(2)解:连结AO,如图,∵AG=GC,AC=16,∴AG=8,在Rt△AGD中,GD===6,设圆的半径为r,则OG=r﹣6,在Rt△AOG中,∵AO2=OG2+AG2,∴r2=(r﹣6)2+82,解得 r=,即⊙O的半径为.24.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s (千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15 分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【考点】一次函数的应用.【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,4)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)把(30,4),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)∵30﹣15=15,4÷15=∴小聪在天一阁查阅资料的时间和小聪返回学校的速度分别是15分钟,千米/分钟.(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,4),得4=45k解得k=∴s与t的函数关系式s=t(0≤t≤45).(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n(m≠0)代入(30,4),(45,0),得解得∴s=﹣t+12(30≤t≤45)令﹣t+12=t,解得t=当t=时,S=×=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.七、(本题12分)25.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想: = ,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠A CB=α,求的值.(用含α的式子表示)【考点】相似形综合题.【分析】(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG ≌△POE;(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值;(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,∵,∴△BOG≌△POE(ASA);(2)解:猜想.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∵,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即;(3)解法一:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°,由(2)同理可得:BF=BM,∠MBN=∠EPN,∵∠BNM=∠PNE=90°,∴△BMN∽△PEN.∴.在Rt△BNP中,tanα=,∴=tanα.即=tanα.∴=tanα.解法二:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴BO⊥PM,∠BPN=∠ACB=α,∵∠BPE=∠ACB=α,PF⊥BM,∴∠EPN=α.∠MBN=∠EPN=∠BPE=α.设BF=x,PE=y,EF=m,在Rt△PFB中,tan=,∵PF=PE+EF=y+m,∴x=(y+m)tan,在Rt△BFE中,tan==,∴m=x•tan,∴x=(y+xtan)•tan,∴x=y•tan+x•tan2,∴(1﹣tan2)x=y•tan,∴.即.解法三:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BNP=∠BOC=90°.∴∠EPN+∠NEP=90°.又∵BF⊥PE,∴∠FBE+∠BEF=90°.∵∠BEF=∠NEP,∴∠FBE=∠EPN,∵PN∥AC,∴∠BPN=∠BCA=α.又∵∠BPE=∠ACB=α,∴∠NPE=∠BPE=α.∴∠FBE=∠BPE=∠EPN=α.∵sin∠FPB=,∴BP=,)∵cos∠EPN=,∴PN=PE•cos,∵cos∠NPB=,∴PN=BP•cosα,∴EP•cos=BP•cosα,∴EP•cos=•cosα,∴.八、(本题14分)26.如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D 的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;(2)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;(3)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE ≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P点坐标即可.【解答】解:(1)∵抛物线经过点C(0,4),A(4,0),∴,解得,∴抛物线解析式为y=﹣;(2)由(1)可求得抛物线顶点为N(1,),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K 点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得,解得,∴直线C′N的解析式为y=,令y=0,解得x=,∴点K的坐标为(,0);(3)设点Q(m,0),过点E作EG⊥x轴于点G,如图2,由﹣=0,得x1=﹣2,x2=4,∴点B的坐标为(﹣2,0),AB=6,BQ=m+2,又∵QE∥AC,∴△BQE≌△BAC,。
辽宁省丹东市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)三个数的大小关系是()A .B .C .D .2. (2分)(2019·营口) 如图所示几何体的俯视图是()A .B .C .D .3. (2分) (2019八上·法库期末) 下列计算正确的是()A .B .C .D .4. (2分) (2019七下·绍兴月考) 如图,a∥b,将一块三角板的直角顶点放在直线a上,∠1=42°,则∠2的度数为()A . 46°B . 48°C . 56°D . 72°5. (2分) (2019九上·长葛期末) 在2017年的初中数学竞赛中,我校有5位同学获奖,他们的成绩分别是88,86,91,88,92.则由这组数据得到的以下结论,错误的是()A . 极差为6B . 平均数为89C . 众数为88D . 中位数为916. (2分)下列图标既是轴对称图形又是中心对称图形的是()A .B .C .D .7. (2分)如图,PA,PB,CD与⊙O相切于点为A,B,E,若PA=7,则△PCD的周长为()A . 7B . 14C . 10.5D . 108. (2分)不等式组的解集在数轴上表示正确的是()A .B .C .D .9. (2分)已知b>0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图分析,a的值等于()A . -2B . -1C . 1D . 210. (2分)(2019·增城模拟) 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为()个.A . 1835B . 1836C . 1838D . 1842二、填空题 (共6题;共7分)11. (1分) (2017七上·十堰期末) 2016年是“红军长征胜利80周年”。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:2014的相反数是A. B. C. D.试题2:如图,由4个相同的小立方块组成一个立体图形,它的主视图是A. B. C. D.试题3:为迎接“2014丹东港鸭绿江国际马拉松赛”,丹东新区今年投入约4000万元用于绿化美化.4000万用科学记数法表示为A. 4×106 B. 4×107 C. 4×108 D. 0.4×107试题4:下列事件中,必然事件是A. 抛掷一枚硬币,正面朝上B. 打开电视,正在播放广告C. 体育课上,小刚跑完1000米所用时间为1分钟D. 袋中只有4个球,且都是红球,任意摸出一球是红球试题5:评卷人得分如图,在△ABC中,AB =AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为A. 70°B. 80°C. 40°D. 30°试题6:下列计算正确的是A. B. C. D.试题7:如图,反比例函数和一次函数的图象交于A、B两点. A、B两点的横坐标分别为2,-3.通过观察图象,若,则x的取值范围是A. B. 或C. 或D.试题8:如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为A. B. C. D.试题9:如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2= .试题10:一组数据2,3,x,5,7的平均数是4,则这组数据的众数是 .试题11:若式子有意义,则实数x的取值范围是 .试题12:分解因式:= .试题13:不等式组的解集为.试题14:小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组 .试题15:如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.试题16:如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为 .试题17:计算:.试题18:如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,-4) ,B(3,-3) ,C (1,-1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.试题19:某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?试题20:某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?试题21:甲、乙两人用如图所示的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.试题22:如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.(1)判断直线DE与⊙O的位置关系,并说明理由.(2)若⊙O的半径R=5,tan A= ,求线段CD的长.试题23:禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.)(参考数据:sin 27°≈,cos 27°≈,tan 27°≈,sin 53°≈,cos 53°≈,tan 53°≈试题24:在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线的顶点坐标是 ]试题25:在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和的值.试题26:如图1,抛物线y=ax2+bx-1经过A(-1,0)、B(2,0)两点,交y轴于点C.点P为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△O BD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.A试题2答案: C试题3答案: B试题4答案: D试题5答案: D试题6答案: B试题7答案: C试题8答案: D试题9答案: 55°试题10答案:3试题11答案: x≤2且x≠0 试题12答案: x(x-2y)21<x<2试题14答案:试题15答案:试题16答案:试题17答案:.解:试题18答案:解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点A旋转到点A2所经过的路径长为:试题19答案:解:(1)80÷40%=200(人)∴本次共调查200名学生.(2)补全如图(每处2分).(3)1200×15%=180(人)∴该学校喜欢乒乓球体育项目的学生约有180人.试题20答案:解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.试题21答案:.解:(1)所有可能出现的结果如图:方法一:列表法方法二:树状图法(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18.∴甲、乙两人获胜的概率分别为:,试题22答案:(1)解:直线DE与⊙O相切.理由如下:连接OD. ∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切.(2)∵R=5∴AB=10在Rt△ABC中∵tanA==∴BC= AB·tanA=10×=∴AC=∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴试题23答案:解:如图,根据题意可得,在△ABC中,AB=99海里,∠ABC=53°,∠BAC=27°,过点C 作CD⊥AB,垂足为点D. ……………………………1分设BD=x海里,则AD=(99-x)海里,在Rt△BCD中,,则CD=x·tan53°≈海里.在Rt △ACD中,,则∴=解得,x=27,即BD=27.在Rt△BCD中,,则BC= 4545÷2=22.5(海里/时)∴该可疑船只的航行速度为22.5海里/时.试题24答案:解:(1)∴y=-4x+480(2)根据题意可得,x(- 4x+480)=14000解得,x1=70,x2=50(不合题意舍去)∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x-40)(-4x+480)=-4x2+640x-19200=-4(x-80)2+6400当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元. 试题25答案:解:(1)①证明:∵四边形ABCD是正方形∴AC=BD,OC=OA=AC,OD=OB=BD∴OC=OA=OD=OB,∵△C1OD1由△COD绕点O旋转得到∴O C1= OC,O D1=OD,∠CO C1=∠DO D1∴O C1= O D1 ∠AO C1=∠BO D1∴△A O C1≌△BOD1②AC1⊥BD1(2)AC1⊥BD1理由如下:∵四边形ABCD是菱形∴OC=OA=AC,OD=OB=BD,AC⊥BD∵△C1OD1由△COD绕点O旋转得到∴O C1= OC,O D1=OD,∠CO C1=∠DO D1∴O C1=OA ,O D1=OB,∠AO C1=∠BO D1∴∴∴△A O C1∽△BOD1∴∠O AC1= ∠OB D1又∵∠AOB=90°∴∠O AB+∠ABP+∠OB D1=90°∴∠O AB+∠ABP+∠O AC1=90°∴∠APB=90°AC1⊥BD1∵△A O C1∽△BOD1∴∴(3)试题26答案:解:(1)抛物线表达式:直线BC的表达式:(2)如图1,当点P的横坐标为时,把x=代入,得∴DE=又∵OE=,∴DE=OE∵∠OED =90°∴∠EOD=45°又∵OA=OC=1,∠AOC =90°∴∠OAC=45°∴∠OAC=∠EOD又∵∠OBD=∠ABC△OBD∽△ABC(3)设点P的坐标为P(x,)∴OE=x,PE==又∵OE=2PE∴解得(不合题意舍去)∴P、D两点坐标分别为,∴PD=OE=∴(4)。
丹东七中2013年九年级第一次模拟考试数学试题满分:150分 时间:120分钟 一、选择题:(共8小题,每小题3分, 共24分) 在下列每小题给出的四个选项中,只有一个....正确..的.,请在答题纸...上作答...。
1.2-的倒数是A . 2-B . 2C .21-D . 21 2.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是A .6105.8⨯吨 B .5105.8⨯吨 C .7105.8⨯吨 D .61085⨯吨 3.若两圆的半径分别是cm 1和cm 3,圆心距为cm 4,则这两圆的位置关系是 A .内切 B .相交 C .外切 D .外离 4.不等式组 110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是A .-31<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3 5.为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果,则关于这12户居民月用水量(单位:方),下列说法错误..的是 ( )A .中位数是6B .众数是6C .极差是8D .平均数是5 6.如图所示,将一副三角板如图叠放,则∠1的度数为 ( )A.60°B.30°C.75°D.55°7.如图1,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,住户(户) 2 4 5 1 月用水量(方/户)24610A B CD闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光. 任意闭合其中一个开关,则小灯泡发光的概率等于( )A . 21B . 31C . 41D . 438.如图,在正方形ABCD 中,点E 在AB 边上,且AE ∶EB =2∶1, AF ⊥DE 于G 交BC 于F ,则△AEG 的面积与四边形BEGF 的面积之比为 ( )A .1∶2B .4∶9C .1∶4D .2∶3二、填空题(每小题3分,计24分)9.式子11+--m m 有意义,则m 的取值范围 ; 10.多项式x x x 24223+-分解因式的结果是 .11.如图,二次函数c bx ax y ++=2的图象开口向上,图象经过 点)2,1(-和)0,1(,且与y 轴相交于负半轴,给出四个结论: ①0>a ;②0>b ;③0>c ;④0=++c b a 。
辽宁省丹东七中中考数学一模试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格内,每小题3分,共24分)1.﹣2的倒数是()A. B.2 C.﹣2 D.2.如图放置的几何体的左视图是()A.B.C.D.3.下列代数运算正确的是()A.(x3)2=x5B.(x+1)2=x2+1 C.(2x)2=2x2D.x2•x3=x54.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元5.下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y17.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.8.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10二、填空题9.函数y=中,自变量x的取值范围是.10.计算:(π﹣)0+(﹣)﹣3﹣2cos60°=.11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学记数法表示为.12.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S甲=0.20,S乙=0.16,则甲、乙两名同学成绩更稳定的是.13.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.14.若x,y为实数,且,则(x+y)=.15.设抛物线y=﹣x2+8x﹣12与X轴的两个交点是A、B,与y轴的交点为C,则△ABC的面积是.16.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n= AC.(用含n的代数式表示)三、解答题17.先化简,再求值.,并在﹣3,1,3,3tan30°+1中选一个合适的数代入求值.18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.四、解答题19.为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?20.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.五、解答题21.如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(精确到1米,参考数据:sin32°=0.5299,cos32°=0.8480)22.暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?六、解答题23.如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E.(1)求证:DE是⊙O的切线;(2)当DE=1,∠C=30°时,求图中阴影部分的面积.24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?七、解答题(本题12分)25.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.八、解答题(本题14分)26.如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B 点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴方程;(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.辽宁省丹东七中中考数学一模试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格内,每小题3分,共24分)1.﹣2的倒数是()A. B.2 C.﹣2 D.【考点】实数的性质.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣2的倒数是﹣,故选:A.【点评】本题考查了实数的性质,分子分母交换位置是求一个数的倒数的关键.2.如图放置的几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意中间看不到的线用虚线表示.3.下列代数运算正确的是()A.(x3)2=x5B.(x+1)2=x2+1 C.(2x)2=2x2D.x2•x3=x5【考点】完全平方公式;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方、完全平方公式、积的乘方、同底数幂的乘法,即可解答.【解答】解:A、(x3)2=x6,故错误;B、(x+1)2=x2+2x+1,故错误;C、(2x)2=4x2,故错误;D、正确;故选:D.【点评】本题考查了幂的乘方、完全平方公式、积的乘方、同底数幂的乘法,解决本题的关键是熟记完全平方公式.4.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元【考点】众数;中位数.【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等【分析】由平行线的性质、矩形的性质、正方形的判定以及等腰三角形的性质,即可求得答案;注意排除法在解选择题中的应用.【解答】解:A、两直线平行,同位角相等;故本选项错误;B、矩形对角线相等,菱形对角线互相垂直;故本选项错误;C、对角线相等且垂直的平行四边形是正方形;故本选项错误;D、等腰三角形两腰上的高相等;故本选项正确.故选D.6.若点(﹣2,y1)、(﹣1,y2)、(1,y3)在反比例函数y=的图象上,则下列结论中的正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数图象上点的坐标特征.【分析】易得此函数图象分布在一、三象限,根据反比例函数的增减性即可比较y3、y1、y2的大小.【解答】解:k>0,函数图象在一,三象限;由题意可知:横坐标为﹣2,﹣1的在第三象限,横坐标为﹣1的在第一象限.第三象限内点的纵坐标总小于第一象限内点的纵坐标,那么y3最大,在第三象限内,y随x的增大而减小,所以y2<y1.故选C.【点评】在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.7.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y=(k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y=(k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.8.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(,),则k的值为()A.4 B.6 C.8 D.10【考点】正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.【专题】数形结合.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF 全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的边长为2,B(,),∴BE=,AE==,∴OF=OE+AE+AF=++=5,∴点D的坐标为(,5),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=×5=8.故选:C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.二、填空题9.函数y=中,自变量x的取值范围是x>1.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可求出自变量x 的取值范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.计算:(π﹣2015)0+(﹣)﹣3﹣2cos60°=﹣8.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣8﹣2×=1﹣8﹣1=﹣8.故答案为:﹣8.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.一种花粉颗粒的直径约为0.0000058米,0.0000058用科学记数法表示为 5.8×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000058用科学记数法表示为5.8×10﹣6,故答案为:5.8×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S 甲=0.20,S 乙=0.16,则甲、乙两名同学成绩更稳定的是 乙 .【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S 甲=0.20,S 乙=0.16,∴S 甲>S 乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是 25° .【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据直线a ∥b ,∠2=65°得出∠FDE 的度数,再由EF ⊥CD 于点F 可知∠DFE=90°,故可得出∠1的度数.【解答】解:∵直线a ∥b ,∠2=65°,∴∠FDE=∠2=65°,∵EF⊥CD于点F,∴∠DFE=90°,∴∠1=90°﹣∠FDE=90°﹣65°=25°.故答案为:25°.【点评】本题考查的是平行线的性质及直角三角形的性质,根据题意得出∠FDE的度数是解答此题的关键.14.若x,y为实数,且,则(x+y)2000=1.【考点】非负数的性质:绝对值;有理数的乘方;非负数的性质:算术平方根.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入进行计算即可求解.【解答】解:根据题意得,x+2=0,y﹣3=0,解得x=﹣2,y=3,∴(x+y)2000=(﹣2+3)2000=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.设抛物线y=﹣x2+8x﹣12与X轴的两个交点是A、B,与y轴的交点为C,则△ABC的面积是24.【考点】抛物线与x轴的交点.【分析】令x=0求得点C的坐标;令y=0,通过解关于x的一元二次方程﹣x2+8x﹣12=﹣(x﹣2)(x﹣6)=0可以求得点A、B的坐标.进而得到AB的长,根据三角形的面积公式即可求解.【解答】解:令x=0,则y=﹣12,即C(0,﹣12).所以OC=12.令y=0,则﹣x2+8x﹣12=﹣(x﹣2)(x﹣6)=0,解得,x1=2,x2=6,即A(2,0),B(6,0)[或者B(2,0),A(6,0)]则AB=4,∴S△ABC=AB•OC=×4×12=24.故答案是:24.【点评】此题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确的得出有关点的坐标是解决问题的关键.16.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n= AC.(用含n的代数式表示)【考点】相似三角形的判定与性质;三角形中位线定理.【专题】规律型.【分析】由CO1是△ABC的中线,O1E1∥AC,可证得=,,以此类推得到答案.【解答】解:∵O1E1∥AC,∴△BO1E1∽△BAC,∴,∵CO1是△ABC的中线,∴=,∵O1E1∥AC,∴△O2O1E1∽△ACO2,∴,由O2E2∥AC,可得:,…可得:O n E n=AC.故答案为:.【点评】本题主要考查平行线分线段成比例定理,相似三角形的性质和判定的理解和掌握,能得出规律是解此题的关键.三、解答题17.先化简,再求值.,并在﹣3,1,3,3tan30°+1中选一个合适的数代入求值.【考点】分式的化简求值;特殊角的三角函数值.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=÷=÷=÷=•=,当x=3tan30°+1=3×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.【考点】作图-旋转变换;待定系数法求一次函数解析式;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.【解答】解:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x或y=﹣x﹣2.【点评】本题考查了利用旋转变换作图,利用平移变换作图,轴对称的性质,熟练掌握网格结构准确找出对应点的位置.四、解答题19.为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用1.5﹣2小时的频数除以其所占的百分比即可求得抽样调查的人数;(2)根据圆心角的度数求出每个小组的频数即可补全统计图;(3)用人数除以总人数乘以周角即可求得圆心角的度数;(4)用总人数乘以不超过1.5小时的所占的百分比即可.【解答】解:(1)观察统计图知:用车时间在1.5~2小时的有30个,其圆心角为54°,故抽查的总人数为30÷=200个;(2)用车时间在0.5~1小时的有200×=60个;用车时间在2~2.5小时的有200﹣60﹣30﹣90=20个,统计图为:中位数落在1﹣1.5小时这一小组内.(3)用车时间在1~1.5小时的部分对应的扇形圆心角的度数为×360°=162°;(4)该社区用车时间不超过1.5小时的约有1600×=1200个;【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据反比例函数的性质求出在图象上的点,即可得出答案.【解答】解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1 (﹣2,1)(﹣1,1)(1,1)(2)∵点(x,y)在图象上的只有(﹣2,1),(1,﹣2),∴点(x,y)在图象上的概率.【点评】此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.五、解答题21.如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(精确到1米,参考数据:sin32°=0.5299,cos32°=0.8480)【考点】解直角三角形的应用-方向角问题.【专题】应用题.【分析】本题可通过构建直角三角形来解答,过点C作AB的垂线交AB于D,CD是直角三角形ACD和CBD的公共直角边,要先求出CD的值然后再求AD,BD的值,进而得出AB的长.【解答】解:过点C作AB的垂线交AB于D,∵B点在A点的正东方向上,∴∠ACD=45°,∠DCB=32°,在Rt△BCD中,BC=100,∴DB=BCsin32°≈1000.5299=52.99(米),CD=BCcos32°≈1000.8480=84.80(米),在Rt△ACD中,AD=CD,∴AB=AD+DB≈84.80+52.99=137.79(米)≈138(米).【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,如果两个直角三角形有公共的直角边,先求出公共边一般是解题的常用方法.22.暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?【考点】分式方程的应用.【专题】压轴题.【分析】设第一队的平均速度是x千米/时,则第二队的平均速度是1.5x千米/时.根据半小时后,第二队前去支援,结果两队同时到达,即第一队与第二队所用时间的差是小时,即可列方程求解.【解答】解:设第一队的平均速度是x千米/时,则第二队的平均速度是1.5x千米/时.根据题意,得:解这个方程,得x=60经检验,x=60是所列方程的根,1.5x=1.5×60=90(千米/时).答:第一队的平均速度是60千米/时,第二队的平均速度是90千米/时.【点评】本题考查了列方程解应用题,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.六、解答题23.如图,以AB为直径的⊙O经过AC的中点D,DE⊥BC于点E.(1)求证:DE是⊙O的切线;(2)当DE=1,∠C=30°时,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OD,利用平行线的判定定理可以得到∠ODE=∠DEC=90°,从而判断DE是圆的切线;(2)由∠C=30°,DE=1,∠DEC=90°,求得DC=2,由于OD∥BC,于是得到∠ODA=30°,根据等腰三角形的性质得到∠AOD=120°,于是得到OA=,阴影部分面积即可求得.【解答】解:(1)连接OD,∵AB是⊙O的直径,D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∵点D在圆上,∴DE为⊙O的切线;(2)∵∠C=30°,DE=1,∠DEC=90°,∴DC=2,∵OD∥BC,∴∠ODA=30°,∵OD=OA,∴∠OAD=∠ODA=30°,∴∠AOD=120°,∴OA=,∴阴影部分面积S=﹣×2×=﹣.【点评】本题目考查了切线的判定,等腰三角形的判定及性质、圆周角定理及切线的性质,涉及的知识点比较多且碎,解题时候应该注意.24.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【考点】二次函数的应用;一元二次方程的应用.【专题】销售问题;压轴题.【分析】(1)根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=﹣10x2+130x+2300中,求出x的值即可.(3)把y=﹣10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【解答】解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点评】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.七、解答题(本题12分)25.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.(3)在图①中,若EG=4,GF=6,求正方形ABCD的边长.。
辽宁省丹东市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·湖州月考) 在实数1、0、﹣1、﹣2中,最小的实数是()A . ﹣2B . ﹣1C . 1D . 02. (2分) (2019七上·岑溪期中) 北京大兴国际机场,是我国新建的超大型国际航空综合交通枢纽,于今年9月25日正式投入运营.8个巨大的C形柱撑起了70万平方米航站楼的楼顶,形如展翅腾飞的凤凰,蔚为壮观.把数据70万用科学记数法应记为()A . 7×104B . 7×105C . 70×104D . 0.7×1063. (2分)(2019·永定模拟) 如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A .B .C .D .4. (2分)下列计算中,正确的是()A . a3•a5=a15B . (a2)5=a7C . a0=1(a≠0)D . (ab2)n=ab2n5. (2分) (2018七下·于田期中) 下列四个图形中,不能推出与相等的是()A .B .C .D .6. (2分)(2019·贵池模拟) 下表,是池州市今年“五一”这周内日最高气温的统计表,关于这7天的日最高气温的众数,中位数,方差分别是:()日期29日30日5月1日2日3日4日5日日最高气温16°C19°C22°C24°C26°C24°C23°CA . 24,23,10B . 24,23,C . 24,22,10D . 24,22,7. (2分)(2017·丹东模拟) 如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A . 5.5B . 5C . 4.5D . 48. (2分)(2011·海南) 一枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是()A . 1B .C .D .9. (2分)下列说法正确的是()A . 垂直于弦的直线必经过圆心B . 平分弦的直径垂直于弦C . 平分弧的直径平分弧所对的弦D . 同一平面内,三点确定一个圆10. (2分)(2018·丹棱模拟) 如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB 边运动到点B,再沿BC边运动到点C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2017·萍乡模拟) 计算(﹣)﹣1+(2 ﹣1)0﹣|tan45°﹣2 |=________.12. (1分) (2017七下·天水期末) 如果不等式组有解,则m的取值范围是________.13. (1分) (2018八上·句容月考) 如图,根据作图痕迹可知∠ADC=________°.14. (1分)如图,直角梯形ABCD中,BA∥CD, AB BC,AB=2,将腰DA以A为旋转中心逆时针旋转90°至AE,连接BE,DE,ABE的面积为3,则CD的长为________。
丹东市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·临沂模拟) ﹣的相反数是()A . 2B . ﹣2C . ﹣D .2. (2分) (2019八上·云安期末) 下列运算中正确的是()A . a2·a3=a5B . (a2)3=a5C . a6÷a2=a3D . a5+a5=2a103. (2分)(2017·吉林模拟) 用6个完全相同的小正方体组合成如图所示的立体图形,它的左视图为()A .B .C .D .4. (2分) (2018八下·邯郸开学考) 下列四个图形中是轴对称图形的是()。
A . 1个B . 2个C . 3个D . 4个5. (2分)如图,⊙O的半径OC垂直于弦AB , D是优弧AB上的一点(不与点A、B重合),若∠AOC=50°,则∠CDB等于()A . 25°B . 30°C . 40°D . 50°6. (2分) (2019九上·镇江期末) 将抛物线沿y轴翻折,所得抛物线的函数表达式是()A .B .C .D .7. (2分)一件服装标价200元,若以七折销售,仍可获利40%,则这件服装的进价是()A . 100元B . 105元C . 108元D . 118元8. (2分) (2016九上·路南期中) 如图,AD∥BE∥CF,直线l1 , l2与这三条平行线分别交于点A,B,C,D,E,F, = ,DE=6,则EF的值为()A . 4B . 6C . 9D . 129. (2分) (2020九上·来宾期末) 已知反比例函数y= ,则其图象在平面直角坐标系中可能是()A .B .C .D .10. (2分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A . 当a=1时,函数图象经过点(﹣1,1)B . 当a=﹣2时,函数图象与x轴没有交点C . 若a<0,函数图象的顶点始终在x轴的下方D . 若a>0,则当x≥1时,y随x的增大而增大二、填空题 (共10题;共10分)11. (1分) (2019七上·江干期末) 据统计,2018年10月1日全国共接待了国内游客122000000次,用科学计数法表示122000000为________.12. (1分)(2016·鸡西模拟) 函数y= 中,自变量x的取值范围是________.13. (1分)=________。
A E FDB C第7题图丹东七中2016-2017下学期九年级第一次模拟考试数学试卷考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分) 1.3-的倒数是( ) A 3 B31 C 31- D 3- 2.2016年1月19日,国家统计局公布了2015年宏观经济数据,初步核算,全年国内生产总值为676000亿元.676000用科学记数法表示为( )A 6.76×106B 6.76×105C 67.6×105D 0.676×106 3.右图所示,几何体的左视图为( )A B C D 4.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A 8,6 B 7,6 C 7,8 D 8,7 5.下列计算结果正确的是( )A 248a a a =÷ B 632a a a =⋅ C 623)(a a = D 6328)2(a a =- 6.二元一次方程组⎩⎨⎧=-=+425y x y x ,的解为( )A ⎩⎨⎧==;,41y x B ⎩⎨⎧==;,32y x C ⎩⎨⎧==;,23y x D ⎩⎨⎧==.,14y x 7.如图,在□ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD , 交AD 于点E ,AB =6,EF=2,则BC 长为( )A 8B 10C 12D 148.如图,在△ABC 中,AD 和BE 是高,∠ABE =45°,点F 是 AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE =∠BAD .第3题图HDFACE G B第8题图有下列结论:①FD=FE ;②AH=2CD ;③BC ·AD=2AE 2; ④S △ABC =4S △ADF .其中正确的有( )A 1个B 2 个C 3 个D 4个 二、填空题(每小题3分,共24分) 9.分解因式:=-x xy 2 .10.不等式组⎪⎩⎪⎨⎧<->-.,32126x x x 的解集为 .11.一个袋中装有两个红球、三个白球,每个球除颜色外都相同.从中任意摸出一个球,摸到红球的概率是 . 12.反比例函数xk y 1-=的图象经过点(2,3),则k = . 13.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x ,则可列方程为 . 14.观察下列数据:2-,25 ,310-,417,526-,…,它们是按一定规律排列的,依照此规律,第11个数据是 .15.如图,正方形ABCD 边长为3,连接AC ,AE 平分 ∠CAD ,交BC 的延长线于点E ,F A ⊥AE ,交CB 延长 线于点F ,则EF 的长为 .16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示, 则下列6个结论正确的有____个 ①ac <0 ②2a +b =0 ③4a +2b +c >0 ④对于任意x 均有ax 2+bx ≥a +b ⑤3a +c =0 ⑥b +2c <0⑦当x >1时,y 随着x 的增大而减小 三、解答题(每小题8分,共16分) 17.计算:01)2016()21(12360sin 4-+--+︒-π第15题图ADB F CE第16题图18.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形). (1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2,并直接写出点B 2 、C 2的坐标.四、(每小题10分,共20分)19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数; (3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?第19题图第18题图yxBCA O20.甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.21.如图,平行四边形ABCD 中,AB =3,BC =5,∠B =60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F . (1)求证:四边形CEDF 是平行四边形;(2)① 当AE = 时,四边形CEDF 是矩形; ② 当AE = 时,四边形CEDF 是菱形.ADCBGE F第21题图五、(每小题10分,共20分)22.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.六、(每小题10分,共20分)23.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端,测得仰角为︒48,再往建筑物的方向前进6米到达D 处,测得仰角为︒64,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据: sin 48°≈107,tan 48°≈1011,sin 64°≈109,tan 64°≈2)BDCA建筑 物第23题图第22题图DE CB OA24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种..果树x (棵),它们之间的函数关系如图所示. (1)求y 与x 之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量w (千克)最大?最大产量是多少?74662812y (千克)x (棵)o第24题图25.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量和位置关系并证明。
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE 相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由。
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出....线段CM与BN的数量关系。
26.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1、x2是方程x2-2x-8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出....所有符合条件的点Q的坐标;若不存在,请说明理由.第26题图备用图丹东七中下学期九年级第一次模拟考试数学试卷参考答案及评分标准一、选择题:(每小题3分,共24分) 二、填空题(每小题3分,共24分)9 )1)(1(-+y y x 10 62<<x 115212 7 13 100)1(602=+x14 11122-15 26 16 5 三、解答题(每小题8分,共16分) 17.解: 01)2016()21(12360sin 4-+--+︒-π.=12)332(234+--+⨯ , ………4分=1233232+--+, ………6分 =434-. ………8分18.解:(1)如图,△A 1B 1C 1即为所求. ………3分(2)如图,△AB 2C 2即为所求. ………6分点B 2(4,-2),C 2(1,-3)……8分四、(每小题10分,共20分) 19.解:(1)80÷40%=200(人). ………1分∴此次共调查200人. ………2分 (2)︒=︒⨯10836020060. ………4分 ∴文学社团在扇形统计图中所占圆心角的度数为108°. ………5分 (3)补全如图(每处1分). ………7分题号12345678答案CBADCCBDyxC 2B 2A 1B 1C 1C BAO第18题图第19题图(4)1500×40%=600(人). ………9分∴估计该校喜欢体育类社团的学生有600人.………10分20.解:(1)所有可能出现的结果如图:………4分从上面的表格(或树状图)可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以3193==(两人抽取相同数字)P ………6分(2)不公平 ………7分从上面的表格(或树状图)可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以95=(甲获胜)P ,3193==(乙获胜)P .………9分∵3195> ∴甲获胜的概率大,游戏不公平. ……………10分 五、(每小题10分,共20分) 21.(1)ABCD 是平行四边形, ∴CF ∥ED ∴∠FCD =∠GCD .(5,5)(3,5)(2,5)(5,3)(3,3)(5,2)(3,2)(2,3)(2,2)532532甲乙ADC BGE F又∠CGF=∠EGD.G是CD的中点,CG=DG∴△EFG≌△EDG…………………(4分)∴CF=ED, ∵CF∥ED…………………(5分)∴四边形CEDF为平行四边形…………………(6分)(2)3.5 …………………………(8分)2 …………………………(10分)22.(1)证明:连接OD.………1分∵CD是⊙O切线,∴∠ODC=90°.即∠ODB+∠BDC=90°. ………2分∵AB为⊙O的直径,∴∠ADB=90°.即∠ODB+∠ADO=90°.∴∠BDC=∠ADO.………3分∵OA=OD,∴∠ADO=∠A.………4分∴∠BDC= ∠A.………5分(2)∵CE⊥AE,∴∠E=∠ADB=90°.∴DB∥EC.∴∠DCE=∠BDC.∵∠BDC= ∠A ,∴∠A=∠DCE.………7分∵∠E=∠E,∴△AEC∽△CED.………8分∴EC2=DE·AE.DECBOA第22题图∴16=2(2+AD ).∴AD =6. ………10分六、(每小题10分,共20分) 23.解:如图,根据题意,得∠ADB =64°,∠ACB =48° 在Rt △ADB 中,BDAB=︒64tan , 则BD=︒64tan AB ≈21AB ………4分在Rt △ACB 中,CBAB=︒48tan ,则CB= ︒48tan AB ≈ 1110AB ………7分∴CD=BC -BD6=1110AB -21AB AB =9132≈14.7(米) ………9分∴建筑物的高度约为14.7米. ………10分24.解:(1)设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得⎩⎨⎧+=+=bk bk 28661274 解得,⎩⎨⎧=-=805.0b k ………2分∴该函数的表达式为805.0+-=x y ………3分 (2)根据题意,得,(-0.5x+80)(80+x )=6750 ………4分解这个方程得,x 1=10,x 2=70∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克. ………7分 (3)根据题意,得74662812y (千克)x (棵)o 第24题图BDCA建 筑 物第23题图w=(-0.5x+80)(80+ x)………8分=-0.5 x2+40 x +6400=-0.5(x-40)2 +7200∵a=-0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克. ………10分七、(本题12分)25.解:(1)AG=EC,AG⊥EC,┅┅┅2分理由为:∵正方形BEFG,正方形ABCD,∴GB=BE,∠ABG=90°,AB=BC,∠ABC=90°,在△ABG和△BEC中,BG=BE∠ABC=∠EBC=90°BA=BC∴△ABG≌△BEC(SAS),┅┅┅3分∴CE=AG,∠BCE=∠BAG,┅┅┅4分延长CE交AG于点M,∴∠BEC=∠AEM,∴∠ABC=∠AME=90°,∴AG=EC,AG⊥EC;┅┅┅5分(2)∠EMB的度数不发生变化,┅┅┅6分理由为:过B作BP⊥EC,BH⊥AM,在△ABG和△CEB中,AB=BC∠ABG=∠CBE=90°−∠GBCBG=EB∴△ABG≌△CEB(SAS),┅┅┅7分∴S△ABG=S△EBC,AG=EC,∴EC•BP=AG•BH,∴BP=BH,┅┅┅8分∴MB为∠EMG的平分线,┅┅┅9分∵∠AMC=∠ABC=90°,∴∠EMB=45°;┅┅┅10分(3)CM=2BN┅┅┅12分26.(本题14分)(1)∵x2-2x-8=0,∴(x-4)(x+2)=0.∴x1=4,x2=-2.∴A(4,0),B(-2,0).又∵抛物线经过点A、B、C,设抛物线解析式为y=ax2+bx+c(a≠0),∴∴所求抛物线的解析式为y=-0.5x2+x+4.┅┅┅3分(2)设P点坐标为(m,0),过点E作EG⊥x轴于点G.∵点B坐标为(-2,0),点A坐标(4,0),∴AB=6,BP=m+2.┅┅┅4分∵PE∥AC,∴△BPE∽△BAC.┅┅┅5分∴BP:AB=EG:CH∴EG:4=(m+2):6∴EG=(2m+4):3 ┅┅┅6分∴S△C PE=S△C BP-S△EBP=-1/3(m-1)2+3.┅┅┅8分又∵-2≤m≤4,∴当m=1时,S△CPE有最大值3.此时P点的坐标为(1,0).┅┅┅ 9 分(3)存在Q1(1,1),Q2(1,11)Q3(1,-11),Q4(1,4+19),Q5(1,4-19)┅┅┅14分。