中考数学复习基础训练4(无答案)苏教版
- 格式:doc
- 大小:119.50 KB
- 文档页数:5
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.填空题 1. 13的倒数是_____. 2. 计算:x 4÷x 2=_____.3. 分解因式:x 2-2x+1=__________.4. 要使二次根式1x -有意义,字母x 的取值范围必须满足的条件是_____.5. 如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向偶数的概率是_____.6. 关于x 的一元二次方程x 2﹣2x+m =0有两个实数根,则m 的取值范围是_____.7. 如图,已知AE ∥BD ,∠1=130°,∠2=28°,则∠C 的度数为____.8. 用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于_______.9. 如图,ABC 中,ACB 90∠=,D 在BC 上,E 为AB 中点,AD 、CE 相交于F ,AD DB.=若B 35∠=,则DFE ∠等于______.10. 如图,ABC 内接于O ,AB 为O 的直径,60CAB ∠=,弦AD 平分CAB ∠,若6AD =,则AC ________.11. 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x<0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.12. 已知:6a=3b+12=2c,且b≥0,c≤9,则a﹣3b+c的最小值为_____.二.选择题13. 某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )A. 5.035×10﹣6B. 50.35×10﹣5C. 5.035×106D. 5.035×10﹣514. 如图是由5个大小相同的正方体摆成的立方体图形,它的俯视图是()A. B. C. D.15. 某校组织”国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80 85 90 95人数/人3 4 2 1那么,这10名选手得分的中位数和众数分别是( )A. 855和80B. 85.5和85C. 85和82.5D. 85和8516. 如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A 12B.55C.1010D.25517. 如图,将边长为1的正方形纸片ABCD折叠,使点B的对应点M落在边CD上(不与点C、D重合),折痕为EF,AB的对应线段MG交AD于点N.以下结论正确的有( )①∠MBN=45°;②△MDN的周长是定值;③△MDN的面积是定值.A. ①②B. ①③C. ②③D. ①②③三.解答题18. 计算或化简:(1)21(3)tan452-︒⎛⎫-+⎪⎝⎭(2)13 1224aa a-⎛⎫-÷⎪--⎝⎭19. 解方程或不等式组:(1)32 11xx x-= --(2)240 1213xxx-≥⎧⎪+⎨>-⎪⎩20. 某校举行”汉字听写”比赛,每位学生听写汉字40个,比赛结束后随机抽查部分学生听写”正确的字数”,以下是根据抽查结果绘制的统计图表.根据以上信息解决下列问题:(1)补全条形统计图;(2)扇形统计图中”C组”所对应的圆心角的度数是;(3)若该校共有1210名学生,如果听写正确的字数少于25,则定为不合格;请你估计这所学校本次比赛听写不合格的学生人数.21. 一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限概率.22. 已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.23. 如图,学校教学楼对面是一幢实验楼,小朱在教学楼窗口C测得实验楼顶部D的仰角为20°,实验楼底部B的俯角为30°,量得教学楼与实验楼之间的距离AB=30m.求实验楼的高BD.(结果精确到1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.943 1.73)24. 随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2016年底拥有家庭轿车640辆,2018年底家庭轿车的拥有量达到1000辆.若该小区2016年底到2019年底家庭轿车拥有量的年平均增长率都相同,求该小区到2019年底家庭轿车将达到多少辆?25. 如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26. 如图1,点C是线段AB上一点,AC=13AB,BC为⊙O的直径.(1)在图1直径BC上方的圆弧上找一点P,使得PA=PB;(用尺规作图,保留作图痕迹,不要求写作法)(2)连接PA,求证:PA是⊙O的切线;(3)在(1)的条件下,连接PC、PB,∠PAB的平分线分别交PC、PB于点D、E.求AEAD的值.27. 如图,将矩形ABCD绕点A顺时针旋转θ(0°≤θ≤360°),得到矩形AEFG.(1)当点E在BD上时,求证:AF∥BD;(2)当GC=GB时,求θ;(3)当AB=10,BG=BC=13时,求点G到直线CD的距离.28. 如图(1),二次函数y=ax2﹣bx(a≠0)的图象与x轴、直线y=x的交点分别为点A(4,0)、B(5,5).(1)a=,b=,∠AOB=°;(2)连接AB,点P是抛物线上一点(异于点A),且∠PBO=∠OBA,求点P的坐标;(3)如图(2),点C、D是线段OB上的动点,且CD=2.设点C的横坐标为m.①过点C、D分别作x轴的垂线,与抛物线相交于点F、E,连接EF.当CF+DE取得最大值时,求m的值并判断四边形CDEF的形状;②连接AC、AD,求m何值时,AC+AD取得最小值,并求出这个最小值.答案与解析一.填空题 1. 13的倒数是_____. 【答案】3.【解析】【分析】根据乘积是1的两个数叫做互为倒数,求解.【详解】解:∵13×3=1, ∴13的倒数是3. 故答案为3.【点睛】本题考查倒数的概念,掌握定义正确计算是关键.2. 计算:x 4÷x 2=_____.【答案】x 2【解析】【分析】根据同底数幂相除法则,同底数幂相除,底数不变指数相减计算.【详解】42422x x x x ÷﹣==.故答案为:x 2.【点睛】本题考查了同底数幂的除法,解决本题的关键是熟记同底数幂的除法法则.3. 分解因式:x 2-2x+1=__________.【答案】(x-1)2.【解析】【详解】由完全平方公式可得:2221(1)x x x -+=-故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.4. x 的取值范围必须满足的条件是_____.【答案】x≥1【解析】【分析】根据二次根式的性质,被开方数大于或等于0,可知:x﹣1≥0,求出字母x的取值范围.【详解】∵二次根式1x 有意义,∴x﹣1≥0,∴x≥1,故答案为:x≥1.【点睛】主要考查了二次根式的概念和性质:概念:式子a(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5. 如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向偶数的概率是_____.【答案】1 2【解析】【分析】让偶数的个数除以数的总数即可得出答案.【详解】图中共有6个相等的区域,含偶数的有2,4,6共3个,转盘停止时指针指向偶数的概率是36=12.故答案为:12.【点睛】此题主要考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6. 关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是_____.【答案】m≤1【解析】【分析】根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【详解】解:由题意知,△=4﹣4m≥0,∴m≤1,故答案为m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.7. 如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.【答案】22°【解析】【分析】由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.【详解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为22°【点睛】本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.8. 用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于_______.【答案】4【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=4.故答案为4.【点睛】本题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.9. 如图,ABC 中,ACB 90∠=,D 在BC 上,E 为AB 中点,AD 、CE 相交于F ,AD DB.=若B 35∠=,则DFE ∠等于______.【答案】105【解析】【分析】根据EFD ADC DCF ∠∠∠=+,只要求出ADC ∠,DCF ∠即可解决问题.【详解】ACB 90AE EB ∠==,CE EB AE ∴==,B ECB 35∠∠∴==,DB DA =,B DAB 35∠∠∴==,ADC B DAB 70∠∠∠∴=+=,EFD ADC ECB 105∠∠∠∴=+=,故答案是:105.【点睛】考查直角三角形斜边中线的性质,等腰三角形的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识.10. 如图,ABC 内接于O ,AB 为O 的直径,60CAB ∠=,弦AD 平分CAB ∠,若6AD =,则AC =________.【答案】3【解析】【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题.【详解】解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=43,∴AC=AB•cos60°=23,故答案为23.【点睛】本题考查三角形的外接圆与外心,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11. 如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x<0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.【答案】(-2,7).【解析】详解】解:过点D作DF⊥x轴于点F,则∠AOB=∠DF A=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DF A,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣14x①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则b=6-4k+b=8⎧⎨⎩解得:1k=-2b=6⎧⎪⎨⎪⎩∴直线BC的解析式为:y=﹣12x+6②,联立①②得:x=-2y=7⎧⎨⎩或x=14y=-1⎧⎨⎩(舍去),∴点E的坐标为:(﹣2,7).故答案为(﹣2,7).12. 已知:6a=3b+12=2c,且b≥0,c≤9,则a﹣3b+c的最小值为_____.【答案】6【解析】【分析】首先根据6a=3b+12=2c,分别用b表示出a、c;然后根据b≥0,c≤9,求出a﹣3b+c的最小值为多少即可.【详解】∵6a=3b+12=2c,∴a=0.5b+2,c=1.5b+6,∴a﹣3b+c=(0.5b+2)﹣3b+(1.5b+6)=﹣b+8∵b≥0,c≤9,∴3b+12≤18,∴b≤2,∴﹣b+8≥﹣2+8=6,∴a﹣3b+c的最小值是6.故答案为:6.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.二.选择题13. 某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )A. 5.035×10﹣6B. 50.35×10﹣5C. 5.035×106D. 5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.14. 如图是由5个大小相同的正方体摆成的立方体图形,它的俯视图是()A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可.【详解】解:从物体上面看,它的俯视图是故选:A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.15. 某校组织”国学经典”诵读比赛,参赛10名选手的得分情况如表所示:分数/分80 85 90 95人数/人3 4 2 1那么,这10名选手得分中位数和众数分别是( )A. 85.5和80B. 85.5和85C. 85和82.5D. 85和85【答案】D【解析】【分析】众数是一组数据中出现次数最多数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】数据85出现了4次,最多,故为众数;按大小排列第5和第6个数均是85,所以中位数是85.故选:D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.16. 如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A. 1251025【解析】【分析】先利用勾股定理得出DC ,AC 、AD 的长,根据勾股定理的逆定理可得∠CDA=90°,再利用锐角三角函数关系求出答案.【详解】解:如图所示,取格点D ,连接DC ,由网格可得出DC =2,AC =10,AD=22,∵222(2)(22)(10)+=∴222DC AD AC =+,则:∠CDA =90°,故sinA =25510DC AC ==. 故选:B .【点睛】本题考查了网格中解直角三角形、勾股定理及其逆定理、锐角的三角函数,根据网格特点构造直角三角形是关键.17. 如图,将边长为1的正方形纸片ABCD 折叠,使点B 的对应点M 落在边CD 上(不与点C 、D 重合),折痕为EF ,AB 的对应线段MG 交AD 于点N .以下结论正确的有( )①∠MBN =45°;②△MDN 的周长是定值;③△MDN 的面积是定值.A. ①②B. ①③C. ②③D. ①②③【答案】A【解析】连接BM、BN,作BP⊥MN于P.只要证明△BMP≌△BMC,可得MP=MC,∠PBM=∠CBM,同理可证:NA=NP,∠ABN=∠PBN,由此可判断①②正确.【详解】连接BG、BE,作BP⊥EF于P,如图所示:由折叠性质可得:BF=FM,∴∠MBF=∠FMB,∵四边形ABCD是正方形,∴∠C=∠ABC=∠NMF=90°,∴∠CBM+∠BMC=90°,∠BMF+∠NMB=90°,∴∠BMC=∠NMB,又∵BP⊥MN,BC⊥DC,∴BP=BC,且∠BMC=∠NMB,BM=BM∴△BPM≌△BCM(SAS),∴MP=MC,∠PBM=∠CBM,同理可证:NA=NP,∠ABN=∠PBN,∴△MND的周长=DN+DM+MN=DN+AN+DM+CM=AD+CD=2,∴△DGE的周长始终为定值.∵∠ABN+∠PBN+∠PBM+∠CBM=90°∴∠MBN=45°;∵DM,DN的值不确定,∴△MDN的面积不确定,∴③错误.故①②正确故选:A.【点睛】本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三.解答题18. 计算或化简:(1)21tan452-︒⎛⎫-+⎪⎝⎭(2)13 1224aa a-⎛⎫-÷⎪--⎝⎭【答案】(1)-2;(2)2【解析】【分析】(1)根据零指数幂、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以解答本题.【详解】(1)21tan452-︒⎛⎫-+⎪⎝⎭=1﹣4+1 =﹣2;(2)13 1224aa a-⎛⎫-÷⎪--⎝⎭=212(2)23 a aa a---⋅--=32(2)23 a aa a--⋅--=2.【点睛】本题考查分式的混合运算、零指数幂、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.19. 解方程或不等式组:(1)32 11xx x-= --(2)240 1213xxx-≥⎧⎪+⎨>-⎪⎩【答案】(1)x=5;(2)2≤x<4【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【详解】(1)去分母得:x+3=2x﹣2,解得:x=5,经检验x=5是分式方程的解;(2)2401213xxx-≥⎧⎪⎨+-⎪⎩①>②,由①得:x≥2,由②得:x<4,则不等式组的解集为2≤x<4.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20. 某校举行”汉字听写”比赛,每位学生听写汉字40个,比赛结束后随机抽查部分学生听写”正确的字数”,以下是根据抽查结果绘制的统计图表.根据以上信息解决下列问题:(1)补全条形统计图;(2)扇形统计图中”C组”所对应的圆心角的度数是;(3)若该校共有1210名学生,如果听写正确的字数少于25,则定为不合格;请你估计这所学校本次比赛听写不合格的学生人数.【答案】(1)见解析;(2)90°;(3)605人【解析】【分析】(1)根据B组有15人,所占的百分比是15%即可求得总人数,然后根据百分比的意义求解;(2)利用360度乘以对应的比例即可求解;(3)利用总人数1210乘以对应的比例即可求解.【详解】(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20..(2)扇形统计图中”C组”所对应的圆心角的度数是:360°×25100=90°.故答案是:90°;(3)”听写正确的个数少于24个”的人数有:10+15+25=50 (人).1210×50100=605(人).答:这所学校本次比赛听写不合格的学生人数约为605人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21. 一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.【答案】(1)23;(2)49【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是23.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b 1 -1 21 1,1 1,-1 1,2-1 -1,1 -1,-1 -1.22 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是49.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .22. 已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,∠BCD=120°,求四边形AODE的面积.【答案】(1)见解析;(23【解析】【分析】(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=1,由勾股定理得出OB3,由菱形的性质得出OD=OB3,即可求出四边形AODE的面积.【详解】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵在菱形ABCD中,AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵∠BCD=120°,AB∥CD,∴∠ABC=180°﹣120°=60°,∵AB=BC=2,∴△ABC是等边三角形,∴OA=12×2=1,∵在菱形ABCD中,AC⊥BD∴由勾股定理OB=3,∵四边形ABCD是菱形,∴OD=OB=3,∴四边形AODE的面积=OA•OD=3.【点睛】本题考查了矩形的判定以及菱形的性质,平行四边形的判定,等边三角形的判定与性质,掌握矩形的判定方法是解题的关键.23. 如图,学校教学楼对面是一幢实验楼,小朱在教学楼的窗口C测得实验楼顶部D的仰角为20°,实验楼底部B的俯角为30°,量得教学楼与实验楼之间的距离AB=30m.求实验楼的高BD.(结果精确到1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,3 1.73)【答案】28m【解析】【分析】在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【详解】过点C作CE⊥BD,则有∠DCE=20°,∠BCE=30°,由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan30°≈17.32m,在Rt△CDE中,DE=CE•tan20°≈10.8m,∴教学楼的高BD=BE+DE=17.32+10.8≈28m,则教学楼的高约为28m.【点睛】此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.24. 随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2016年底拥有家庭轿车640辆,2018年底家庭轿车的拥有量达到1000辆.若该小区2016年底到2019年底家庭轿车拥有量的年平均增长率都相同,求该小区到2019年底家庭轿车将达到多少辆?【答案】1250【解析】【分析】设家庭轿车拥有量的年平均增长率为x,则增长2次以后的车辆数是640(1+x)2,列出一元二次方程的解题即可.【详解】设家庭轿车拥有量的年平均增长率为x,则640(1+x)2=1000解得x=0.25=25%,或x=﹣2.25(不合题意,舍去)∴1000(1+25%)=1250答:该小区到2019年底家庭轿车将达到1250辆.【点睛】本题考查了一元二次方程的应用.增长率问题:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.25. 如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数myx(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.【答案】(1)-6;(2)122y x=-+.【解析】【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数myx=(x<0)的图象上,∴233n mn m-=⎧⎨-=⎩,解得:36nm=⎧⎨=-⎩;(2)由(1)知反比例函数解析式为6yx=-,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴2321k bk b-+=⎧⎨+=⎩,解得:122kb⎧=-⎪⎨⎪=⎩,∴122y x=-+.【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.26. 如图1,点C是线段AB上一点,AC=13AB,BC为⊙O的直径.(1)在图1直径BC上方的圆弧上找一点P,使得PA=PB;(用尺规作图,保留作图痕迹,不要求写作法)(2)连接PA,求证:PA是⊙O的切线;(3)在(1)的条件下,连接PC、PB,∠PAB的平分线分别交PC、PB于点D、E.求AEAD的值.【答案】(1)见解析;(2)见解析;(3)3【解析】【分析】(1)作出线段AB的垂直平分线,得到点P;(2)连接OP、BP、CP,证明△PAC≌△PBO,根据全等三角形的性质得到PC=PO,根据等边三角形的性质、切线的判定定理证明;(3)作EF∥PC交AB于F,证明△AEP和△AEF,根据全等三角形的性质得到AF=AP=3r,根据平行线的性质计算即可.【详解】(1)如图(1)所示:PA=PB;(2)证明:连接OP、BP、CP,∵AC =13AB ,OC =OB , ∴AC =OB ,∵PA =PB ,∴∠A =∠PBA ,在△PAC 和△PBO 中,PA PB A PBO AC BO =⎧⎪∠=∠⎨⎪=⎩,∴△PAC ≌△PBO (SAS )∴PC =PO ,又OP =OC ,∴OP =PC =OC ,∴△POC 为等边三角形,∴∠POC =60°,∴∠A =∠PBO =12∠POC =30°, ∴∠OPA =90°,∴PA 是⊙O 的切线;(3)解:作EF ∥PC 交AB 于F ,设⊙O 的半径为r ,则AC =3r ,AH =32r , ∴AP =AH cos PAH∠3,∠PDE =∠PAE+∠APD ,∠PED =∠BAE+∠ABE ,∠ABE =∠APD ,∴∠PDE =∠PED ,∵EF ∥PC ,∴∠PDE =∠AEF ,∴∠PED =∠AEF ,在△AEP 和△AEF 中,PAE FAE AE AEAEP AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEP 和△AEF (ASA ),∴AF =AP =3r ,∵EF ∥PC ,∴AE AD =AF AC=3. 【点睛】本题考查的是切线的判定和性质、全等三角形的判定和性质、平行线的性质,掌握切线的判定定理、全等三角形的判定定理和性质定理是解题的关键.27. 如图,将矩形ABCD 绕点A 顺时针旋转θ(0°≤θ≤360°),得到矩形AEFG .(1)当点E 在BD 上时,求证:AF ∥BD ;(2)当GC =GB 时,求θ;(3)当AB =10,BG =BC =13时,求点G 到直线CD 的距离.【答案】(1)见解析;(2)60°或300°;(3)25或1【解析】【分析】(1)先运用SAS 判定△FEA ≌△DAB ,可得∠AFE =∠ADE =∠DEF ,即可得出AF ∥BD ;(2)当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论,依据∠DAG =60°,即可得到旋转角θ的度数.(3)当BG=BC时存在两种情况:画图根据勾股定理计算即可.【详解】(1)由旋转可得,AE=AB,∠AEF=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,△FEA≌△DAB(SAS),∴∠AFE=∠ADB,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,∴∠DEF=∠AFE,∴AF∥BD;(2)如图1,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,连接DG,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,如图2,同理可得△ADG等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.综上,θ的度数为60°或300°;(3)有两种情况:①如图3,当BG=BC=13时,过G作GH⊥CD于H,交AB于M,∵AG=BC=BG,∴AM=BM=5,Rt△AMG中,由勾股定理得:MG22G-22A AM-12,135∵AB∥CD,∴MH=BC=13,∴GH=13+12=25,即点G到直线CD的距离是25;②如图4,过G作MH⊥CD于H,交AB于M,同理得GM=12,∴GH=13﹣12=1,即点G到直线CD的距离是1;综上,即点G到直线CD的距离是25或1.【点睛】本题主要考查了四边形的综合问题,解题的关键是掌握旋转的性质,矩形的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.28. 如图(1),二次函数y=ax2﹣bx(a≠0)的图象与x轴、直线y=x的交点分别为点A(4,0)、B(5,5).(1)a=,b=,∠AOB=°;(2)连接AB,点P是抛物线上一点(异于点A),且∠PBO=∠OBA,求点P的坐标;(3)如图(2),点C、D是线段OB上的动点,且CD=2.设点C的横坐标为m.①过点C、D分别作x轴的垂线,与抛物线相交于点F、E,连接EF.当CF+DE取得最大值时,求m的值并判断四边形CDEF的形状;②连接AC、AD,求m为何值时,AC+AD取得最小值,并求出这个最小值.【答案】(1)1,4,45°;(2)(﹣45,1225);(3)①m=32,四边形CDEF为平行四边形;②m=12,10【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求解;(2)证明△HOB≌△AOB(AAS),得OA=OH=4,即点H(0,4),即可求解;(3)①则CF+DE=m﹣m2+4m+(m+2)﹣[(m+2)2﹣4(m+2)]=﹣2m2+6m+6,即可求解;②如图所示,过点A作CD的平行线,过点D作AC的平行线,交于点G,则四边形ACDG是平行四边形,当A'、D、G三点共线时,A'D+DG=A'G最短,即可求解.【详解】(1)将点A、B的坐标代入二次函数表达式得:16402555a ba b-=⎧⎨-=⎩,解得:14ab=⎧⎨=⎩,故二次函数表达式为:y=x2+4x,∵点O,B在直线y=x上,∴OB平分∠xOy,∴∠AOB=45︒;故:答案为:1,4,45°;(2)设直线BP交y轴于点H,∵∠HOB=∠AOB=45°,∠PBO=∠OBA,BO=BO,∴△HOB≌△AOB(AAS),∴OA=OH=4,即点H(0,4),则直线PB的表达式为:y=kx+4,将点B坐标代入上式并解得:直线PB的表达式为:y=15x+4,将上式与二次函数表达式联立并解得:x=5或﹣45(舍去正值),则点P(﹣45,1225);(3)①由题意得:直线OB的表达式为:y=x,设点C(m,m),CD=2,直线OB的倾斜角为45度,则点D(m+2,m+2),则点F(m,m2﹣4m),点E[(m+2),(m+2)2﹣4(m+2)],则CF+DE=m﹣m2+4m+(m+2)﹣[(m+2)2﹣4(m+2)]=﹣2m2+6m+6,∵﹣2<0,故CF+DE 有最大值,此时,m =32, 则点C 、F 、D 、E 的坐标分别为(32,32)、(32,﹣154)、(72,72)、(72,﹣74), 则CF =DE =214,CF ∥ED , 故四边形CDEF 为平行四边形;②如图所示,过点A 作CD 的平行线,过点D 作AC 的平行线,交于点G ,则四边形ACDG 是平行四边形,∴AC =DG ,作点A 关于直线OB 的对称点A'(0,4),连接A'D ,则A'D =AD ,∴当A'、D 、G 三点共线时,A'D+DG =A'G 最短,此时AC+AD 最短,∵A (4,0),AG =CD =2,则点G (6,2),则AC+AD 最小值=A'G 226(42)+-10【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
苏教版小学数学四年级下册《亿以上数的认识》同步练习及参考答案一、填空题。
1.万级的包含有()、()、()、()四个数位,亿级的计数单位有()、()、()、()。
【考点】整数的认识。
【解析】根据整数的数位顺序表进行解答即可。
【答案】解:万级的包含有万位、十万位、百万位、千万位四个数位,亿级的计数单位有亿、十亿、百亿、千亿。
故答案为:万位、十万位、百万位、千万位,亿、十亿、百亿、千亿。
【总结】本题主要考查整数的数位顺序,注意计数单位和数位的区别。
2.最小九位数是(),它比最大八位数多()。
【考点】整数的认识。
【解析】要使这个九位数最小,亿位上最小是1,其他位上最小是0。
,即这个数是:100000000;要使这个8位数最大,每个位上最大都是9,即这个数是99999999;求它比最大八位数多几,列式为:100000000-99999999=1,据此写出答案。
【答案】解:九位数最小是:100000000,,8位数最大是99999999; 100000000-99999999=1;故答案为:100000000, 1。
【总结】本题关键是确室最小九位数和最大八位数各是多少。
3.比最大的九位数多1的数是()。
【考点】整数的认识.【解析】因为最大的九位数是999999999,求比最大的九位数多1的数,用加法即可。
【答案】解:999999999+1=1000000000;故答案为:1000000000。
【总结】考查了整数的认识,应明确最大的九位数是多少,进而根据题意写出答案即可。
二、选择题。
1.一个十一位数,它的最高位是()A.十亿 B.百亿位 C.百亿D.亿位【考点】整数的认识.【解析】由数位顺序表可知,一个数是十一位数,它的最高位是2百亿位。
【答案】解:一个十一位数,它的最高位是百亿位。
故选:B。
【总结】本题是考查数位顺序及计数单位,由数位顺序表即可写出答案。
2.一个数是十位数,它的最高位是()A.十亿位 B.亿位 C.千亿位 D.百亿位【考点】整数的认识.【解析】根据数位顺序表:从右向左依次分:个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、…;可知:该十位数的最高位是十亿位;据此写出答案即可。
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有6小题,每小题3分,共18分) 1.13的相反数是( ) A. 13- B. 13 C. 3- D. 32.若两个三角形相似比为1:3,则周长比为( )A. 1:3B. 3:1C. 3:3D. :333.下列运算正确的是( )A. 235()a a =B. 224257a a a +=C. 624a a a ÷=D. 22(2)4a a -=- 4.一个几何体的展开图如图所示,这个几何体是( )A. 圆柱B. 三棱锥C. 圆锥D. 四棱锥 5.衡量一组数据波动大小的统计量是( )A. 平均数B. 众数C. 中位数D. 方差6.已知点(x 0,y 0)是二次函数y=ax 2+bx+c (a <0)一个点,且x 0满足关于x 的方程2ax+b=0,则下列选项正确的是( )A 对于任意实数x 都有y ≥y 0B. 对于任意实数x 都有y ≤y 0C. 对于任意实数x 都有y >y 0D. 对于任意实数x 都有y <y 0二、填空题(本大题共有10小题,每小题3分,共30分.)7.8的立方根为_______.8.据了解,某新型冠状病毒颗粒的平均直径约为0.00000013m ,数据0.00000013用科学记数法表示为______. 9.分解因式:2436a -=______.10.若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为_______.11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出2个小球,它们的标号之积为”6”,这个事件是______.(填”必然事件”、”不可能事件”或”随机事件”)12.将一把直尺与一块三角板如图所示放置,若140∠=︒,则2∠的度数为________.13.已知圆锥的侧面积为8πcm 2,侧面展开图的圆心角为60°. 则该圆锥的母线长为 cm.14.如图,△ABC 中,AB =8,AC =6,BC =10,E 、F 分别是AC 、AB 的中点,点P 为BC 边上任一点,连接PE 、PF ,则BP =_____时,∠EPF =∠A .15.已知一次函数12y kx =-(k 为常数,k ≠0)和21y x =+,若两函数的图像相交所形成的锐角小于15°,则k 的取值范围______.16.如图,已知在平行四边形ABCD 中,AB =10,BC =15,tan ∠A =43,点P 是边AD 上一点,联结PB ,将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,如果点Q 恰好落在平行四边形ABCD 的边上,那么AP 的值是_____.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:0(3)92cos6032π-︒;(2)化简:35(2)242a a a a -÷+---. 18.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)求m的值;(2)求该射击队运动员的平均年龄;(3)小文认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?19.在一个不透明的袋子中装有除颜色外都相同的红球和黄球,两种颜色的球一共有10个,每次摸出其中一个球,记下颜色后,放回搅匀.一个同学进行了反复试验,下面是做该试验获得的数据.(1)a= ,画出摸到红球频率的折线统计图;(2)从这个袋子中任意摸一个球,摸到黄球的概率估计值是多少?(精确到0.1)(3)怎样改变袋中红球或黄球的个数,可以使得任意摸一次,摸到两种颜色球的概率相等?(写出一种方案即可)20.为了响应”足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.21.如图,△ABC(∠B>∠A).(1)在边AC上用尺规作图作出点D,使∠ADB+2∠A=180°(保留作图痕迹);(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,求∠C的度数.22.如图1,有一直径为100米的摩天轮,其最高点距离地面高度为110米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24分钟.(1)如图2,某游客所在吊舱从最低点P出发,3分钟后到达A处,此时该游客离地面高度约为多少米;(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85米?(参考数据:2≈1.41,3=1.73)23.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=8,D为AB的中点,连接CD,以CD为直径作⊙O 交CB于点E,过点E作EF⊥AB,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)求阴影部分的面积.24.如图,在平面直角坐标系xOy中,曲线y=4x(x>0)与直线y=kx-k的交点为点A(m,2).(1)求k的值;(2)当x>0时,直接写出不等式kx-k>4x的解集:____;(3)设直线y=kx-k与y轴交于点B,若C是x轴上一点,且满足△ABC的面积是4,求点C的坐标.25.如图1,在口ABCD中,AB=3,AD=4,点M、N、P、Q分别在AD、AB、BC、CD上,且AM=CP,AN=CQ.(1)求证:四边形MNPQ是平行四边形;(2)如图2,∠ABC=90°,①当AM=52,四边形MNPQ是菱形时,求DQ长;②若AD上存在点M,使四边形MNPQ是菱形,求AM的取值范围.26.已知二次函数y=ax2+bx+c的图像经过点A(1-t,h),点B(t+3a,h),与y轴交于点C(0,3).(1)求a与b的关系式;(2)若二次函数的图像上始终存在不重合的E,F两点(E在F的左边)关于原点对称.①求a的取值范围;②若点C、E、F三点到直线l:y=94x+32的距离相等,求线段EF长.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分) 1.13的相反数是( ) A. 13- B. 13 C. 3- D. 3【答案】A【解析】【分析】 根据相反数的意义求解即可. 【详解】13的相反数是-13, 故选:A .【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.若两个三角形的相似比为1:3,则周长比为( )A. 1:3B. 3:1 3 D. 3【答案】A【解析】【分析】利用两个三角形相似周长比和相似比的关系直接作答即可.【详解】解:如果两个三角形相似,那么它们的周长比等于相似比,∵相似比为1:3∴周长之比为:1:3;故选:A .【点睛】本题主要考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.3.下列运算正确的是( )A. 235()a a =B. 224257a a a +=C. 624a a a ÷=D. 22(2)4a a -=- 【答案】C【解析】【分析】根据幂的乘方、合并同类项、同底数幂的除法、完全平方公式逐项计算即可.【详解】A.原式=a6,故错误;B.原式=7a2,故错误;C.原式=a4,故正确;D.原式=a2-4a+4,故错误;故选C.【点睛】本题考查了整式的运算,熟练掌握运算法则和乘法公式是解答本题的关键.同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4.一个几何体的展开图如图所示,这个几何体是()A. 圆柱B. 三棱锥C. 圆锥D. 四棱锥【答案】C【解析】【分析】根据展开的图形可知,几何体的侧面是扇形和底面是圆形,因此可以推断出这个几何题为圆锥.【详解】圆柱:展开图为两个圆形和一个长方形三棱锥:展开图为四个三角形圆锥:展开图一个圆形和一个扇形四棱锥:展开图为四个三角形和一个四边形答案故选C【点睛】本题主要考查了几何体展开图的图像.5.衡量一组数据波动大小的统计量是( )A. 平均数B. 众数C. 中位数D. 方差【答案】D【解析】根据方差的意义(体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定)可得:衡量一组数据波动大小的统计量是方差.故选D.6.已知点(x 0,y 0)是二次函数y=ax 2+bx+c (a <0)的一个点,且x 0满足关于x 的方程2ax+b=0,则下列选项正确的是( )A. 对于任意实数x 都有y ≥y 0B. 对于任意实数x 都有y ≤y 0C. 对于任意实数x 都有y >y 0D. 对于任意实数x 都有y <y 0【答案】B【解析】【分析】由x 0满足关于x 的方程2ax+b=0可知,点(x 0,y 0)在二次函数的对称轴上,即顶点;又a <0,则点(x 0,y 0)为最高点.【详解】由于点(x 0,y 0)是二次函数y=ax 2+bx+c (a >0)的一个点,且x 0满足关于x 的方程2ax+b=0,则点(x 0,y 0)为二次函数的顶点;又由于a <0,开口向上,则点(x 0,y 0)为最大值点;即对于任意实数x 都有y≤y 0.故选B .【点睛】本题考查二次函数的性质,解决此题的关键是正确判断点(x 0,y 0)为最大值点. 二、填空题(本大题共有10小题,每小题3分,共30分.)7.8的立方根为_______.【答案】2.【解析】【详解】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.8.据了解,某新型冠状病毒颗粒的平均直径约为0.00000013m ,数据0.00000013用科学记数法表示为______.【答案】1.3×10-7 【解析】【分析】把小数点向右移动7位,然后根据科学记数法的书写格式写出即可.【详解】解:70.00000013=1.310-⨯,故答案为:71.310-⨯.【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值10时,是正数;当原数的绝对值1<时,是负数.9.分解因式:2436a -=______.【答案】()()433a a +-【解析】【分析】根据因式分解的概念及方法分解即可.【详解】解:()()()2243649433a a a a -=-=+- 故答案为:()()433a a +-.【点睛】本题考查整式的因式分解,因式分解首先分析是否能用提公因式法因式分解,如果可以的话先利用提公因式因式分解,然后再看提公因式后的式子是否符合平方差或者完全平方公式,然后利用公式法进行因式分解,如果不符合公式法,则考虑用十字相乘法因式分解.10.若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为_______.【答案】5【解析】∵关于x 的方程x 2+mx +5=0有一个根为1,∴设另一根为m,可得:15m ⨯= ,解得:m=5.故答案:5.11.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出2个小球,它们的标号之积为”6”,这个事件是______.(填”必然事件”、”不可能事件”或”随机事件”)【答案】随机事件【解析】【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:袋子中3个小球的标号分别为1、2、3,从中摸出2个小球,可能是1和2,也有可能是2和3,∴它们的标号之积为”6” 这个事件是随机事件;故答案为:随机事件.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.将一把直尺与一块三角板如图所示放置,若140∠=︒,则2∠的度数为________.【答案】130°【解析】详解】解:如解图,∵//EF GH ,∴2FCD ∠=∠,∵1FCD A ∠=∠+∠,140︒∠=,90A ︒∠=,∴2FCD 4090130︒︒︒∠=∠=+=.13.已知圆锥的侧面积为8πcm 2,侧面展开图的圆心角为60°. 则该圆锥的母线长为 cm.【答案】43【解析】试题分析:根据圆心角可得:r=16l ,根据侧面积可得:8π=π·16l 解得:l=43. 考点:圆锥的性质.14.如图,△ABC 中,AB =8,AC =6,BC =10,E 、F 分别是AC 、AB 的中点,点P 为BC 边上任一点,连接PE 、PF ,则BP =_____时,∠EPF =∠A .【答案】325或5 【解析】【分析】先说明ABC ∆为直角三角形,然后分两种情况分类讨论:(1)当为BC 中点时,利用中位线的性质即可得出答案;(2)当⊥AP BC 时,利用等面积法求出AP 的长度,然后再利用勾股定理求出BP 即可. 详解】解:∵AB =8,AC =6,BC =10,∴2221086=+,即:222BC AB AC =+,∴ABC ∆是以BC 为斜边的直角三角形,即:90A ∠=︒,(1)当为BC 中点时,∵,E F 分别为AC AB 、的中点,∴EP FP 、分别为中位线,∴////EP AB FP AC 、,∴FPB C EPC B ∠=∠∠=∠,,∵90B C ∠+∠=︒,∴90FPB EPC ∠+∠=︒,即:90EPF A ∠=︒=∠,∴此时满足题意,∵为BC 中点,∴5BP =;(2)当⊥AP BC 时,连接AP ,当⊥AP BC 时,∵,E F 分别为AC AB 、的中点,利用直角三角形斜边的中线等于斜边的一半得:,PF BF PE CE ==,∴B FPB C EPC ∠=∠∠=∠,,∵90B C ∠+∠=︒,∴90FPB EPC ∠+∠=︒,即:90EPF A ∠=︒=∠,∴此时满足题意, 由直角三角形等面积法得到:1122AP BC AB AC =, ∴AB AC AP BC =,即:8624=105AP ⨯=, ∴在Rt ABP ∆中,由勾股定理得:22222432855BP AB AP ⎛⎫=-=-= ⎪⎝⎭, 综上所述:当325BP =或5BP =时,∠EPF =∠A ; 故答案为:325或5.【点睛】本题主要考查了勾股定理逆定理、勾股定理、中位线、直角三角形斜边的中线等于斜边的一半的应用,对于点不确定的情况下,分类讨论是解决此题的关键.15.已知一次函数12y kx =-(k 为常数,k ≠0)和21y x =+,若两函数的图像相交所形成的锐角小于15°,则k 的取值范围______.【答案】33<k <3且k≠1 【解析】【分析】画出图象,然后可以得出直线1y 与轴的夹角是:3060α<<且45,即可求得的取值范围. 【详解】解:一次函数12y kx =-(k 为常数,k ≠0)和21y x =+的图像如下图所示,∵12y kx =-,21y x =+,(1,0)A ∴-,(0,1)B ,(0,2)C -OA OB ∴=,45BAO ∴∠=︒,两函数的图象相交所形成的锐角小于15︒,∴设直线1y 与轴的夹角为,则,当直线1y 位置如2P C 时,3045α<<,当直线1y 位置如1PC 时, 4560α<<,总上所述,直线1y 与轴的夹角是:3060α<<且45,tan30tan60k 且tan 45k , ∴333k 且1k≠, 故答案为:333k 且1k ≠.【点睛】本题考查了一次函数与一元一次不等式,熟悉相关性质是解题的关键.16.如图,已知在平行四边形ABCD 中,AB =10,BC =15,tan ∠A =43,点P 是边AD 上一点,联结PB ,将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,如果点Q 恰好落在平行四边形ABCD 的边上,那么AP 的值是_____.【答案】6或10【解析】分析】分情况解答:当点Q 落在CD 上时,作BE ⊥AD 于E ,QF ⊥AD 交AD 的延长线于F .设PE =x ,通过证明△PBE ≌△QPF ,得出PE =QF =x ,DF =x ﹣1,由tan ∠FDQ =tan A =43=FQ DF ,即可得出AP 的值;当点Q 落在AD 上时,得出∠APB =∠BPQ =90°,由tan A =43,即可得出AP 的值;当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.由tan A =BE AE =43,可得出△BPQ 是等腰直角三角形,此时求出BQ 不满足题意,舍去. 【详解】解:如图1中,当点Q 落在CD 上时,作BE ⊥AD 于E ,QF ⊥AD 交AD 的延长线于F .设PE =x .在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠EBP +∠BPE =∠BPE +∠FPQ =90°,∴∠EBP =∠FPQ ,∵PB =PQ ,∠PEB =∠PFQ =90°,∴△PBE ≌△QPF (AAS ),∴PE =QF =x ,EB =PF =8,∴DF =AE +PE +PF ﹣AD =x ﹣1,∵CD ∥AB ,∴∠FDQ =∠A ,∴tan ∠FDQ =tan A =43=FQ DF , ∴1x x =43, ∴x =4,∴PE =4,∴AP =6+4=10;如图2,当点Q 落在AD 上时,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠APB =∠BPQ =90°,在Rt △APB 中,∵tan A =AP BP =43,AB =10, ∴AP =6;如图3中,当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6,∴PF =BE =8, ∵△BPQ 是等腰直角三角形,PF ⊥BQ ,∴PF =BF =FQ =8,∴PB =PQ =2,BQ 2PB =16>15(不合题意舍去), 综上所述,AP 的值是6或10,故答案为:6或10.【点睛】本题主要考查旋转的性质,由正切求边长,正确画出图形,分情况解答是解题的关键.三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:0(3)92cos6032π-︒;(2)化简:35(2)242a a a a -÷+---. 【答案】(1)53;(2)126a -+. 【解析】【分析】(1)根据实数的运算法则以及运算顺序计算即可;(2)根据分式的混合运算,先将括号里面的式子进行通分计算,再利用分式的乘除得出最后答案.【详解】解:(1)0(3)92cos6032π-+-︒+- 1132232=+-⨯+- 13123=+-+-53=-(2)35(2)242a a a a -÷+--- ()()22352422a a a a a a +-⎡⎤-=÷-⎢⎥---⎣⎦23452422a a a a a ⎛⎫--=÷- ⎪---⎝⎭239242a a a a --=÷-- ()()()322233a a a a a --=⋅-+- ()123a =-+ 126a =-+ 【点睛】本题考查实数的混合运算以及分式的混合运算,做题时注意任何非零实数的零次方都等于1,如果遇到去绝对值的题目,先判断绝对值内的正负,再去绝对值;分式的混合运算先算括号里面的,通分和约分一定要注意符号.18.某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)求m的值;(2)求该射击队运动员的平均年龄;(3)小文认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么【答案】(1)20;(2)15岁;(3)不正确,理由见解析.【解析】【分析】(1)用1减去各个年龄的百分数即可求解;(2)利用加权平均数公式求出平均数即可解决问题;(3)判断错误.可能抽到13岁,14岁,16岁,17岁.【详解】解:(1)110%30%25%15%20%.故的值是20;(2)1310%1430%1525%1620%1715%15100%(岁),故该射击队运动员的平均年龄是15岁;(3)小文的判断是错误的,可能抽到的是13岁、14岁、16岁、17岁.【点睛】本题考查扇形统计图,加权平均数的知识和概率知识,熟练掌握基本知识是解题的关键.19.在一个不透明的袋子中装有除颜色外都相同的红球和黄球,两种颜色的球一共有10个,每次摸出其中一个球,记下颜色后,放回搅匀.一个同学进行了反复试验,下面是做该试验获得的数据.(1)a= ,画出摸到红球的频率的折线统计图;(2)从这个袋子中任意摸一个球,摸到黄球的概率估计值是多少?(精确到0.1)(3)怎样改变袋中红球或黄球的个数,可以使得任意摸一次,摸到两种颜色球的概率相等?(写出一种方案即可)【答案】(1)0.29a ;(2)约为0.7;(3)添加4个红球或拿掉4个黄球(答案不唯一)(1)根据题意只要用348除以1200即得a的值,进而可画出摸到红球的频率的折线统计图;(2)由表格数据可得摸到红球概率的估计值,进而可得摸到黄球的概率估计值;(3)先由前面确定袋子中红球和黄球的个数,再设添加x个红球或拿走y个黄球,根据题意列出方程,解方程即可得出结论.【详解】解:(1)348÷1200=0.29,即0.29a=;摸到红球的频率的折线统计图如图所示:(2)由题意得:摸到红球概率的估计值为0.3,所以摸到黄球的概率估计值=1-0.3=0.7;(3)由于袋子中有红球3个,黄球7个,可设添加x个红球,则31102xx+=+,解得:x=4;或设拿走y个黄球,则71102yy-=-,解得:y=4.所以添加4个红球或拿掉4个黄球(答案不唯一),可以使得任意摸一次,摸到两种颜色球的概率相等.【点睛】本题考查了利用频率估计概率和折线统计图以及分式方程的解法,属于常考题型,正确理解题意、熟练掌握频率与概率的关系是解题关键.20.为了响应”足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【答案】(1)一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)1000.(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,根据”购买2个A 品牌的足球和3个B 品牌的足球共需380元;购买4个A 品牌的足球和2个B 品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.【详解】(1)设一个A 品牌的足球需x 元,则一个B 品牌的足球需y 元,依题意得:23380{42360x y x y +=+=,解得:40{100x y ==. 答:一个A 品牌的足球需40元,则一个B 品牌的足球需100元;(2)依题意得:20×40+2×100=1000(元). 答:该校购买20个A 品牌的足球和2个B 品牌的足球的总费用是1000元.考点:二元一次方程组的应用.21.如图,△ABC (∠B >∠A ).(1)在边AC 上用尺规作图作出点D ,使∠ADB +2∠A =180°(保留作图痕迹);(2)在(1)的情况下,连接BD ,若CB =CD ,∠A =35°,求∠C 的度数.【答案】(1)作AB 的垂直平分线,交边AC 于D ,如图所示:见解析;(2)∠C =40°.【解析】【分析】(1)作AB 的垂直平分线,交边AC 于D 即可;(2)依据等腰三角形的性质以及三角形内角和定理,即可得到∠C 的度数.【详解】(1)作AB 的垂直平分线,交边AC 于D ,如图所示:∴点D 即为所求;(2)∵CB=CD,∴∠CDB=∠CBD,由(1)可得,DA=DB,∴∠A=∠ABD=35°,∴∠CDB=70°,∴△BCD中,∠C=40°.【点睛】本题主要参考了等腰三角形的性质以及线段垂直平分线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.如图1,有一直径为100米的摩天轮,其最高点距离地面高度为110米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24分钟.(1)如图2,某游客所在吊舱从最低点P出发,3分钟后到达A处,此时该游客离地面高度约为多少米;(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85米?(参考数据:2≈1.41,3=1.73)【答案】(1)15米;(2)8分【解析】【分析】(1)作AH⊥MN于H,求出吊舱每分钟转过的角度,得到∠AOH,根据余弦的定义计算,得到答案;(2)求出OE的长度,根据正弦的定义求出∠OCE=30°,得到∠COD=120°,根据题意计算即可.【详解】解:(1)如图2,作AH⊥MN于H,吊舱每分钟转过的角度=36024=15°,∴3分钟转过的角度为45°,在Rt△OAH中,OH=OA•cos∠AOH=50×22=2,∴HM=60﹣2≈25,答:该游客离地面高度约为25米;(2)如图2,线段CD距离地面85米,则OE=85﹣60=25,在Rt△OEC中,∠OEC=90°,OE=25,OC=50,∴∠OCE=30°,∴∠COE=60°,∴∠COD=120°,∴距离地面不低于85米的时间为:12015=8(分).【点睛】本题考查的是解直角三角形的应用,正确求出吊舱每分钟转过的角度是解题的关键.23.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=8,D为AB的中点,连接CD,以CD为直径作⊙O 交CB于点E,过点E作EF⊥AB,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)求阴影部分的面积.【答案】(1)相切,理由见解析;(2)8633π.【解析】【分析】(1)连接OE,先根据直角三角形的性质结合已知条件证得△ACD是等边三角形,然后再求得∠DOE=60°、∠CDB=120°、∠DFE=90°,然后根据四边形内角和定理求得∠OEF=90°即可证明;(2)先求出OE、OD、EF、DF的长,然后根据S阴影= S梯形OEFD- S扇形ODE求解即可.【详解】解:(1)相切,理由如下:如图:连接OE∵在Rt△ABC中,∠ACB=90°,∠B=30°,AC=8 ∴AB=2AC=2×8=16,∠A=60°∵D为AB的中点∴AD=DB=12AB=8∴AC=AD∴△ACD是等边三角形∴AC=CD=AD,∠ADC=60°∴CD=BD,∠CDB=180°-∠ADC=120°∴∠DCB=∠B=30°∵OC=OE∴∠OEC=∠DCB=30°∴∠DOE=60°在四边形DOEF中,∠DOE=60°, ∠CDB=120°, ∠DFE=90°∴∠OEF=360°-∠DOE-∠CDB- ∠DFE=360°-60°-120°-90°=90°∴EF与⊙O相切;(2)∵∠OEF=90°,EF⊥AB∴OE//DF∴四边形OEDF是直角梯形∵在Rt△ABC中,AC=8,AB=16∴2216883-=∵OE//DF,OC=OD∴BE=1432BC = ,OE=142CD = ∵在Rt △BEF 中, ∠B =30°,BE=43∴EF=1232BE =,BF=BE·cos30°=3432⨯=6 ∴DF=BD-BF=8-6=2∴S 阴影= S 梯形OEFD - S 扇形ODE=()21602360OE EF DF OE π⋅+- =()2160423242360π⋅⨯+- =8633π-.【点睛】本题考查了圆的切线证明、直角三角形的性质、解直角三角形、扇形的面积公式、等边三角形的判定与性质等知识点,灵活运用所学知识成为解答本题的关键.24.如图,在平面直角坐标系xOy 中,曲线y =4x(x >0)与直线y =kx -k 的交点为点A (m ,2).(1)求k 的值;(2)当x >0时,直接写出不等式kx -k >4x的解集:____; (3)设直线y =kx -k 与y 轴交于点B ,若C 是x 轴上一点,且满足△ABC 的面积是4,求点C 的坐标.【答案】(1)2;(2)x >2;(3)点C 的坐标(3,0)或(﹣1,0).【解析】【分析】(1)将点的值代入4y x=,得出点坐标,再将点代入y kx k =-,即可得出的值;(2)根据图像,直接得出4kx k x->的图像,即可得出不等式的解集; (3)根据(1)中直线的解析式,求出点的坐标,然后设出点C 的坐标,根据△ABC 的面积是4列出方程,解方程即可得出点C 的坐标.【详解】解:(1)根据题意,点A 在函数4y x=上,将点(),2A m 代入可得:2m = ()2,2A ∴ 将点()2,2A 代入y kx k =-可得:22k k =-解得:2k =22y x ∴=-即:2k =.(2)如图,当2x >时,函数图像直线在曲线上方,可得当2x >时,4kx k x->; 即:当2x >时,不等式4kx k x ->的解集是2x >; (3)如图,由(1)得直线的解析式为22y x =-直线22y x =-与y 轴交于点B ,令0x =,得2y =-()02B ∴-,直线22y x =-与轴交于点C ,令0y =,得1x =()1,0C ∴1CD m ∴=-设点(),0C n ,如图ABC ACD BCD S S S ∆∆∆=+1122B A CD y CD y =⋅⋅+⋅⋅11121222n n =⋅-⋅+⋅-⋅ 21n =-△ABC 的面积是421=4n ∴-解得:3n =或1n =-()3,0C ∴或()1,0-C即点C 的坐标是3,0或1,0.【点睛】本题考查反比例与一次函数相结合的坐标系中相关几何问题;做题时注意如果出现与函数相关的等式或者不等式,要根据函数图像直接判断出等式或者不等式的解;如果出现跟三角形面积相关的题目,注意先找出三角形面积所需要用到的线段长度所需要的点的坐标,出现动点的话可以先把动点的坐标设出来,注意考虑多种情况.25.如图1,在口ABCD 中,AB =3,AD =4,点M 、N 、P 、Q 分别在AD 、AB 、BC 、CD 上,且AM =CP ,AN =CQ .(1)求证:四边形MNPQ 是平行四边形;(2)如图2,∠ABC =90°,①当AM =52,四边形MNPQ 是菱形时,求DQ 的长; ②若AD 上存在点M ,使四边形MNPQ 是菱形,求AM 的取值范围.【答案】(1)证明见解析;(2)①DQ 的长为136;② 78≤AM≤258.【解析】【分析】(1)证出△AMN ≌△CPQ ,△BNP ≌△DMQ ,得到MN=PQ ,NP=MQ ,即可证明;(2)①设DQ 的长度为x ,当∠ABC =90°,四边形ABCD 为矩形,同理易得,△AMN ≌△CPQ ,△BNP ≌△DMQ ,由四边形MNPQ 是菱形,可得MN=MQ ,代入求解即可;②设AM=a ,AN=b ,做法同①,得到由四边形MNPQ 是菱形,可得MN=MQ ,2222AM AN DM DQ +=+,代入可得2568b a -=,由03b ≤≤可得AM 的取值范围. 【详解】解:(1)证明:由四边形ABCD 为平行四边形,可得AB=CD ,BC=AD ,∠A=∠C ,∠B=∠D ,∵AM =CP ,AN =CQ ,∴△AMN ≌△CPQ ,∴MN=PQ,∵AB=CD ,BC=AD ,AM =CP ,AN =CQ ,∴BN=DQ ,BP=DM ,∴△BNP ≌△DMQ ,∴NP=MQ ,在四边形MNPQ 中,∵MN=PQ,NP=MQ ,∴四边形MNPQ 是平行四边形.(2)①设DQ 的长度为x ,当∠ABC =90°,四边形ABCD 为矩形,同理易得,△AMN ≌△CPQ ,△BNP ≌△DMQ ,∴AM=CP=52,AN=CQ=3-x , ∵四边形MNPQ 是菱形,∴MN=MQ∴2222AM AN DM DQ +=+, 即()2222553422x x ⎛⎫⎛⎫+-=-+ ⎪ ⎪⎝⎭⎝⎭解得:136x =, 故DQ=136; ②设AM=a ,AN=b ,易得,DQ=BN=3-b ,∵四边形MNPQ 是菱形,∴MN=MQ∴2222AM AN DM DQ +=+,即()()222243a b a b +=-+- 解得:2568b a -=, ∵03b ≤≤, ∴72588a ≤≤ 即78≤AM≤258. 【点睛】本题考查矩形、菱形、平行四边形的性质以及菱形的判定,全等三角形的性质和判定,勾股定理等知识,熟练掌握特殊四边形的性质是解题的关键.26.已知二次函数y =ax 2+bx +c 的图像经过点A (1-t ,h ),点B (t +3a ,h ),与y 轴交于点C (0,3). (1)求a 与b 的关系式;(2)若二次函数的图像上始终存在不重合的E ,F 两点(E 在F 的左边)关于原点对称.①求a 的取值范围;②若点C 、E 、F 三点到直线l :y =94-x +32的距离相等,求线段EF 长.【答案】(1)b =-a -3;(2)①a <0;②线段EF .【解析】【分析】(1)根据A 、B 的坐标确定二次函数图像的对称轴x =2b a-,然后用a 表示b 即可; (2)①设E 的坐标为()11,x y ,则F 的坐标为()11,x y --,将E ,F 两点代入表达式得到根的判别式大于零并求解即可确定a 的取值范围内;②先说明G 为OC 中点,再分别作ED ⊥l 于D 点,FH ⊥l 于H 点;然后就E 、F 在直线l 异侧和同侧两种情况解答即可.【详解】解:(1)∵函数图像经过点A (1t -,h ),点B (3t a+,h ) 则该函数的对称轴为直线31322t t a a x a -+++== ∴322b a a a+-= ∴3b a =--;(2)①设E 的坐标为()11,x y ,则F 的坐标为()11,x y --,将E ,F 两点代入表达式有:()2111211133ax bx y a x bx y ⎧++=⎪⎨--+=-⎪⎩ 由①+②得:21260ax +=③∵始终存在且不重合的两点,故方程③有两个不相等的实数根,∴04260a -⨯⨯>,解得:0a <②∵C 点坐标为(0,3),则23y ax bx =++, ∵设直线93:42l y x =-+交y 轴于点G ,则G 点坐标为3(0,)2∴G 为OC 中点.分别作ED ⊥l 于D 点,FH ⊥l 于H 点.若E ,F 位于直线l 异侧,如图1,连接EF ,交直线l 于K 点.由已知得ED=FH,又∵∠EDK=∠FHK=90°,∠EKD=∠FKH,∴△EDK≌△FHK∴KE=KF∴K为EF的中点,∵O为EF中点,但直线l并没有经过点O,∴不存在这种情况.若E,F位于直线l同侧,由ED=FH得EF∥l.又∵EF经过原点O,∴直线EF 的表达式为:94y x =-. ∴21119(3)34ax a x x -++=-. 由①知道:213,ax =- 则有:1193(3)34a x x --++=-解得:119(3)4a x x -+=-. ∵10x ≠ ∴934a +=. 解得:34a =-. ∴21334x -=-. ∴1122x x =-=,(舍去). ∴194y =-. ∴9(2,)2E -.∴OE ==.∴EF =【点睛】本题属于二次函数综合题,主要考查了二次函数的性质、轴对称的性质以及分类讨论思想,掌握二次函数的性质、轴对称的性质是解答本题的关键.。
初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共6小题,每空0.5分,计10分)1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的___________发展水平;另一种是学生_________________发展水平,两者之间的差异就是最近发展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著《怎样解题》中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表”有两个特点,即普遍性和_____________性.二、简答题(共3小题,每小题5分,计15分)7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.《义务教育数学课程标准》(2011年版)从知识与技能等四个方面对总目标进行了阐述.(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的《1.4线段、角的轴对称性》以及九上的《1.2直角三角形全等的判定》中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.基础知识、基本技能、基本思想、基本活动经验.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,(试验结果的)有限性,(每个结果的)等可能性.6.弄清问题、拟定计划、实施计划、回顾反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.8.(1)数学思考、问题解决、情感态度;(2)四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上《1.4线段、角的轴对称性》中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上《1.2直角三角形全等的判定》是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知发展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括基础知识测试和解题能力测试两部分.基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等).解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当).2.第1、2、8题考查对《课标》学习和理解情况(称为课标板块);第4、5、7题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块);第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考查(称为综合板块).2012年雨花台区小学数学青年教师教学基本功比赛教育教学知识常识比赛试卷(满分100分,时间60分钟)姓名成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。
第8课时 用方程解决问题(3)【基础巩固】1.甲、乙两人在一条环形跑道上练习赛跑,甲每分钟跑260m ,乙每分钟跑240m ,两人同时同地背向而行,经x min 第一次相遇,则环形跑道的长为_______m.2.从甲地到乙地,某人步行比乘公交车多用3.6 h ,已知步行速度为8 km/h ,公交车的速度为40 km/h ,设甲、乙两地相距x km ,则列方程为_______. 3.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则可列方程是 ( )A .41404050x +=+B .41404050x +=⨯ C .414050x+=D .41404050x x++=4.某工厂计划每天烧煤5t ,实际每天少烧2t ,m t 煤多烧了20天,则可列方程是 ( )A .252m m-= B .2053m m-= C .2057m m-=D .2035m m-=5.甲、乙两人同时从相距27 km 的A 、B 两地相向而行,3h 相遇,如果甲比乙每小时多走1km ,求甲、乙两人的速度.6.王华上学要经过张咪家,他们两家相距2 km,王华骑车上学比张咪步行上学少用10 min若王华骑车的速度是15 km/h,张咪步行的速度是6 km/h,则他们上学各需多长时间?7.甲、乙两人在环形跑道上练习跑步,已知环形跑道一圈长400m,乙每秒钟跑6m,甲的速度是乙速度的43.(1)如果甲、乙两人在跑道上相距8m处同时反向出发,那么经过多少秒两人首次相遇?(2)如果甲在乙的前面8m处同时同向出发,那么经过多少秒两人首次相遇?8.汽车以72 km/h的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4s后听到回响,问汽车按喇叭时离山谷多远?(声音的传播速度为340 m/s)9.在一段双轨铁道上,两列火车同方向行驶,甲火车在乙火车的前面,甲火车的车速为25 m/s,乙火车的车速为30 m/s,甲火车全长为240 m,乙火车全长为200m.两火车从首尾相接到完全错开要多长时间?10.—条山路,从山下到山顶,走了1h还差1km,从山顶到山下,用50 min 可以走完.已知下山速度是上山速度的1.5倍,问上山速度和下山速度各是多少,单程山路有多少千米?11.一件工作,甲单独做20 h完成,乙单独做12 h完成.现在先由甲单独做4h,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?【拓展提优】12.甲、乙两人同时从A地出发去B地,甲速度保持不变,乙先用甲速度的2倍行了全程的一半,又用甲速度的一半走完全程,则最后结果是( ) A.甲、乙同时到达B.地B.甲先到B地C.乙先到B地D.无法确定13.某项工程由甲、乙两队完成,甲队单独完成需24天,乙队单独完成需16天,先由甲队做5天,然后两队合做,问再做几天完成工程的58?14.A、B两地的路程为360 km,甲车从A地出发开往B地,速度为72 km/h,甲车出发25 min后,乙车从B地出发开往A地,速度为93 km/h.(1)再过多长时间两车相遇?(2)两车相遇后,各自仍按原速度原方向继续行驶,再过多长时间以后两车相距99 km?15.一水池有一个进水管,5h可以注满空池,池底有一个出水管,10 h可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池注满?16.甲、乙两车从A、B两地相向而行,已知甲车速度为60 km/h,乙车速度是100 km/h,甲车比乙车早出发15min,相遇时,甲比乙少走65 km求A、B 两地的距离.17.轮船在两个码头之间航行,顺流航行需6h,逆流航行需8h,水流速度为3 km/h,求轮船在静水中航行的速度及两码头之间的距离?18.一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2 h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.19.已知A港在B港上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B两港之间,若小船在静水中的速度为16 km/h,水流的速度为4 km/h,在当晚23:00时,有人看见小船在距离A港80 km处行驶,求A、B两港之间的距离.参考答案【基础巩固】1. 500x 2. 3.6840x x-= 3.D 4.D 5.甲5 km/h ,乙4 km/h 6.王华20 min ,张咪30 min 7.(1)28 s (2)196 s 8.720m 9.88 s 10.上山4 km/h ,下山6km/h ,山路5 km 11.6 h 【拓展提优】12.B 13.4天 14. (1)2h (2)35h 15.10h 16.335 km 17.速度21 km/h ,距离144 km 18.略19.A 、B 两港之间的距离为120 km 或200 km 或100 km.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的根,则该等腰三角形的周长是( )A .12B .9C .13D .12或93.(罗田县期中)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为( )A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A .m >52B .m ≤52且m ≠2C .m ≥3D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x2-2x-m=0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
勾股定理练习选择题:1. 观察下列几组数据:⑴8, 15, 17;⑵7, 12, 15; (3)12, 15, 20;⑷7, 24,其中能作为直角三角形的三边长的有()组A. 1B. 2C. 3D. 42. 三个正方形的面积如图,正方形A的面积为()A. 6B.4C. 64D. 83. 已知直角三角形的两条边长分别是5和12,则第三边为(D.不能确定A. 13B. 119C.13 或.1194. 下列命题①如果a b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c, (a>b=c),那么a : b2: c2=2 :1 :1。
其中正确的是()A、①②B、①③C、①④D、②④5. 三角形的三边长为(a+b)2=c2+2ab则这个三角形是()A.等边三角形;B.钝角三角形;C.直角三角形;D.锐角三角形.6. 已知等腰三角形的腰长为10, —腰上的高为6,则以底边为边长的正方形的面积为()A、40B、80C、40 或360D、80 或360解答题:C E EG2. (1在数轴上作出表示 、2的点.(2)在第(1)的基础上分别作出表示1-和、2 +1的点.3•有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽 4尺, 求竹竿高与门高。
3. —架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙 7米,(1)这个梯子的顶端 距地面有多高? ( 2)如果梯子的顶端下滑了 4米,那么梯子的底端在水平方向滑动了几米?1如图1在单位正方形组成的网格图中标有一个直角三角形三边的线段是()AB 、CD 、EF 、GH 四条线段,其中能构成(A )CD 、EF 、GH(C ) AB 、CD 、GH(B )AB 、EF 、GH (D )AB 、CD 、EF4. 如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。
苏教版数学中考模拟测试学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有6小题,每小题3分,共18分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 下列运算中,·正确的是( )A. 4 = 2B. 2-3=-6C. (ab) 2=ab2D. 3a + 2a = 5a23. 若反比例函数y=﹣1x的图象经过点A(2,m),则m的值是()A. 12B. 2C. ﹣12D. ﹣24. 如图是由六个小正方体组合而成的一个立体图形,它的主视图是()A. B. C. D.5. 已知方程x 2 +x=2,则下列说中,正确的是( )A. 方程两根之和是1B. 方程两根之和是-1C. 方程两根之积是2D. 方程两根之差是-16. 如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A. 1cm <OA <4cmB. 2cm <OA <8cmC. 2cm <OA <5cmD. 3cm <OA <8cm二、填空题(本大题共10小题,每小题3分,共30分)7. 实数4的倒数是_________8. 经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为_________每千克.9. 在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是_________队(填"甲"或"乙"),10. 函数1y=x 2-中,自变量x 的取值范围是 ▲ . 11. 计算:111x x x ---=_____. 12. 如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.13. 一个正n 边形的一个外角等于72°,则n 的值等于_____.14. 教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是_________千克. 15. 如图所示,一只青蛙,从A 点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A 点的左侧的某个位置处,请问这个位置到A 点的距离最少是_____厘米.16. 如图,矩形纸片ABCD 中,AD= 1,AB 一2.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F,AE 与FG 交于点仪当触ED 的外接圆与BC 相切于BC 的中点N.则折痕FG 的长为________三、解答题(本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤) 17. 先化简,再求值(a-2)a-(a+6)(a-2),其中a=-2.18. 求不等式组21 {210 xx-≤+>19. 莫菲、隆迪、紫惠和曲代4人一起去火锅店吃火锅,4人在如图所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同侧,(1)请用适当的方法表示出所有的不同就座方案.(2)请问隆迪恰好坐在靠近过道一侧的概率是多少?20. 如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数kyx=(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.21. 游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)“家长陪同时会”的学生所占比例为%,“一定不会”的学生有人;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?22. 如图,在Rt△ABC 中,∠C=90°,AD 平分∠CAB,交CB 于点D,DE⊥AB 于点E.(1)求证:△ACD≌△AED(2)若AC=5,△DEB 的周长为8,求△ABC 的周长23. 如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西30.的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A 的距离姓B.(结果保留小数点后一位,其中3 1.732)24. 实践操作如图,∠△ABC 是直角三角形,∠ACB=90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC 的平分线,交BC 于点0②以点0为圆心,OC 为半径作圆.综合运用在你所作的图中,(1)直线AB 与⊙0位置关系是(2)证明:BA·BD=BC·BO;(3)若AC=5,BC=12,求⊙0的半径25. 某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系、(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元26. (1)如图1,△ABC中,D是BC边上一点,则△BD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为S ABDS ADC=BDDC(△ABD、△ADC的面积分别用S△ABD、S△ADC表示).现有BD=13BC,则S△ABD:S△ADC=(2)如图2,△ABC中,E、F分别是BC、AC边上一点,且有BE:EC=1:2,AF: FC=1:1,AE与BF相交于点G、现作EH ∥BF交AC于点H、依次求FH :HC、AG: GE、BG:GF的值(3)如图3,△ABC中,点P在边AB上,点M、N在边AC上,且有AP=PB,AM=MN=NC,BM、BW与CP分别相交于点R、Q.,现已知△ABC的面积为1,求△BRQ的面积.27. 如图1,在平面直角坐标系中,过点A (23-,0)的直线AB 交y 轴的正半轴于点B ,60ABO ∠=︒.(1)求直线AB 的解析式;(直接写出结果)(2)如图2,点C 是x 轴上一动点,以C 为圆心,3为半径作⊙C ,当⊙C 与AB 相切时,设切点为D ,求圆心C 的坐标;(3)在(2)的条件下,点E 在x 轴上,△ODE 是以OD 为底边的等腰三角形,求过点O 、E 、D 三点的抛物线.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2. 下列运算中,·正确的是( )A. 4B. 2-3=-6C. (ab) 2=ab2D. 3a + 2a = 5a2【答案】A【解析】试题解析:A. 4 = 2,正确;B. 2-3=18,故原选项错误;C. (ab) 2=a2b2故原选项错误;D.3a + 2a = 5a故原选项错误. 故选A.3. 若反比例函数y=﹣1x的图象经过点A(2,m),则m的值是()A. 12B. 2C. ﹣12D. ﹣2【答案】C【解析】【分析】把点A(2,m)代入反比例函数中,即可得到m的值.【详解】∵反比例函数y=﹣1x的图象经过点A(2,m),∴12 m=-.故选C.【点睛】考查了反比例函数图象上点的坐标特征,注意:反比例函数解析式中横纵坐标的乘积为定值k.4. 如图是由六个小正方体组合而成的一个立体图形,它的主视图是()A. B. C. D.【答案】B【解析】【分析】解:从正面看易得第一层有3个正方形,第二层从左往右有2个正方形.故选B【详解】5. 已知方程x 2 +x=2,则下列说中,正确的是( )A. 方程两根之和是1B. 方程两根之和是-1C. 方程两根之积是2D. 方程两根之差是-1【答案】B【解析】试题解析:方程x2+x=2,即方程x2+x-2=0,∴方程的两根的和为-1,两根的积为-2故选B.6. 如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A. 1cm<OA<4cmB. 2cm<OA<8cmC. 2cm<OA<5cmD. 3cm<OA<8cm【答案】A【解析】在△ABC中,因为BC-AB<AC<BC+AC,即5-3<AC<5+3,则2<AC<8,因为AC=2OA,所以1<OA<4,故选A.二、填空题(本大题共10小题,每小题3分,共30分)7. 实数4的倒数是_________【答案】1 4【解析】试题分析:当两数的乘积为1时,则两数互为倒数.8. 经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为_________每千克.【答案】2.01×10﹣6【解析】试题解析:0.000002012.01×10﹣69. 在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是_________队(填"甲"或"乙"),【答案】甲【解析】试题解析:由于S甲2<S乙2,则甲队中身高更整齐.∴两队中身高更整齐是甲队.10. 函数1y=x2-中,自变量x的取值范围是▲.【答案】x2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.11. 计算:111xx x---=_____.【答案】-1【解析】【分析】根据分式的性质进行计算即可解答【详解】解:11=111x x x x x-----=﹣1.故答案为﹣1.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则12. 如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.【答案】12【解析】【详解】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=41 = 82故答案为:12.13. 一个正n边形的一个外角等于72°,则n的值等于_____.【答案】5.【解析】分析】可以利用多边形的外角和定理求解.【详解】解:∵正n边形的一个外角为72°,∴n 的值为360°÷72°=5. 故答案为:5【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.14. 教室里有几名学生,这个时候一位身高170厘米的老师走进了教室,使得教室里所有人的平均身高从140厘米变成了145厘米,使得所有人的平均体重从35千克变成了39千克,则老师的体重是_________千克. 【答案】59 【解析】试题解析有:设该班有x 名学生,根据题意得:140+170=145+1x x解得:x=5经检验:x=5是原方程的根.∴老师的体重为:39×6-35×5=59千克.15. 如图所示,一只青蛙,从A 点开始在一条直线上跳着玩,已知它每次可以向左跳,也可以向右跳,且第一次跳1厘米,第二次跳2厘米,第三次跳3厘米,…,第2018次跳2018厘米.如果第2018次跳完后,青蛙落在A 点的左侧的某个位置处,请问这个位置到A 点的距离最少是_____厘米.【答案】1 【解析】 【分析】可以假设向左跳为负,向右跳为正,然后根据有理数的加减法计算法则得出最后的位置的最小值.【详解】向左跳一次再向右跳一次看成一组操作, 左跳1 个单位长度,接着向右跳2个单位长度,那么这时在A 点右侧1个单位长度处;然后向左跳3个单位长度,接着向右跳4个单位长度,那么这时在A 点右侧2个单位长度处;2018次:2018+2=1009 (组),则青蛙第2018次的落,点在A 的左侧,距离是1个单位长度, 故答案为:1.16. 如图,矩形纸片ABCD 中,AD= 1,AB 一2.将纸片折叠,使顶点A 与边CD 上的点E 重合,折痕FG 分别与AB 、CD 交于点G 、F,AE 与FG 交于点仪当触ED 的外接圆与BC 相切于BC 的中点N.则折痕FG 的长为________【答案】17 15【解析】试题解析:设AE与FG的交点为O.根据轴对称的性质,得AO=EO.取AD的中点M,连接MO.则MO=12DE,MO∥DC.设DE=x,则MO=12 x,在矩形ABCD中,∠C=∠D=90°,∴AE为△AED的外接圆的直径,O为圆心.延长MO交BC于点N,则ON∥CD.∴∠CNM=180°-∠C=90°.∴ON⊥BC,四边形MNCD是矩形.∴MN=CD=AB=2.∴ON=MN-MO=2-12x.∵△AED的外接圆与BC相切, ∴ON是△AED的外接圆的半径.∴OE=ON=2-12x,AE=2ON=4-x.在Rt△AED中,AD2+DE2=AE2, ∴12+x2=(4-x)2.解这个方程,得x=158.∴DE=158,OE=2-12x=1716.根据轴对称的性质,得AE⊥FG.∴∠FOE=∠D=90°.可得FO=17 30.又AB ∥CD,∴∠EFO=∠AGO,∠FEO=∠GAO . ∴△FEO ≌△GAO .∴FO=GO .∴FG=2FO=1715. ∴折痕FG 的长是1715. 【点睛】本题通过矩形纸片折叠,利用轴对称图形的性质,在丰富的图形关系中,考查学生获取信息和利用所得信息认识新事物的能力,本题对图形折叠前后的不变量的把握、直线与圆位置关系的准确理解、方程思想的运用意识和策略等具有可再抽象性.三、解答题(本大题共有11小题,共102分,解答时应写出文字说明、推理过程或演算步骤)17. 先化简,再求值(a-2)a-(a+6)(a-2),其中a=-2. 【答案】24. 【解析】试题分析:原式第一项利用单项式乘以多项式法则计算,第二项利用多项式乘以多项式法则计算,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=a 2-2a-a 2-4a+12 =612a -+当a=-2时,原式=-2×(-6)+12=24.18. 求不等式组21{210x x -≤+>【答案】132x -<≤ 【解析】试题分析:分别求出每一个不等式的解集,再取它们的公共部分即可. 试题解析:21{210x x -≤+>①②解不等式①,得:3x ≤ 解不等式②,得:12x >-, 所以132x -<≤ 19. 莫菲、隆迪、紫惠和曲代4人一起去火锅店吃火锅,4人在如图所示的四人桌前就座,其中莫菲和紫惠坐在餐桌的同侧,(1)请用适当的方法表示出所有的不同就座方案.(2)请问隆迪恰好坐在靠近过道一侧的概率是多少?【答案】(1)所有的就座方案见解析;(2)隆迪恰好坐在靠近过道一侧的概率是12.【解析】试题分析:(1)、根据不同的排列顺序用表格的形式表示出不同的就座方案;(2)、根据列出的所有方案,找出符合题意的几种情况,从而得出概率.试题解析:(1)莫菲、隆迪、紫惠和曲代依次用数字1、2、3、4编号,则所有的就座方案如下表:A 1 1 3 3 2 2 4 4B 3 3 1 1 4 4 2 2C 2 4 2 4 1 3 1 3D 4 2 4 2 3 1 3 1共有8种不同的就座方案.(2)从(1)中可以看出,有4种方案中,隆迪恰好坐在靠近过道一侧,所以隆迪恰好坐在靠近过道一侧的概率是1 220. 如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数kyx(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.【答案】(1)a=4;(2)P′的坐标是(2,4);(3)y=8x. 【解析】 【分析】(1)把(-2,a )代入y=-2x 中即可求a ;(2)坐标系中任一点关于y 轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变; (3)把P′代入y=kx中,求出k ,即可得出反比例函数的解析式. 【详解】解:(1)把(-2,a )代入y=-2x 中,得a=-2×(-2)=4, ∴a=4;(2)∵P 点的坐标是(-2,4),∴点P 关于y 轴的对称点P′的坐标是(2,4); (3)把P′(2,4)代入函数式y=kx,得 4=2k , ∴k=8,∴反比例函数的解析式是y=8x. 【点睛】本题考查了待定系数法求反比例函数解析式,一次函数图象上点的坐标特征,关于x 轴、y 轴对称点的坐标.知道经过函数的某点一定在函数的图象上,坐标系中任一点关于x 轴、y 轴的点的特征. 21. 游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了 名学生;(2)“家长陪同时会”的学生所占比例为 %,“一定不会”的学生有 人; (3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?【答案】(1)400(2)详见解析(3)100【解析】【分析】(1)根据一定会的人数和所占的百分比即可求出总人数:20÷5%=400(人).(2)用总人数减去其它人数得出不会的人数,再根据家长陪同的人数除以总人数得出家长陪同时会的所占的百分比,从而补全统计图.(3)用2000乘以一定会下河游泳所占的百分百,即可求出该校一定会下河游泳的人数.【详解】解:(1)400.(2)一定不会的人数是400﹣20﹣50﹣230=100(人),家长陪同的所占的百分比是230400×100%=57.5%.补图如下:(3)根据题意得:2000×5%=100(人).答:该校2000名学生中大约有多少人“一定会下河游泳”有100人.22. 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E.(1)求证:△ACD≌△AED(2)若AC=5,△DEB的周长为8,求△ABC的周长【答案】(1)证明见解析;(2)△ABC的周长是18.【解析】【分析】(1)根据角平分线的性质得出DC=DE,结合AD=AD 从而得出两个直角三角形全等; (2)根据全等得出AE=AC=5,CD=ED,从而得出△ABC 的周长=AC+AC+△DEB 的周长得出答案. 【详解】(1)证明:因为AD 平分∠CAB ,∠C=90°,DE ⊥AB 所以DC=DE在△ACD 和△AED 中,,DC DEAD AD=⎧⎨=⎩ ∴△ACD ≌△AED (HL ). (2)由(1)得△ACD ≌△AED 所以AE=AC=5,CD=ED , C △ABC =AC+AB+BC=AC+(AE+EB )+(BD+DC ) =AC+AC+(EB+BD+DE ) =AC+AC+C △DEB =5+5+8 =18.【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是掌握角平分线的性质定理,属于中考常考题型.23. 如图,我国渔政船在钓鱼岛海域C 处测得钓鱼岛A 在渔政船的北偏西30.的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B 处,此时又测得钓鱼岛A 在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A 的距离姓B.(结果保留小数点后一位,其中3=1.732)【答案】此时渔政船距钓鱼岛A 的距离AB 约为69.3海里. 【解析】试题分析:此题可先由速度和时间求出BC 距离,再由各方向角关系确定△ABC 为直角三角形,解此直角三角形即可求得结果. 试题解析:由题意得,BC =80×12=40(海里), ∠ACB =60°,∠DCB =30°,∠EBC =150°, 而∠EBA =60°,所以∠ABC =90°, 在Rt △ABC 中,tan 60°=3ABBC=, 3403AB BC =⋅=≈69.3(海里). 答:此时渔政船距钓鱼岛A 的距离AB 约为69.3海里.24. 实践操作如图,∠△ABC 是直角三角形,∠ACB=90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) ①作∠BAC 的平分线,交BC 于点0②以点0为圆心,OC 为半径作圆.综合运用在你所作的图中, (1)直线AB 与⊙0的位置关系是 (2)证明:BA·BD=BC·BO; (3)若AC=5,BC=12,求⊙0的半径【答案】实践操作,作图见解析;综合运用:(1)相切;(2)证明见解析;(3)103【解析】实践操作:根据题意画出图形即可;综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB 与⊙O 的位置关系是相切; (2)证明ΔBOD∽ΔBAC 即可;(3)首先根据勾股定理计算出AB 的长,再设半径为x,则OC=OD=x,BO=(12-x )再次利用勾股定理可得方程x 2+82=(12-x )2,再解方程即可. 试题解析:实践操作,如图所示:综合运用:综合运用:(1)AB与⊙O的位置关系是相切.∵AO是∠BAC的平分线,∴DO=CO,∵∠ACB=90°,∴∠ADO=90°,∴AB与⊙O的位置关系是相切;(2)∵AB、AC是切线∴∠BDO=∠BCA=90°又∠DBC=∠CBA∴ΔBDO∽ΔCBA∴BD BO BC BA=即:BD BA BO BC⋅=⋅(3)因为AC=5,BC=12,所以AD=5,AB=13,所以DB=13﹣5=7,设半径为x,则OC=OD=x ,BO=(12﹣x), x2+82=(12﹣x)2,解得:x=103.答:⊙O的半径为103.25. 某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系、(1)求y关于x的函数关系式(直接写出结果)(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值(月获利一月销售额一月销售产品总进价一月总开支)(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元【答案】(1)182y x=-+;(2)2110432z x x=-+-,当10x=万元时,最大月获利为7万元.(3)销售单价应定为8万元.【解析】试题分析:(1)设直线解析式为y=kx+b,把已知坐标代入求出k,b的值后可求出函数解析式;(2)根据题意可知z=411yx y--,把x=10代入解析式即可;(3)令z=5,代入解析式求出x的实际值.试题解析:(1)设y kx b=+,它过点56{48k bk b=+=+,解得:1{28kb=-=,182y x∴=-+(2)()2114118411104322z yx y x x x x⎛⎫=--=-+--=-+-⎪⎝⎭∴当10x=万元时,最大月获利为7万元.(3)令5z =, 得21510432x x =-+-, 整理得:220960x x -+=解得:18x =,212x =由图象可知,要使月获利不低于5万元,销售单价应在8万元到12万元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使月获利不低于5万元,销售单价应定为8万元.26. (1)如图1,△ABC 中,D 是BC 边上一点,则△BD 与△ADC 有一个相同的高,它们的面积之比等于相应的底之比,记为S ABD S ADC =BD DC (△ABD、△ADC 的面积分别用S △ABD 、S △ADC 表示).现有BD=13BC,则S △ABD :S △ADC = (2)如图2,△ABC 中,E 、F 分别是BC 、AC 边上一点,且有BE:EC=1:2,AF: FC=1:1,AE 与BF 相交于点G 、现作EH ∥BF 交AC 于点H 、依次求FH :HC 、AG : GE 、BG :GF 的值(3)如图3,△ABC 中,点P 在边AB 上,点M 、N 在边AC 上,且有AP=PB,AM=MN=NC,BM 、BW 与CP 分别相交于点R 、Q.,现已知△ABC 的面积为1,求△BRQ 的面积.【答案】(1)1:3;(2):=1:2FH HC 、:=3:1AG GE 、:=1:1BG GF ;(3)320. 【解析】 试题分析:根据两个三角形有一个相同的高,它们的面积之比等于相应的底之比进行计算即可;(2)由平行线分线段成比例定理即可得解;(3)由(2)易得:=3:2BR RM 、:=3:1BQ QN 、::=5:3:2CQ QR RP ,因△ABC 的面积为1.则可得:1122BCP ABC S S ∆∆==,331020BRQ BCP S S ∆∆==. 试题解析:(1)S ABD S ADC =BD DC =1133BC BC = (2):=1:2FH HC 、:=3:1AG GE 、:=1:1BG GF(3)由(2)易得::=3:2BR RM 、:=3:1BQ QN 、::=5:3:2CQ QR RP△ABC 的面积为1.则1122BCP ABC S S ∆∆==,331020BRQ BCP S S ∆∆==. 27. 如图1,在平面直角坐标系中,过点A (23-,0)的直线AB 交y 轴的正半轴于点B ,60ABO ∠=︒.(1)求直线AB 的解析式;(直接写出结果)(2)如图2,点C 是x 轴上一动点,以C 为圆心,3为半径作⊙C ,当⊙C 与AB 相切时,设切点为D ,求圆心C 的坐标;(3)在(2)的条件下,点E 在x 轴上,△ODE 是以OD 为底边的等腰三角形,求过点O 、E 、D 三点的抛物线.【答案】(1)直线AB 的解析式为323y x =+; (2)当⊙C 与AB 相切时,点C 坐标为(0,0)或(43-,0);(3)过点O 、E 、D 三点的抛物线为2(3)y x x =-+或213(3)237y x x =-+ 【解析】试题分析:(1)、根据Rt△AOB 的性质求出点B 的坐标,然后根据待定系数法求出函数解析式;(2)、根据⊙C 在直线AB 的左侧和右侧两种情况以及圆的切线的性质分别求出AC 的长度,从而得出点C 的坐标;(3)、本题也需要分两种情况进行讨论:⊙C 在直线AB 的右侧相切时得出点D 的坐标,根据等边△1ODE 的性质得出1E 的坐标,从而根据待定系数法求出抛物线的解析式;⊙C 在直线AB 的左侧相切时,根据切线的直角三角形的性质求出点2E 的坐标,根据待定系数法求出抛物线的解析式.试题解析:(1)∵A (23-0),∴23AO =. 在Rt△AOB 中,90AOB ∠=︒. tan AO ABO BO ∠=,23BO = 2BO =. ∴B (0,2). 设直线AB 的解析式为y kx b =+.则2{0b b =-+=解得{2k b ==∴直线AB的解析式为2y x =+. (2)如图3,①当⊙C 在直线AB 的左侧时, ∵⊙C 与AB 相切,∴90ADC ∠=︒.在Rt△ADC 中,90ADC ∠=︒. DC sin DAC AC ∠=,AC =,AC =而AO =∴C 与O 重合,即C 坐标为(0,0).②根据对称性,⊙C 还可能在直线AB 的右侧,与直线AB 相切,此时CO =∴C坐标为(-0).综上,当⊙C 与AB 相切时,点C 坐标为(0,0)或(-,0).(3)如图4,①⊙C 在直线AB 的右侧相切时,点D的坐标为(2-32). 此时△1ODE 为等边三角形.∴1E(0).设过点O 、E 、D三点的抛物线的解析式为(y a x x =.则3222a ⎛⎛=-+⨯- ⎝⎝⎭ 2a =-∴(2y x x =-+ ②当⊙C 在直线AB 的左侧相切时,D(2-,32-) 设2E C x =,则2DE x =,2ME x =. 在Rt△2MDE 中,290DME ∠=︒. 22222MD ME DE +=,即22232x x ⎛⎫⎫+= ⎪⎪⎝⎭⎭, x = ∴2E(0). 设过点O 、E 、D三点的抛物线的解析式为y a x x ⎛=+⎝.则32a ⎛⎛-=⨯ ⎝⎝,223a =-.223y x x ⎛=- ⎝. 综上,过点O 、E 、D三点的抛物线为(2y x x =-+或223y x x ⎛=- ⎝.点睛:本题主要考查的就是圆的切线的性质、分类讨论思想以及待定系数法求二次函数解析式,本题在解答的过程中容易出现漏解的现象,做题的时候要细心.在解决切线问题的时候,我们一般首先画出切线的位置,然后转化为直角三角形的问题来进行解决,从而得出我们所需要求的答案.在求切线的时候,一定要注意圆所在的位置进行分类讨论.。
专题一 规律探索型问题中考典例精析例1:一组按规律排列的数:95,1612,2521,3632,…请推断第n 个数是________.【点拨】通过观察发现,这组数字出现的规律是:(1)分子以幂的形式排列,分母与分子的差是定值4;(2)再从特殊到一般:从第一个数开始分子分别以3,4,5,…的平方出现.所以分子分母的代数式分别是(n +2)2和(n +2)2-4.例2:如图,将n 个边长都为1 cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为________.例3(2011·大连)在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =12∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F.(1)当AB =AC 时(如图所示),①∠EBF =________°;②探索线段BE 与FD 的数量关系,并加以证明. (2)当AB =kAC 时(如图所示),求BEFD 的值(用含k 的式子表示).专题训练1.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为________.2.观察下列算式:①1×3-22=3-4=-1; ②2×4-32=8-9=-1; ③3×5-42=15-16=-1; ④________; ….(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.3.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1(______,______),A3(______,______),A12(______,______);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向4.如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.12 3 43 56789101112131415161718192021222324252627282930313233343536(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______个数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.专题训练【练习篇】一、选择题(每小题5分,共25分)1.(2010中考变式题)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2 012个图案是()2.(2012中考预测题)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,38=6 561,…通过观察,用你所发现的规律确定32 012的个位数字是()A.3 B.9 C.7 D.13.(2010中考变式题)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是() A.38 B.52 C.66 D.744.(2010中考变式题)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c.字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc5.(2011·武汉)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为()A.65 B.49 C.36 D.25二、填空题(每小题5分,共40分)6.(2011·桂林)若a1=1-1m,a2=1-1a1,a3=1-1a2,…,则a2 011的值为________(用含m的代数式表示).7.(2011·北京)在下表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.按此规定,a1,3=________;表中的25个数中,共有________个1;计算a1,1·a i,1+a1,2·a i,2+a1,3·a i,3+a1,4·a i,4+a1,5·a i,5的值为________.a 1,1a1,2a1,3a1,4a1,5a 2,1a2,2a2,3a2,4a2,5a 3,1a3,2a3,3a3,4a3,5a 4,1a4,2a4,3a4,4a4,5a 5,1a5,2a5,3a5,4a5,58.(2010中考变式题)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有________个★.9.(2011·南京)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为____________.10.(2010中考变式题)如图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________.(用含n的代数式表示)11.(2010中考变式题)如图是圆心角为30°,半径分别是1、3、5、7、…的扇形组成的图形,阴影部分的面积依次记为S1、S2、S3、…,则S50=________.(结果保留π)12.(2010中考变式题)如图,直线y=3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,点A5的坐标为________.13.(2010中考变式题)如图,n+1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P1M1N1N2的面积为S1,四边形P2M2N2N3的面积为S2,…,四边形P n M n N n N n+1的面积为S n,通过逐一计算S1,S2,…,可得S n=________.三、解答题(共35分)14.(15分)(2010中考变式题)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=1x的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=8x的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=27x的一个交点;……(1)请观察上面的命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确的.15.(20分)(2011·河北)如图①至④中,两平行线AB,CD间的距离均为6,点M为AB上一定点.思考如图①,圆心为O的半圆形纸片在AB,CD之间(包括AB,CD).其直径MN在AB上,MN =8,点P为半圆上一点,设∠MOP=α.当α=________度时,点P到CD的距离最小,最小值为________.探究一在图①的基础上,以点M为旋转中心,在AB,CD之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图②,得到最大旋转角∠BMO=________度,此时点N 到CD 的距离是________.探究二将图①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.。
备战中考数学(苏版五四学制)巩固复习第十八章全等三角形(含解析)一、单选题1.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,依照(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均能够2.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DC C.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D3.如图,△ABC≌△EDF,∠FED=70°,则∠A的度数是()A.50°B.70°C.90°D.20°4.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△AC D的条件是()A.AB=AC B.∠B AC=90°C.BD=AC D.∠B=45°5.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A.∠A=∠D B.∠E=∠C C.∠A=∠C D.∠1=∠26.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为()A.B.1C.2D.57.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE= FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对8.如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DA B=30°,以下三个结论:①AF⊥BC;②△ADG≌△ACF;③O为BC的中点;④AG=BG.其中正确的个数为()A.1B.2C.3D.49.如图,AD平分∠BAC,AB=AC,那么判定△ABD≌△ACD的理由是()A.SSSB.SASC.ASAD.AAS10.在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′ B.∠B =∠B′,∠C=∠C′,AB=A′B′C.∠A=∠A′,AB=A′B′,BC=B′C′ D.AB =A′B′,BC=B′C′,AC=A′C11.下列图形是全等三角形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形 D.一个钝角相等的两个等腰三角形12.如图,已知AB=AD,添加一个条件后,仍旧不能判定△ABC≌△ADC 的是()A.CB=CDB.∠BA C=∠DACC.∠BCA=∠D CAD.∠B=∠D=90°二、填空题13.如图,D在线段BE上一点,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,∠3=________°.14.如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,那个条件是________.15.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC 上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF =5cm,则AE=________cm.16.如图,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论:①EM=F N,②CD=DN,③∠FAN=∠EAM.④△ACN≌△ABM.其中正确的有________.17.要用反证法证明命题“一个三角形中不可能有两个角是直角”,第一应假设那个三角形中________.18.如图,在△ABC中,D,E分别是AB,AC的中点,延长DE至F,使EF = DE,若AB = 10,BC = 8,则四边形BCFD的周长为________19.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为__ ______20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE =CF,若BD=10,BF=3.5,则EF=________.21.若△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是________,∠ACB的对应角是________.三、解答题22.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.四、综合题23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直截了当写出AB+AC与AE之间的等量关系.24.在△ABC中,∠ACB=90°,AC=BC,直线MN通过点C,且AD ⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC ≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣B E;(3)当直线MN绕点C旋转到图(3)的位置时,请直截了当写出D E,AD,BE之间的等量关系.25.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,请你添加一个条件使∠DAB=∠EAC.(1)你添加的条件是________;(2)依照上述添加的条件证明∠DAB=∠EAC.答案解析部分一、单选题1.【答案】B【考点】全等三角形的判定【解析】【分析】依照三角形全等的判定中的SAS,即两边夹角.做题时依照已知条件,结合全等的判定方法逐一验证,要由位置选择方法。
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1.2-值等于( ) A. 2B. 12-C.12D. ﹣22.比较350,440,530的大小关系为( ) A. 530<350<440B. 350<440<530C. 530<440<350D. 440<350<5303.如图,AB ∥CD ,EF ⊥AB 于E , EF 交CD 于F ,已知∠2=30°,则∠1是( )A. 20°B. 60°C. 30°D. 45°4.下列式子为最简二次根式的是( ) A.0.1a B.52 C.24a +D.125.下列因式分解正确的是( ) A. 6x+9y+3=3(2x+3y) B. x 2+2x+1=(x+1)2 C. x 2﹣2xy ﹣y 2=(x ﹣y)2D. x 2+4=(x+2)26.某车间20名工人每天加工零件数如下表所示: 每天加工零件数 4 5 6 7 8 人数 36542这些工人每天加工零件数的众数、中位数分别是( ). A. 5,5B. 5,6C. 6,6D. 6,57.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出方程是( ). A.32824x x =- B.32824x x =+C.2232626x x+-=+ D.2232626x x+-=-8.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是( )A. 625B.15C.425D.7259.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于( )A. 5﹣1B. 3﹣5C. 512-D. 5﹣1或3﹣510.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为( )A 5 7+1 5 D. 24 5二、填空题11.多项式(mx+8)(2-3x)展开后不含x 的一次项,则m=_____.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.13.二次函数y=2(x+1)2﹣3的顶点坐标是_____.14.方程233x x=-的解是.15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN与△OBC 相似,则CM=_____.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为_____.17.如图,▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=_____.18.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A 和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是_____.三、解答题19.计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.20.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.21.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.22.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题: (1)本次抽测的男生有 人,抽测成绩的众数是 ; (2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?23.小颖和小红两位同学在学习”概率”时,做投掷骰子(质地均匀正方体)实验,他们共做了60次实验,实验的结果如下: 朝上的点数 1 2 3 4 5 6 出现的次数 79682010(1)计算”3点朝上”的频率和”5点朝上”的频率.(2)小颖说:”根据实验,一次实验中出现5点朝上的概率最大”;小红说:”如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率. 24.如图,在ABC ∆中,是BC 的中点,过点的直线GF 交AC 于点,交AC 的平行线BG 于点,ED DF ⊥交AB 于点,连接EG 、EF .(1)求证:BG CF =;(2)请你判断BE CF +与EF 的大小关系,并说明理由.25.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?26.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.27.如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.28.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.答案与解析一、选择题1.2-的值等于( )A. 2B.12- C. 12D. ﹣2【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2.比较350,440,530的大小关系为( )A. 530<350<440B. 350<440<530C. 530<440<350D. 440<350<530【答案】A【解析】【分析】先将各数转化为指数相同的幂的乘方的形式,再比较底数大小即可.【详解】解:350=()1053;440= ()1044;550=()1035;∵53=243, =256,35=125,∴35<53<,∴530<350<440,故选A.【点睛】本题考查了幂的大小比较,灵活转化幂的形式是解题关键.3.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠2=30°,则∠1是( )A. 20°B. 60°C. 30°D. 45°【答案】B【解析】【分析】根据三角形内角之和等于180°,对顶角相等的性质求解.【详解】解:∵AB∥CD,EF⊥AB,∴EF⊥CD.∵∠2=30°,∴∠1=∠3=90°-∠2=60°.故选:B.4.下列式子为最简二次根式的是( )A. 0.1aB. 52C. 24a+ D. 1 2【答案】C 【解析】【详解】解:A0.1a 1010a,不是最简二次根式;B5213; C24a+是最简二次根式;D 122故选C.【点睛】根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.5.下列因式分解正确的是( )A. 6x+9y+3=3(2x+3y)B. x2+2x+1=(x+1)2C. x2﹣2xy﹣y2=(x﹣y)2D. x2+4=(x+2)2【答案】B【解析】【详解】(A)原式=3(2x+3y+1),故A错误;(C)x²−2xy−y²不是完全平方式,不能因式分解,故C错误;(D)x 2+4不能因式分解,故D 错误; 故选B.6.某车间20名工人每天加工零件数如下表所示:这些工人每天加工零件数的众数、中位数分别是( ). A. 5,5 B. 5,6C. 6,6D. 6,5【答案】B 【解析】 【分析】根据众数、中位数的定义分别进行解答即可.【详解】解:由表知数据5出现次数最多,所以众数为5; 因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662+=6, 故选:B .【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 7.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).A. 32824x x =-B.32824x x=+ C. 2232626x x +-=+ D. 2232626x x +-=- 【答案】A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据”轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.如图,A 、B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A.625B.15C.425D.725【答案】A 【解析】试题解析:在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为625. 故选A .9.若点C 是线段AB 的黄金分割点,且AB =2(AC >BC),则AC 等于( ) A.51 B. 35 C.51- D.5﹣1或35【答案】A 【解析】 【分析】51-即可解题. 【详解】解:如下图,∵点C是线段AB的黄金分割点,∴ACAB=512,∵AB=2∴AC=5﹣1,故选A.【点睛】本题考查了黄金分割点的定义,属于简单题,熟悉黄金分割点的概念以及黄金分割比的比值是解题关键.10.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为( )A. 5B. 7+1C. 5D. 24 5【答案】D【解析】【分析】首先根据菱形的对角线性质得到DE+CE的最小值=CF,再利用菱形的面积列出等量关系即可解题. 【详解】解:如下图,过点C作CF⊥OA与F,交OB于点E,过点E作ED⊥OC与D,∵四边形OABC是菱形,由菱形对角线互相垂直平分可知EF=ED,∴DE+CE的最小值=CF,∵A的坐标为(4,3),∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积),即24=CF×5,解得:CF= 24 5,即DE+CE的最小值=24 5,故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E的位置并熟悉菱形面积的求法是解题关键.二、填空题11.多项式(mx+8)(2-3x)展开后不含x 的一次项,则m=_____.【答案】12【解析】【分析】乘积含x项包括两部分,①mx×2,②8×(-3x),再由展开后不含x的一次项可得出关于m的方程,解出即可.【详解】由题意得,乘积含x项包括两部分,①mx×2,②8×(-3x),又∵(mx+8)(2-3x)展开后不含x的一次项,∴2m-24=0,解得:m=12.故答案为12.【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.【答案】65.410【解析】试题分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.解:5 400 000=5.4×106万元.故答案为5.4×106.考点:科学记数法—表示较大的数.13.二次函数y =2(x+1)2﹣3的顶点坐标是_____. 【答案】()1,3-- 【解析】 【分析】二次函数顶点式为y=a(x-h)2+k(a,h,k 是常数,a≠0),其顶点坐标为(h ,k). 【详解】解:由顶点式的定义可知该二次函数的顶点坐标为()1,3--. 【点睛】本题考查了二次函数的顶点式. 14.方程233x x=-的解是 . 【答案】x=9. 【解析】 【分析】根据解分式方程的步骤解答即可. 【详解】去分母得:2x=3x ﹣9, 解得:x=9,经检验x=9是分式方程的解, 故答案为x=9.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.15.如图,O 为Rt △ABC 斜边中点,AB=10,BC=6,M ,N 在AC 边上,∠MON=∠B ,若△OMN 与△OBC 相似,则CM=_____.【答案】258或74【解析】 【分析】分两种情形分别求解:①如图1中,当∠MON=∠OMN 时.②如图2中,当∠MON=∠ONM 时. 【详解】解:∵∠ACB=90°,AO=OB ,∴∠B=∠OCB ,∵∠MON=∠B ,若△OMN 与△OBC 相似,∴有两种情形:①如图1中,当∠MON=∠OMN 时,∵∠OMN=∠B ,∠OMC+∠OMN=180°, ∴∠OMC+∠B=180°, ∴∠MOB+∠BCM=90°, ∴∠MOB=90°,∵∠AOM=∠ACB ,∠A=∠A , ∴△AOM ∽△ACB ,∴AM AB =OAAC , ∴10AM =58, ∴AM=254,∴CM=AC-AM=8-254=74. ②如图2中,当∠MON=∠ONM 时,∵∠BOC=∠OMN ,∴∠A+∠ACO=∠ACO+∠MOC , ∴∠MOC=∠A , ∵∠MCO=∠ACO , ∴△OCM ∽△ACO ,∴25=CM•8,∴CM=258,故答案为:74或258.【点睛】本题考查相似三角形的判定和性质,直角三角形斜边中线的性质等知识,解题关键是学会用分类讨论的思想思考问题.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为_____.【答案】π【解析】【分析】首先连接OA,OC,利用同弧所对的圆心角的度数是圆周角度数的二倍求出∠AOC的度数,再利用圆的周长即可解题.【详解】解:连接OA,OC,∵∠D=45°,∴∠AOC=90°,⊙O的半径为2,∴弧AC的长=四分之一圆的周长,即144ACππ==,【点睛】本题考查了弧长的计算,属于简单题,熟悉同弧所对的圆周角和圆心角之间的关系是解题关键.17.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=_____.【答案】1:24 【解析】试题解析:∵四边形ABCD 是平行四边形 ∴AB ∥CD ,AB =CD ∵CF :FD =1:2∴CF :CD =1:3,即CD :AB =1:3 ∵AB ∥CD ∴ΔCEF ∽ΔABE∴FE :BE =1:3 S ΔCEF :S ΔABE =1:9 ∴S ΔCEF :S ΔBCE =1:3 ∴S ΔCEF : S ΔABC =1:12 ∴S ΔCEF : S □ABCD =1:2418.如图,一次函数与反比例函数的图象交于A (1,12)和B (6,2)两点.点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图象于点M 、N ,则四边形PMON 面积的最大值是_____.【答案】【解析】试题分析:设反比例函数解析式k y x=和一次函数解析式y=kx+b ,由A ,B 的坐标分别求的解析式为:12y x =和y=-2x+14,然后可设P点的坐标为(m ,-2m+14),因此可知=--OCM ODN PMON OCPD S S SS四边形四边形=(214)12m m ⨯-+-=221412m m -+-=2725()22m --+,所以四边形PNOM 的最大值为252. 考点:1、一次函数,2、反比例函数三、解答题19.计算:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1.【答案】-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.详解:解:(﹣3)0﹣|﹣3|+(﹣1)2015+(12)﹣1=1﹣3+(﹣1)+2=﹣1.点睛:本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.20.解不等式组3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.【答案】–1≤x<3【解析】分析】分别求出不等式组中两不等式的解集并在数轴上表示,找出两解集的公共部分即可确定出不等式组的解集.【详解】解:3(2)2513212x xxx+≥+⎧⎪⎨+-<⎪⎩①②,解不等式①,得:x≥–1,解不等式②,得:x<3,则不等式组的解集为–1≤x<3,将不等式组的解集表示在数轴上如下:【点睛】本题考查解一元一次不等式组,在数轴上表示不等式组的解集.能依据不等式的性质正确求得不等式组中每一个不等式的解集是解决问题的关键.21.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.【答案】-11x+,-14.【解析】试题分析:根据分式的除法和减法可以化简题目中的式子,然后在﹣1,0,1,3中选取一个使得原分式有意义的x的值代入即可解答本题.试题解析:原式=1﹣()()()21·11x xxx x x+-+-=1﹣21xx++=121x xx+--+=-11x+,当x=3时,原式=﹣131+=-14.22.为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?【答案】(1)25,6次;(2)补全图见解析;(3)该校125名九年级男生约有90人体能达标.【解析】试题分析:(1)对比扇形统计图与条形统计图可知,抽测成绩为7次的男生人数有7人,占总人数的28%,由此可求出总人数,求出抽测成绩为4,5,6,7,8次的人数,即可得到抽测成绩的人数.(2)由抽测成绩为6次的男生的人数补全条图形.(3)用样本估计总体的方法解题.试题解析:(1)本次抽测的男生有:7÷28%=25,抽测6次的人数有25-2-5-7-3=8人,所以众数是6次;(2)如图所示(3)8731259025++⨯=(人).答:该校125名九年级男生约有90人体能达标.23.小颖和小红两位同学在学习”概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算”3点朝上”的频率和”5点朝上”的频率.(2)小颖说:”根据实验,一次实验中出现5点朝上的概率最大”;小红说:”如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.【答案】(1)110,13;(2)小颖、小红的说法都是错误的;(3)13【解析】【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.注意概率在0和1之间的事件为随机事件.【详解】解:()1“点朝上”出现的频率是61 6010=,“点朝上”出现的频率是201 603=;()2小颖的说法是错误的.这是因为:”点朝上”的频率最大并不能说明”点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故”点朝上”的次数不一定是100次;()3列表如下:∵点数之和为的倍数的一共有种情况,总数有种情况, ∴ (点数之和为的倍数)121363==. 【点睛】本题考查了列表法与树状图法,解题的关键是根据题意列出表格即可.24.如图,在ABC ∆中,是BC 的中点,过点的直线GF 交AC 于点,交AC 的平行线BG 于点,ED DF ⊥交AB 于点,连接EG 、EF .(1)求证:BG CF =;(2)请你判断BE CF +与EF 的大小关系,并说明理由. 【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可. 【详解】证明:(1)∵BG∥AC ∴BGD CFD ∠=∠ ∵是BC 的中点 ∴BD CD =又∵BDG CDF ∠=∠∴△BDG≌△CDF∴BG CF =(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵△BEG 中,BE+BG>GE,∴BE CF +>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.25.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y 是销售价x 的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】()40y x =-+;()此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得. 试题解析:()设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;()将35x =代入()中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.26.已知,四边形ABCD 中,E 是对角线AC 上一点,DE =EC ,以AE 为直径的⊙O 与边CD 相切于点D ,点B 在⊙O 上,连接OB .(1)求证:DE =OE;(2)若CD∥AB,求证:BC 是⊙O 的切线;(3)在(2)的条件下,求证:四边形ABCD 是菱形.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD =∠DEO =60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO =∠CDO =90°,于是得到结论;(3)先判断出△ABO ≌△CDE 得出AB =CD ,即可判断出四边形ABCD 是平行四边形,最后判断出CD =AD 即可.【详解】(1)如图,连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠2+∠3=∠1+∠COD =90°, ∵DE =EC ,∴∠1=∠2,∴∠3=∠COD ,∴DE =OE;(2)∵OD =OE ,∴OD =DE =OE ,∴∠3=∠COD =∠DEO =60°, ∴∠2=∠1=30°, ∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴∠BOC =∠DOC =60°, 在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO(SAS),∴∠CBO =∠CDO =90°, ∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴△ABO ≌△CDE(AAS),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.27.如图,直线L:y=﹣12x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.【答案】(1)(4,0),(0,2);(2)82(04)28(4)t tSt t-<≤⎧=⎨->⎩;(3)M(2,0);(4)G(051).【解析】【分析】(1)在122y x=-+中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到OG OMNG MN=,则可求得OG的长,可求得G点坐标.【详解】(1)在122y x=-+中,令y=0,得x=4,令x=0可,y=2,∴A(4,0),B(0,2);(2)由题题意可知AM=t.①当点M在y轴右边,即0<t≤4时,OM=OA﹣AM=4﹣t.∵N(0,4),∴ON=4,∴S=12OM•ON=12×4×(4﹣t)=8﹣2t;②当点M在y轴左边,即t>4时,则OM=AM﹣OA=t﹣4,∴S=12×4×(t﹣4)=2t﹣8;综上所述:82(04)28(4)t tSt t-<≤⎧=⎨->⎩;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN=2224+=25.∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴OG OMNG MN=,且NG=ON﹣OG,∴2425OGOG=-,解得OG=51-,∴G(0,51-).【点睛】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.28.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2)94;(3)见解析.【解析】【分析】(1)利用待定系数法进行求解即可;(2)设点M的坐标为(m,m2﹣4m+3),求出直线BC的解析,根据MN∥y轴,得到点N的坐标为(m,﹣m+3),由抛物线的解析式求出对称轴,继而确定出1<m<3,用含m的式子表示出MN,继而利用二次函数的性质进行求解即可;(3)分AB为边或为对角线进行讨论即可求得.【详解】(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:0933b cc=++⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,故抛物线的解析式为y=x2﹣4x+3;(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,∵MN∥y轴,∴点N的坐标为(m,﹣m+3),∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣32)2+94,∴当m=32时,线段MN取最大值,最大值为94;(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3),综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).【点睛】本题考查了二次函数的综合题,涉及了待定系数法,二次函数的性质,平行四边形的性质,菱形的判定等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论是解题的关键.。
中考复习基础训练4
姓名_______
1.点(-2,1)在平面直角坐标系中所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2. 在下列代数式中,次数为3的单项式是( )
A .x 3+y 3
B .xy 2
C .x 3
y D .3xy 3. 如图,直线AB ∥CD ,AF 交CD 于点E ,∠CEF =140°, 则∠A 等于( )
A .50°
B .45°
C .40°
D .35° 4. 用科学记数法表示5700000,正确的是
A .0.57×107
B .57×105
C .570×104
D .5.7×106
5. 正十边形的每个外角等于( )
A .18︒
B .36︒
C .45︒
D .60︒
6、要了解全校学生课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生
C .调查九年级全体学生
D .调查七、八、九年级各100名学生
7.运动会上,初二(3)班买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( )
A .4030201.5x x -=
B .4030
201.5x x -= C .
3040201.5x x -= D .3040201.5x x
-= 8.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高________℃. 9.函数y =1x +中,自变量x 的取值范围是 ________. 10.如图,在△ABC 中,点D ,E ,F 分别是AB ,AC ,BC 的 中点,若△ABC 的周长为12cm ,则△DEF 的周长是 ______cm .
11.如图,点A ,B ,C ,D 在⊙O 上,点O 在∠D 的内部, 四边形OABC 为平行四边形,则∠OAD+∠OCD= _______°.
12、一次函数y =2x +b 的图象不经过第二象限.则b 的取值范围为__________
A
B
C D E
F
(第2题)
F
E D A
B
C
(第10
· O A
B
D C
(第11题)
A
O
B
x
y
(第22题图)
13、直线y =-2x -1向右平移2个单位后新直线的解析式为_______________ 14、一组数据3、-2、1、x 的极差为6,则x 的值为___________________ 15、已知二次函数y =x 2
-4x +5的顶点坐标为_______________
16、半径为5cm 的圆O 中,弦AB//弦CD ,又AB=6cm ,CD=8cm ,则AB 和CD 两弦的距离为
_________
17、过圆O 外一点P 作圆O 的两条切线PA ,PB ,切点分别为A ,B ,C 为圆周上除切点
A 、
B 外的任意点,若___________
,700
=∠=∠ACB APB 则。
18、点O 到直线l 上一点P 的距离为3cm ,圆O 的半径为3cm ,则直线l 与圆的位置关系
是____________。
19、一个角的补角是这个余角的3倍,则这个角的大小是__________。
20、AB=3,AD=2,以矩形ABCD 矩形的一边为轴旋转一周所得的圆柱的表面积为 。
21、如果矩形纸片两面相邻两边分别为18,30,将其圈成一个圆柱的侧面,则底面的半径是 。
22.如图,已知点A 是双曲线3
y x
=
在第一象限上的一动点,连接AO ,以OA 为一边作等腰直角三角形AOB (∠AOB =90°),点B 在第四象限,随着点A 的运动,点B 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 ______. 23、实数a 、b 在数轴上的位置如图,则化简代数式||a —b +a 的结果是 .
24、若两个相似三角形的面积之比为1∶4,则它们的周长之比为________________
b
a
(第23题图)
25、如图,已知在△ABC 中,P 是AB 上的一点,连接CP ,要使△
ACP ∽△ABC ,只需添加条件____________(只要写出一种合适的条
件).
26.如图6-4-21,在平行四边形ABCD 中,过点B 的直线与对角线AC ,边AD 分别交于点E 和F ,过点E 作EG ∥BC ,交AB 于点G ,则图中相似三角形有( ) A .4对 B .5对 C .6对 D .7对
27、(1)计算:2-4sin 45º+(-2012)0
; (2)化简:x -1 x2-2x +1 ÷(x +1).
28、 (1)解方程:1 x -2 +1=x +1
2x -4 ; (2)解不等式组:⎩⎪⎨⎪⎧2x -1>1, 5x +1 2
≤x +5.
29、某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
⑴ 九年级(1)班参加体育测试的学生有_ ____人; ⑵ 将条形统计图补充完整;
10%
D
A
C
30%
B
⑶ 在扇形统计图中,等级B 部分所占的百分比是_ __ _,等级C 对应的圆心角的度数为 _____________________°;
⑷
若该校九年级学生共有850人参加体育测试,估计达到A 级和B 级的学生共有_ __
30、将A ,B ,C ,D 四人随机分成甲、乙两组参加羽毛球比赛,每组两人.
(1)A 在甲组的概率是多少?
(2)A ,B 在同一组的概率是多少?
31、如图,AC 是⊙O 的直径,弦BD 交AC 于点E .
(1)求证:△ADE ∽△BCE ;
(2)如果AD 2
=AE ·AC ,求证:CD =CB .
32、在一条直线上依次有A 、B 、C 三个海岛,某海巡船从A 岛出发沿直线匀速经B 岛驶向C 岛,执行海巡任务,最终达到C 岛.设该海巡船行驶x (h )后,与.B .港的距离....为y (km ),y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km ,
a ;
(2)求y 与x 的函数关系式,并请解释图中点P 的坐标所表示的实际意义;
(3)在B 岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km ,求该海巡船能接受到该信号的时间有多长?
0.5
O
y (km)
25
60
P
a。