九年级数学下册质量检测考试试题2
- 格式:doc
- 大小:529.50 KB
- 文档页数:15
一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 23.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .4.如图,抛物线与x 轴交于()2,0A -,()4,0B 两点,点()P m n ,从点A 出发,沿抛物线向点B 匀速运动,到达点B 停止,设运动时间为t 秒,当3t =和9t =时,n 的值相等.有下列结论:①6t =时,n 的值最大;②10t =时,点P 停止运动;③当5t =和7t =时,n 的值不相等;④4t =时,0m =.其中正确的是( )A .①④B .②④C .①③D .②③5.抛物线221y x =--的顶点坐标是( ) A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)6.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .7.当函数21(1)23a y a x x +=-++ 是二次函数时,a 的取值为( )A .1a =B .1a =±C .1a ≠D .1a =-8.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()4,0,其对称轴为直线1x =,结合图像给出下列结论:①0b <;②420a b c -+>;③当2x >时,y 随x 的增大而增大;④所以正确关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个9.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .33C .222+D .25+11.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s二、填空题13.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.14.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.15.如图已知1A ,2A ,3A ,n A ⋅⋅⋅是x 轴上的点,且112233411n n OA A A A A A A A A -====⋅⋅⋅==,分别过点1A ,2A ,3A ,n A ⋅⋅⋅作x 轴的垂线交二次函数()02>=x x y 的图象于点1P ,2P ,3P ,n P⋅⋅⋅,若记11OA P △的面积为1S ,过点1P 作1122P B A P ⊥于点1B ,记112P B P △的面积为2S ,过点2P 作2233P B A P ⊥于点2B ,记223P B P △的面积为3S ,…依次进行下去,则3S =______,最后记()111n n n PB P n -->△的面积为n S ,则n S =______.16.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.17.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.18.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).19.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.已知抛物线23(0)y ax bx a =+-≠经过(1,0)(3,0)A B -,两点,C 点是抛物线与y 轴交点,直线l 是抛物线的对称轴. (1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM △的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.24.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 25.跳绳时,绳甩到最高处时的形状是抛物线,正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为20.9y ax bx =++. (1)求该抛物线的表达式;(2)如果小明站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶上方0.4米处,求小明的身高是多少?此时小明若向点O 方向走多少米,就能让绳子甩到最高处时,绳子刚好通过他的头顶;(3)如果有若干个与小明同身高的同学一起站在OD 之间玩跳绳,现知只要绳子甩到最高处时超过她们的头顶且每个同学同方向站立时的脚跟之间距离不小于0.55米就可以一起玩,问最多可以几个同学一起玩.26.阅读材料:二次函数的应用小明在学习过程中遇到一个问题:下列两个两位数相乘的运算中(两个乘数的十位上的数都是8,个位上的数的和等于10),猜想其中哪个积最大,并说明理由.8189⨯,8288⨯,8387⨯,……,8783⨯,8882⨯,8981⨯ 小明结合已学知识做了如下尝试:设两个乘数的积为y ,其中一个乘数的个位上的数为x ,则另一个乘数个位上的数为(10)x -,根据题意得:(80)[80(10)]y x x =++-=(80)(90)(80)(90)x x x x +-=-+-……(1)问题解决:请帮助小明判断以上问题中哪个积最大并求出这个最大的积;(2)问题拓展:下列两个三位数相乘的运算中(两个乘数的百位上的数都是7,十位上的数与个位上的数组成的数的和等于100),用以上方法猜想其中哪个积最大,并说明理由.701799⨯,702798⨯,703797⨯,……,797703⨯,798702⨯,799701⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.A解析:A 【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题. 【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+, ∴当x=3时,S 取得最大值,此时S=18, 故选:A . 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.3.B解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.4.A解析:A 【分析】根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答. 【详解】解:过点P 作PQ ⊥x 轴于Q ,根据题意,该抛物线的对称轴是直线x=422- =1.设点Q 的运动速度是每秒v 个单位长度,则∵当t=3和t=9时,n 的值相等, ∴x=12[(9v−2)+(3v−2)] =1, ∴v=12. ①当t=6时,AQ=6×12=3,此时点P 是抛物线顶点坐标,即n 的值最大,故结论正确;②当t=10时,AQ=10×12=5,此时点Q 与点B 不重合,即n≠0,故结论错误; ③当t=5时,AQ=52,此P 时点的坐标是(12,0); 当t=7时,AQ=72,此时点P 的坐标是(32,0). 因为点(12,0)与点(32,0)关于对称轴直线x=1对称,所以n 的值一定相等,故结论错误;④t=4时,AQ=4×12=2,此时点Q 与原点重合,则m=0,故结论正确. 综上所述,正确的结论是①④. 故选:A . 【点睛】本题主要考查了抛物线与x 轴的交点,二次函数的最值,二次函数图象上点的坐标特征,根据题意求得对称轴和点Q 的运动速度是解题的关键.5.C解析:C 【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标. 【详解】 解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1), 故选:C . 【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.6.D解析:D 【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解. 【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上,∴241441b ⨯⨯-⨯=0,解得b 2=16, b=±4. 故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.7.D解析:D 【分析】根据二次函数的定义去列式求解计算即可. 【详解】 ∵函数21(1)23ay a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2, ∴a≠1,21a =, ∴1a =-, 故选D . 【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键.8.C解析:C 【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x 轴y 轴的交点,综合判断即可. 【详解】解:抛物线开口向上,因此a >0,抛物线的对称轴为x=-2ba=1,所以0b <,所以①正确;抛物线的对称轴为x=1,与x 轴的一个交点为(4,0),则另一个交点(-2,0),于是4a-2b+c=0,所以②不正确;x >1时,y 随x 的增大而增大,所以③正确;抛物线与x 轴有两个不同的交点,因此一元二次方程20ax bx c ++=有两个不相等的实数根,所以④正确;综上所述,正确的结论有①③④. 故答案为:C . 【点睛】本题考查二次函数的图形和性质,掌握二次函数的图形和系数之间的关系是正确判断的前提.9.A解析:A 【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴222AC ==, 即:函数图象中,222,m n ==, ∴222m n +=+故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.二、填空题13.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =;②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =; ③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =; 综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =. ∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 14.【分析】求出A 点坐标和对称轴根据对称性求出M 点坐标利用中点求出B 点坐标进而求出P 点坐标代入求a 即可【详解】解:由题意得:对称轴为直线P 点横坐标为1当x=0时y=3∴A 点坐标为:根据对称性可知M 点坐标 解析:94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a -=-=,P 点横坐标为1, 当x=0时,y=3,∴A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,∵M 为AB 中点,∴B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=,解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.15.【分析】先根据二次函数图象上点的坐标特征求出点P (11)则根据三角形面积公式求得S1=同样求得S2=S3=S4=所有对应的三角形面积的分母都为2分子为2n-1从而可得Sn=【详解】解:∵当∴点P1( 解析:52, 212n - 【分析】 先根据二次函数图象上点的坐标特征求出点P (1,1),则根据三角形面积公式求得S 1=12,同样求得S 2=32,S 3=52,S 4=72,所有对应的三角形面积的分母都为2,分子为2n-1,从而可得S n =212n -. 【详解】解:∵()02>=x x y 当1x =,1y =,∴点P 1(1,1)∴S 1=111122=⨯⨯= 当2x =时,224y ==∴点P 2(2,4)∴S 2()1314122=⨯⨯-= 当3x =时,239y ==∴点P 2(3,9)∴S 3()1519422=⨯⨯-= 同理:S 4()17116922=⨯⨯-= ∴S n 212n -= 故答案为:52;212n - 【点睛】本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也涉及到三角形面积公式,图形类规律探索,解题的关键是学会利用数形结合的思想,找出相应三角面积的规律.16.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35, 故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.17.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键.18.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.19.4【分析】根据抛物线形状建立二次函数模型以AB中点为原点建立坐标系xOy通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y=ax2-a利用PQ=EF建立等式求出二次函数中的参数a即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB中点为原点,建立坐标系xOy,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y=ax2-a,利用PQ=EF建立等式,求出二次函数中的参数a,即可得出EF的值.【详解】解:如图,令P下方的点为H,以AB中点为原点,建立坐标系xOy,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)223y x x =--;(2)在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【分析】(1)利用待定系数法即可得出结论;(2)点确定出点M 时直线BC 与直线l 的交点,利用待定系数法求出直线BC 解析式即可得出结论;【详解】解:(1)把(1,0)A -,(3,0)B 代入23y ax bx =+-得,309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直线BC 的关系式为y kx b =+,(3,0)B ,(0,3)C -,∴303k b b +=⎧⎨=-⎩, 解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【点睛】此题时二次函数综合题,主要考查了待定系数法,对称性,解题关键时掌握待定系数法,和判断出点M 的位置,24.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.25.(1)20.10.60.9y x x =-++;(2)1.4米;(3)8个【分析】(1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E (1,1.4),B (6,0.9)坐标代入即可;(2)小明站在OD 之间,且离点O 的距离为3米,即OF=3,求当x=3时的函数值即可得出小明身高;将y=1.4代入解析式求出x 的值,再减去1即可得出答案;(3)求出y=1.4时x 的值,再用两者之间的差除以0.55,取整得出答案.【详解】解:(1)由题意得把点E (1,1.4),B (6,0.9),代入y=ax 2+bx+0.9得,0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩, 解得0.10.6a b =-⎧⎨=⎩ , ∴所求的抛物线的解析式是y=-0.1x 2+0.6x+0.9;(2)把x=3代入y=-0.1x 2+0.6x+0.9得:y=-0.1×32+0.6×3+0.9=1.8;1.8-0.4=1.4(米),∴小明的身高是1.4米;把y=1.4代入y=-0.1x 2+0.6x+0.9得-0.1x 2+0.6x+0.9=1.4,解得:x 1=1,x 2=5(舍),则3-1=2(米),此时小明向点O 方向走2米就能让绳子甩到最高处时绳子刚好通过他的头顶. (3)当y=1.4时,-0.1x 2+0.6x+0.9=1.4,解得x 1=1,x 2=5,∴5-1=4,∴4÷0.55≈7.27,∴最多可以8个同学一起玩.【点睛】本题考查了二次函数的应用及坐标的求法,此题为数学建模题,解题的关键是注意审题,将实际问题转化为求函数最值问题,培养自己利用数学知识解答实际问题的能力. 26.(1)8585⨯最大,为7225;(2)750750⨯的积最大,理由见解析【分析】(1)由(80)(90)y x x =-+-,求解抛物线的对称轴,从而得到抛物线的顶点的横坐标,于是可得函数的最大值;(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,从而可得函数关系式为::w =(700)(800)a a -+-,再求解抛物线的对称轴为:7008001005022a -+===,再利用二次函数的性质可得答案.【详解】(1)解: (80)(90)y x x =-+-, ∴ 抛物线的对称轴为:809010522x -+=== 而对称轴5x =在自变量取值范围内(19x ≤≤且x 为整数)∴当5x =时,2max (580)(590)857225y =-+-==,所以:8585⨯最大,最大积为7225.(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,依题意,得:(700)[700(100)]w a a =++-=(700)(800)(700)(800)a a a a +-=-+- ∴抛物线的对称轴为:7008001005022a -+=== 而对称轴50a =在自变量取值范围内(199a ≤≤且x 为整数)∴当50a =时,750750⨯的积最大.【点睛】本题考查的是列二次函数关系式,二次函数的性质与二次函数的最值,二次函数的应用,掌握以上知识是解题的关键.。
一、选择题1.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位2.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .3.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 24.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个5.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()20,,下列说法∶①0abc >;②240b ac -<;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为( )A .1B .2C .3D .46.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有( )A .3个B .2个C .1个D .0个7.二次函数223y x =-+在14x -≤≤内的最小值是( ) A .3B .2C .-29D .-308.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-. 错误的是( ) A .①B .②C .③D .④9.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④10.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .311.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是( )A .2-B .C .0D .52二、填空题13.已知()11y ,,()23y ,是函数226y x x c =-++图像上的点,则1y ,2y 的大小关系是______.14.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.15.现从四个数1,2,1-,3-中任意选出两个不同的数,分别作为二次函数2y ax bx =+中a ,b 的值,则所得二次函数满足开口方向向下且对称轴在y 轴右侧的概率是__________.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.抛物线24y x x c =-++向右平移一个单位得到的抛物线恰好经过原点,则c =_____.18.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.19.将抛物线2y x =-先向左平移1个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式是______.20.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.三、解答题21.商店销售某商品,销售中发现,该商品每天的销售量y (个)与销售单价x (元/个)之间存在如图所示的关系,其中成本为20元/个. (1)求y 与x 之间的函数关系式.(2)为了保证每天利润不低于1300元,单价不高于30元/个,那么商品的销售单价应该定在什么范围?22.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.23.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y(条)与每条的售价x(元)之间满足人体所示的函数关系.(1)求每月销售y(条)与售价x(元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1. (1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.25.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y (件)是每件售价x (元)(x 为正整数)的一次函数,其部分对应数据如下表所示:(1)求y 关于x 的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?26.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -. (1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.2.A解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形,∴2DM x =-,∴()222EM x x x =--=-, ∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.3.A解析:A 【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题. 【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+, ∴当x=3时,S 取得最大值,此时S=18, 故选:A . 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0, ∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.5.B解析:B 【分析】①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号即可判断;②根据抛物线与x 轴的交点即可判断; ③根据二次函数的对称性即可判断; ④由对称轴求出=-b a 即可判断. 【详解】解:①∵二次函数的图象开口向下, ∴0a <,∵二次函数的图象交y 轴的正半轴于一点, ∴0c >, ∵对称轴是直线12x =, ∴122b a -=, ∴0b a =->, ∴0abc <.故①错误;②∵抛物线与x 轴有两个交点, ∴240b ac ->, 故②错误; ③∵对称轴为直线12x =,且经过点()2,0, ∴抛物线与x 轴的另一个交点为()1,0-,∴1x =-是关于x 的方程20ax bx c ++=的一个根,故③正确; ④∵由①中知=-b a , ∴0a b +=,故④正确;综上所述,正确的结论是③④共2个. 故选:B . 【点睛】本题考查了二次函数的图象和系数的关系的应用,注意:当0a >时,二次函数的图象开口向上,当0a <时,二次函数的图象开口向下.6.A解析:A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断. 【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方, ∴c <0,所以①正确; ∵抛物线开口向上, ∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0), ∴抛物线的对称轴为直线x =1,即2ba-=1, ∴b =﹣2a <0,所以②正确; ∵由图象可知,当x =﹣2时,y >0, ∴4a ﹣2b +c >0,所以③正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.7.C解析:C 【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C .【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.9.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.10.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 11.D解析:D【分析】作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =,∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩, 由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.D解析:D【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.二、填空题13.【分析】经过配方后确定抛物线的对称轴进而确定抛物线的增减性根据自变量的大小关系可确定函数值的大小关系【详解】解:∵∴抛物线的对称轴为∵a=-2<0∴抛物线开口向下∵1比3更接近对称轴∴故答案为:【点解析:12y y >【分析】经过配方后确定抛物线的对称轴,进而确定抛物线的增减性,根据自变量的大小关系可确定函数值的大小关系.【详解】解:∵()2223926=23222y x x c x x c x c ⎛⎫=-++--+=--++ ⎪⎝⎭ ∴抛物线的对称轴为32x =∵a=-2<0∴抛物线开口向下 ∵1比3更接近对称轴,∴12y y >故答案为:12y y >.【点睛】本题考查了二次函数值的大小比较,根据二次函数的解析式确定对称轴的位置是解题的关键.14.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =; ③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =; 综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =. ∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 15.【分析】把ab 所有可能的取值及满足题目的条件通过表格列出来再根据概率的定义列式求解即可【详解】解:∵二次函数满足开口方向向下即要a<0对称轴在y 轴右侧即要求∴可以列出如下表格:其中第三和第四行数字0 解析:13【分析】把a 、b 所有可能的取值及满足题目的条件通过表格列出来,再根据概率的定义列式求解即可.【详解】解:∵二次函数满足开口方向向下即要a<0,对称轴在y 轴右侧即要求02b a->, ∴可以列出如下表格:其中第三和第四行数字0表示不满足题中某个条件 , 数字1表示满足题中某个条件, ∴由题意,只有第三和第四行两个数字都为1时才满足题目所有条件,此时a 和b 的值分别为-1和1、-1和2、-3和1、-3和2共4种情况,∴所求概率为41123=, 故答案为13. 【点睛】本题考查二次函数的性质,用列表法计算概率的方法,熟练掌握列表法的步骤及题目条件的符号表示是解题关键.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴解析:2564b -<<-【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --;∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.5【分析】先根据平移的规律得出平移后的解析式再根据二次函数图象上的点的特点即可得到关于c 的方程解方程即可【详解】抛物线解析式为:向右平移一个单位得到的抛物线为:抛物线恰好经过原点解得c=5故答案为: 解析:5【分析】先根据平移的规律得出平移后的解析式,再根据二次函数图象上的点的特点即可得到关于c 的方程,解方程即可.【详解】抛物线解析式为:224(2)4y x x c x c =-++=--++,向右平移一个单位得到的抛物线为:2(3)4y x c =--++,抛物线恰好经过原点, ∴20(03)4c =--++,解得c=5.故答案为:5【点睛】本题考查的是二次函数图象与几何变换,二次函数的性质以及二次函数图象上的点的坐标的特征,图象上的点的坐标适合解析式.18.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m 的一元二次方程解之取其较小值;当-3≤m≤-1时y 的解析:-5或1【分析】利用配方法可得出:当x=m 时,y 的最小值为1.分m <-3,-3≤m≤-1和m >-1三种情况考虑:当m <-3时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较小值;当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x 2-2mx+m 2+1=(x-m )2+1,∴当x=m 时,y 的最小值为1.当m <-3时,在-3≤x≤-1中,y 随x 的增大而增大,∴9+6m+m 2+1=5,解得:m 1=-5,m 2=-1(舍去);当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,在-3≤x≤-1中,y 随x 的增大而减小,∴1+2m+m 2+1=5,解得:m 1=-3(舍去),m 2=1.∴m 的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m <-3,-3≤m≤-1和m >-1三种情况求出m 的值是解题的关键.19.【分析】根据左加右减上加下减的原则进行解答即可【详解】解:将抛物线向左平移1个单位所得直线解析式为:;再向上平移2个单位为:故答案为:【点睛】此题主要考查了二次函数图象与几何变换要求熟练掌握平移的规解析:()212y x =-++【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线2y x =-向左平移1个单位所得直线解析式为:()2+1y x =-; 再向上平移2个单位为:()2+21+y x =-.故答案为:()212y x =-++.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 20.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.三、解答题21.(1)1003400y x =-+;(2)每个不低于21元且不高于30元【分析】(1)观察图形,找出点的坐标,再利用待定系数法即可求出y 与x 之间的函数关系式; (2)设每天的销售利润为w 元,根据利润=每个的利润×销售数量,即可得出w 关于x 的函数关系式,利用二次函数图象上点的坐标特征可求出当w =1300时x 的值,再利用二次函数的性质即可解决问题.【详解】解:(1)设y与x的函数关系式为y=kx+b,将(25,900),(28,600)代入y=kx+b,得25900 28600k bk b+=⎧⎨+=⎩,解得1003400kb=-⎧⎨=⎩,∴y与x的函数关系式为y=-100x+3400;(2)设该商品每天的销售利润为w元,由题意得w=(x-20)•y=(x-20)(-100x+3400)=-100x2+5400x-68000当w=1300时,即-100x2+3600x-68000=1300,解得:121x=,233x=,画出每天利润w关于销售单价x的函数关系图象如解图,又∵单价不高于30元/个,∴当该商品的销售单价每个不低于21元,且不高于30元时,可保证每天利润不低于1300元.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出y与x之间的函数关系式;(2)利用二次函数图象上点的坐标特征,求出当y=1300时x的值.22.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y =﹣2x+44≤34解得x≥5∵x <y∴x <﹣2x+44解得x <443∴自变量x 的取值范围是5≤x <443; (2)S =xy=x (﹣2x+44)=﹣2x 2+44x=﹣2(x ﹣11)2+242,∴当x =11时,S 取得最大值,最大值为242,即矩形场地的最大面积为242m 2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.23.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b=+⎧⎨=+⎩ 解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-.所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.24.(1)y =x 2+2x ﹣3,A (﹣3,0),B (1,0);(2)四边形ABCD 的面积是9【分析】(1)根据抛物线对称轴方程x =b2a 求得a 的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A 、B 两点坐标;(2)由抛物线解析式求得点C 、D 的坐标,然后利用分割法求得四边形ABCD 的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x =﹣22a=﹣1,则a =1. 故该抛物线解析式是:y =x 2+2x ﹣3.因为y =x 2+2x ﹣3=(x+3)(x ﹣1),所以A (﹣3,0),B (1,0);(2)如图:由(1)知,A (﹣3,0),B (1,0),由抛物线y =x 2+2x ﹣3知,C (0,﹣3).∵y =x 2+2x ﹣3=(x+1)2﹣4,∴D (﹣1,﹣4),E (﹣1,0).∴AE =2,OC =3,OE =1,OB =1,ED =4,∴S 四边形ABCD =S △BOC +S 梯形OEDC +S △DAE =12×1×3+12(3+4)×1+12×2×4=9. 即四边形ABCD 的面积是9.【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.25.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩∴10300k b =-⎧⎨=⎩∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+,∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元.【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.26.(1)222y x =-+;(2)2,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为21||x x -的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 122x =+,222x =-, 点C 在点D 的左边,(C ∴ 22-0),(22D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.。
一、选择题1.(0分)[ID:11122]如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.23DEBC=B.25DEBC=C.23AEAC=D.25AEEC=2.(0分)[ID:11118]已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B.C.D.3.(0分)[ID:11110]如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.54.(0分)[ID:11092]在△ABC中,若|cosA−12|+(1−tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°5.(0分)[ID:11088]如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A 作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.16.(0分)[ID:11085]如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.57.(0分)[ID:11080]如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C 的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)8.(0分)[ID:11077]如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.59.(0分)[ID:11061]如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.15B.25C.215D.810.(0分)[ID:11060]在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)11.(0分)[ID:11056]如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.1212.(0分)[ID:11051]如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:613.(0分)[ID:11050]如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°14.(0分)[ID:11038]下列变形中:①由方程125x-=2去分母,得x﹣12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣5362x x-+=两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.115.(0分)[ID:11036]如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题16.(0分)[ID:11159]如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=12x(x>0)交于C点,且AB=AC,则k的值为_____.17.(0分)[ID:11155]如图,等腰△ABC中,底边BC长为8,腰长为6,点D是BC边上一点,过点B作AC的平行线与过A、B、D三点的圆交于点E,连接DE,则DE的最小值是___.18.(0分)[ID :11151]如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .19.(0分)[ID :11147]如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.20.(0分)[ID :11136]如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .21.(0分)[ID :11225]反比例函数y =k x 的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________.22.(0分)[ID :11217]如图,点A 在双曲线y =6x(x >0)上,过点A 作AB ⊥x 轴于点B ,点C 在线段AB 上且BC :CA =1:2,双曲线y =k x (x >0)经过点C ,则k =_____.23.(0分)[ID :11196]在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC相似.24.(0分)[ID:11194]如果点P把线段AB分割成AP和PB两段(AP PB),其中AP是AB与PB的比例中项,那么:AP AB的值为________.25.(0分)[ID:11134]如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题26.(0分)[ID:11303]如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE 交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.27.(0分)[ID:11264]如图,在△ABC中,∠A=30°,cosB=45,AC=63.求AB的长.28.(0分)[ID:11257]如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.29.(0分)[ID:11247]如图,点C、D在线段AB上,△PCD是等边三角形,且CD2=AD•BC.(1)求证:△APD∽△PBC;(2)求∠APB的度数.30.(0分)[ID:11234]如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EOFO BO.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.B4.C5.A6.C7.A8.A9.C10.B11.C12.B13.A14.B15.C二、填空题16.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x17.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD作A18.2【解析】【分析】【详解】如图过A点作AE⊥y轴垂足为E∵点A在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=219.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:220.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△21.(-2-2)【解析】【分析】先根据点P(ab)是反比例函数y=的图象上的点把点P的坐标代入解析式得到关于abk的等式ab=k;又因为ab是一元二次方程x2+kx+4=0的两根得到a+b=-kab=422.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=123.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是:24.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P是线段AB的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P是线段AB的黄25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.4.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=12,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.5.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.7.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.8.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=AE=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.9.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键10.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.11.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a ,k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.12.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA ,∴OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4.故选B .考点:位似变换.13.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 14.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】 ①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.15.C解析:C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题16.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x解析:k=3 2【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.17.【解析】【分析】如图连接AEADOEOD作AJ⊥BC于JOK⊥DE于K首先证明∠EOD=2∠C=定值推出⊙O的半径最小时DE的值最小推出当AB是直径时DE的值最小【详解】如图连接AEADOEOD作A5【解析】【分析】如图,连接AE,AD,OE,OD,作AJ⊥BC于J,OK⊥DE于K.首先证明∠EOD=2∠C=定值,推出⊙O 的半径最小时,DE 的值最小,推出当AB 是直径时,DE 的值最小.【详解】如图,连接AE ,AD ,OE ,OD ,作AJ ⊥BC 于J ,OK ⊥DE 于K .∵BE ∥AC ,∴∠EBC+∠C =180°,∵∠EBC+∠EAD =180°,∴∠EAD =∠C ,∵∠EOD =2∠EAD ,∴∠EOD =2∠C =定值,∴⊙O 的半径最小时,DE 的值最小,∴当AB 是⊙O 的直径时,DE 的值最小,∵AB =AC =6,AJ ⊥BC ,∴BJ =CJ =4,∴AJ 22A C CJ -2264-5∵OK ⊥DE ,∴EK =DK ,∵AB =6,∴OE =OD =3,∵∠EOK =∠DOK =∠C ,∴sin ∠EOK =sin ∠C 25, ∴3EK =56, ∴EK 5∴DE =5∴DE 的最小值为5故答案为5【点睛】本题考查三角形的外接圆,解直角三角形,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题.18.2【解析】【分析】【详解】如图过A 点作AE⊥y 轴垂足为E∵点A 在双曲线上∴四边形AEOD的面积为1∵点B在双曲线上且AB∥x轴∴四边形BEOC的面积为3∴四边形ABCD为矩形则它的面积为3-1=2解析:2【解析】【分析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=219.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2 解析:3:2【解析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.20.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC、AF、AG的长度(用a表示),求出两个三角形对应边的比,进而证明△ACF∽△GCA,问题即可解决.【详解】设正方形的边长为a,则22a a2a+=,∵AC22CFaa==CG2AC2a==∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.21.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).22.2【解析】【分析】根据反比例函数系数k 的几何意义即可得到结论【详解】解:连接OC∵点A 在双曲线y =(x >0)上过点A 作AB⊥x 轴于点B∴S△OAB=×6=3∵BC:CA =1:2∴S△OBC=3×=1解析:2【解析】【分析】根据反比例函数系数k 的几何意义即可得到结论.【详解】解:连接OC ,∵点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=12×6=3,∵BC:CA=1:2,∴S△OBC=3×13=1,∵双曲线y=kx(x>0)经过点C,∴S△OBC=12|k|=1,∴|k|=2,∵双曲线y=kx(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.23.【解析】当时∵∠A=∠A∴△AED∽△ABC此时AE=;当时∵∠A=∠A∴△ADE∽△ABC此时AE=;故答案是:解析:512 35或【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD AB AE AC=时, ∵∠A=∠A , ∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 24.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB ,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =12. 25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.26.(1)证明见解析;(2)CD=3【解析】【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴CD DE CB BF=,∴13xx =,∵x>0,∴3即:3【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质27.259x-=【解析】过点C作CD⊥AB于点D,在Rt△ACD中先由已知条件求得AD和CD,再在Rt△BCD中求得BD即可求出AB.试题解析:过点C作CD⊥AB于点D,∴∠ADC=∠BDC=90°,∴AD=cosA⋅AC=36392⨯=,CD=sinA⋅AC=163332⨯=,∵cosB=45=BDBC,∴可设BD=4m,BC=5m,则在Rt△BCD中由勾股定理可得CD=3m=33,∴m=3,∴BD=4m=43,∴AB=AD+BD=9+43.28.(1)1;(2)证明见解析【解析】【分析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴CG ECAB EB=,即2324CG=+,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴FG DF FA FB=,∴AD∥CB,∴△AFD∽△EFB,∴AF DF FE FB=,∴FG AFFA FE=,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.29.(1)见解析;(2)120°【解析】【分析】(1)CD2=AD•BC可得AD:PC=PD:BC,又由△PCD是等边三角形,所以可求出∠ADP=∠BCP=120°,进而证明△ACP∽△PDB;(2)由△APD∽△PBC,可得∠APD=∠B,则可求得∠APB的大小.【详解】(1)证明:∵△PCD是等边三角形,∴PD=PC=DC,∠PDC=∠PCD=60°,∴∠ADP=∠BCP=120°,∵CD2=AD•BC,∴AD:PC=PD:BC,∴△APD∽△PBC;(2)∵△APD∽△PBC,∴∠APD=∠B,∵∠B+∠BPC=60°,∴∠APD+∠BPC=60°,∴∠APB=60°+∠DPC=120°.【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.30.见解析【解析】【分析】由AB∥CD得△AOB∽△COE,有OE:OB=OC:OA;由AD∥BC得△AOF∽△COB,有OB:OF=OC:OA,进而解答.【详解】∵AB∥CD,∴△AOB∽△COE.∴OE:OB=OC:OA;∵AD∥BC,∴△AOF∽△COB.∴OB:OF=OC:OA.∴OB:OF=OE:OB,即:BO EO FO BO【点睛】本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。
2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(一模)一、选一选:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为()A.5tan40°B.5cos40°C.5sin40°D.°5cos 40 2.在△ABC 中,∠C=90°,sinA=32,则co 的值为()A.1B.2 C.2D.123.对于函数y =5x 2,下列结论正确的是()A.y 随x 的增大而增大B.图象开口向下C.图象关于y 轴对称D.无论x 取何值,y 的值总是正的4.如图,D 、E 分别是AB 、AC 的中点,则S △ADE :S △ABC =()A.1:2B.1:3C.1:4D.2:35.在△ABC 中,∠A ,∠B 都是锐角,tanA =1,si =2,你认为△ABC 最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形6.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A.a b c d >>>B.a b d c >>>C.b a c d>>> D.b a d c>>>7.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为()A.1B.2C.3D.138.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,4cos 5A =,则下列结论中:①DE=3cm ;②EB=1cm ;③215ABCD S cm =菱形.正确的个数为()A.0个B.1个C.2个D.3个二、填空:(共18分,每小题3分)9.若22(2)32my m x x -=++-是二次函数,则m 的值是________.10.已知点A (–3,y 1),B (–1,y 2),C (2,y 3)在抛物线y=23x 2上,则y 1,y 2,y 3的大小关系是__________(用“<”连接).11.△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.12.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.13.如果某人沿坡度i=4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.14.已知在△ABC中,BC=6,AC=6A=30°,则AB的长是________.三、解答题:(共78分)15.计算:(1)2cos60°﹣(2009﹣π)0+tan45°.(2)2sin60°﹣3tan30°+2sin45°.16.如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似,将△OAB放大,使得放大后的△OA1B1,与△OAB对应线段的比为2:1,画出△OA1B1,(所画△OA1B1与△OAB在原点两侧);(2)直接写出点A1、B1的坐标_____;(3)直接写出tan∠OA1B1.17.如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角α和坝底宽AD .(结果保留根号)18.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3(1)求证:BN =DN ;(2)求△ABC 的周长.19.如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式;(2)连结OC ,求出AOC ∆的面积.20.如图,在矩形ABCD中,DE⊥AC于E,cos∠ADE=35,AB=3.(1)求AD的值;(2)直接写出S△DEC的值是_____.21.如图,在△ABC中,AD是BC边上的高,ta=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=34,直接写出AD的长是_____.22.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图11①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图10②).若已知CD为10米,请求出雕塑AB的高度.(结果到0.13.73)23.在矩形ABCD 中,AD =3,CD =4,点E 在边CD 上,且DE =1.(1)感知:如图①,连接AE ,过点E 作EF AE ⊥,交BC 于点F ,连接AF ,易证:ADE ECF ≅ (没有需要证明);(2)探究:如图②,点P 在矩形ABCD 的边AD 上(点P 没有与点A 、D 重合),连接PE ,过点E 作EF PE ⊥,交BC 于点F ,连接PF .求证:PDE ECF 和∆∆相似;(3)应用:如图③,若EF 交AB 边于点F ,EF PE ⊥,其他条件没有变,且PEF 的面积是6,则AP 的长为____.24.如图,在四边形ABCD 中,AD//BC ,090C ∠=,BC=4,DC=3,AD=6.动点P 从点D 出发,沿射线DA 的方向,在射线DA 上以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P 、Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t(秒).(1)设BPQ ∆的面积为s ,直接写出s 与t 之间的函数关系式是____________(没有写取值范围).(2)当B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时t 的值.(3)当线段PQ 与线段AB 相交于点O ,且2OA=OB 时,直接写出tan BQP ∠=_____________.(4)是否存在时刻t ,使得PQ BD ⊥若存在,求出t 的值;若没有存在,请说明理由.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(一模)一、选一选:(共24分,每小题3分)1.在Rt ABC ∆中,90C ∠=°,40B ∠=°,AB=5,则BC 的长为()A.5tan40°B.5cos40°C.5sin40°D.°5cos 40【正确答案】B【详解】∵在Rt △ABC 中,∠C=90°,∴co=BCAB,∵AB=5,∠B=40°,∴BC=AB·co=5cos40°.故选B.2.在△ABC 中,∠C=90°,sinA=2,则co 的值为()A.1B.32 C.22D.12【正确答案】B【分析】先根据sinA=32得到∠A 的度数,即可得到∠B 的度数,再根据角的锐角三角函数值即可得到结果.【详解】解:∵sinA=32∴∠A=60°∵∠C=90°∴∠B=30°∴co=2故选B .本题是角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选一选、填空题形式出现,属于基础题,难度没有大.3.对于函数y =5x 2,下列结论正确的是()A.y 随x 的增大而增大B.图象开口向下C.图象关于y 轴对称D.无论x 取何值,y 的值总是正的【正确答案】C【分析】根据原点的二次函数的性质一一判定即可【详解】∵在函数25y x =中,5000a b c ,,=>==,∴该函数的开口向上,对称轴是y 轴,顶点是原点,∴该函数在y 轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大,且该函数的最小值为0.综上所述,上述结论中只有C 是正确的,其余三个结论都是错误的.故选C .本题考查了y =ax 2图象的性质,解题的关键是熟练掌握二次函数图象的性质.4.如图,D 、E 分别是AB 、AC 的中点,则S △ADE :S △ABC =()A.1:2B.1:3C.1:4D.2:3【正确答案】C【分析】根据三角形中位线定理可求得相似比,再根据相似三角形的面积比等于相似比的平方即可得到答案.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是三角形的中位线,∴DE :BC =1:2,∴S △ADE :S △ABC =1:4.故选C .主要考查了中位线定理和相似三角形的性质.要掌握:中位线平行且等于底边的一半;相似三角形的面积比等于相似比的平方.5.在△ABC 中,∠A ,∠B 都是锐角,tanA =1,si =22,你认为△ABC 最确切的判断是()A.等腰三角形B.等腰直角三角形C.直角三角形D.锐角三角形【正确答案】B【详解】试题分析:∵△ABC 中,tanA=1,si=22,∴∠A=45°,∠B=45°,∴△ABC 是等腰直角三角形.故选B .考点:角的三角函数值.6.如图,四个二次函数的图象中,分别对应的是:①2y ax =;②2y bx =;③2y cx =;④2y dx =,则a b c d ,,,的大小关系为A.a b c d >>>B.a b d c >>>C.b a c d>>> D.b a d c>>>【正确答案】A【详解】由二次函数中,“当二次项系数为正时,图象开口向上,当二次项系数为负时,图象开口向下”“二次项系数的值越大,图象的开口越小”分析可得:a b c d >>>.故选A.点睛:(1)二次函数2 (0)y ax a =≠的图象的开口方向由“a 的符号”确定,当0a >时,图象的开口向上,当0a <时,图象的开口向下;(2)二次函数2 (0)y ax a =≠的图象的开口大小由a 的大小确定,当a 越大时,图象的开口越小.7.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为()A.1B.2C.D.1【正确答案】A【分析】根据直角三角形的性质求出AB ,根据三角形中位线定理计算即可.【详解】解:∵在Rt △ABC 中,∠C =90°,∠A =30°,∴AB =2BC =2又∵点D 、E 分别是AC 、BC 的中点,∴DE 是△ACB 的中位线,∴DE =12AB =1故选:A本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,4cos 5A =,则下列结论中:①DE=3cm ;②EB=1cm ;③215ABCD S cm =菱形.正确的个数为()A.0个B.1个C.2个D.3个【正确答案】D 【详解】∵四边形ABCD 是菱形,其周长=20cm ,∴AB=AD=5cm ,∵DE ⊥AB 于点E ,∴∠AED=90°,∴cosA=45AE AD =,∴AE=4cm ,∴BE=AB-AE=1cm ,22543-=cm ,∴S 菱形ABCD=AB·DE=5×3=15cm 2.综上所述,题中所给三个结论都是正确的.故选D.二、填空:(共18分,每小题3分)9.若22(2)32my m x x -=++-是二次函数,则m 的值是________.【正确答案】2【分析】根据二次函数的定义求解即可.【详解】由题意,得m 2﹣2=2,且m+2≠0,解得m=2,故答案为2.本题考查了二次函数的定义,利用二次函数的定义是解题关键.10.已知点A (–3,y 1),B (–1,y 2),C (2,y 3)在抛物线y=23x 2上,则y 1,y 2,y 3的大小关系是__________(用“<”连接).【正确答案】y 2<y 3<y 1【详解】解:∵点A(﹣3,y1),B(﹣1,y2),C(2,y3)在抛物线y=23x2,∴y1=23×(﹣3)2=6,y2=23×(﹣1)2=23,y3=23×22=8233.<83<6,∴y2<y3<y1.故答案为y2<y3<y1.点睛:本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.11.△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.【正确答案】7 5【详解】∵在△ABC中,∠C=90°,4 tan3 A=,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sin A=4455BC kAB k==,cosA=3355AC kAB k==,∴sin A+cos A=437 555 +=.故7 512.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.【正确答案】35°【详解】∵四边形ABCD 中,点P 是对角线BD 的中点,点E ,F 分别是AB ,CD 的中点,∴PE 是△ABD 的中位线,PF 是△BDC 的中位线,∴PE=12AD ,PF=12BC ,又∵AD=BC ,∴PE=PF ,∴∠PFE=∠PEF=35°.故答案为35°.13.如果某人沿坡度i =4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.【正确答案】30【详解】解:如下图,AB 代表斜坡,AC 代表水平面,则由题意可知:AB=50,BC :AC=3:4,∴可设BC=3x ,则AC=4x ,∴在Rt △ABC 中,由勾股定理可得:222(3)(4)50x x +=,解得:121010x x ==-,(没有合题意,舍去),∴BC=30.即他所在的位置比原来升高了30米.故答案为30.14.已知在△ABC 中,BC=6,AC=6A=30°,则AB 的长是________.【正确答案】12或6【详解】根据题意画出图形如下图所示,则由题意可知:图中,AC=,CB 1=CB 2=6,∠A=30°,过点C 作CD ⊥AB 于点D ,∴∠CDA=∠CDB 2=90°,∵AC=,∠A=30°,CB 1=CB 2,∴CD=9=,DB 1=DB 2,∴AB=AD-DB1=9-3=6或AB=AD+DB2=9+3=12.故6或12.点睛:本题的解题要点是:根据题意画出图形时,需注意∠ABC可能是钝角,也可能是锐角,因此需分这两种情况分别进行讨论解答,解题时没有能忽略了其中任何一种情况.三、解答题:(共78分)15.计算:(1)2cos60°﹣(2009﹣π)0+tan45°.(2)2sin60°﹣3tan30°+2sin45°.【正确答案】(1)1;(2)0.【详解】试题分析:(1)直接利用角的三角函数值以及零指数幂的性质化简得出答案;(2)直接利用角的三角函数值化简代入得出答案.试题解析:解:(1)原式=2×12﹣1+1=1;(2)原式=2×32﹣3×33+2×22﹣=0.16.如图,在边长均为1的小正方形网格纸中,△OAB的顶点O,A,B均在格点上,且O是直角坐标系的原点,点A在x轴上.(1)以O为位似,将△OAB放大,使得放大后的△OA1B1,与△OAB对应线段的比为2:1,画出△OA1B1,(所画△OA1B1与△OAB在原点两侧);(2)直接写出点A1、B1的坐标_____;(3)直接写出tan∠OA1B1.【正确答案】(1)答案见解析;(2)(4,0),(2,﹣4);(3)2.【详解】试题分析:(1)根据位似变换的定义作图即可;(2)由图形即可出点的坐标;(3)根据正切函数的定义可得.试题解析:解:(1)如图,△OA 1B 1即为所求;(2)由图可知,A 1、B 1的坐标为(4,0)和(2,﹣4);故答案为(4,0)和(2,﹣4);(3)如图,tan ∠OA 1B 1=11B C A C =42=2.点睛:本题主要考查作图﹣位似变换,解题的关键是熟练掌握位似变换的定义及性质.17.如图,一段河坝的断面为梯形ABCD ,试根据图中数据,求出坡角α和坝底宽AD .(结果保留根号)【正确答案】AD =7.53+【分析】在Rt CED 中,已知铅直高度以及坡度比,可求出坡角α、DE 的长;过B 作BF AD ⊥于F ,在Rt ABF 中,根据铅直高度和坡长,可求出AF 的长,即可求出AD AF BC DE =++.【详解】解:过B 作BF AD ⊥于F .在Rt ABF 中,5AB =,4BF CE ==.3AF ∴=.在Rt CED 中,tan CE i DE α===.30α∴∠=︒且tan CE DE α==3 4.57.5AD AF FE ED ∴=++=+++答:坡角α等于30°,坝底宽AD 为7.5+.此题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是作“两高”构造出直角三角形和矩形,是解有关梯形问题时常作的辅助线.18.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3(1)求证:BN =DN ;(2)求△ABC 的周长.【正确答案】(1)见解析,(2)41【分析】(1)证明△ABN ≌△ADN ,即可得出结论.(2)先判断MN 是△BDC 的中位线,从而得出CD ,由(1)可得AD =AB =10,从而计算周长即可.【详解】(1)证明:∵BN ⊥AN 于点N ,∴ANB AND ∠=∠,在△ABN 和△ADN 中,∵12AN AN ANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABN ≌△ADN (ASA ).∴BN =DN .(2)∵△ABN ≌△ADN ,∴AD =AB =10,DN =.又∵点M 是BC 中点,∴MN 是△BDC 的中位线.∴CD =2MN =6.∴△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.19.如图,直线2y x =-+过x 轴上的点A(2,0),且与抛物线2y ax =交于B ,C 两点,点B 坐标为(1,1).(1)求抛物线的函数表达式;(2)连结OC ,求出AOC ∆的面积.【正确答案】(1)2y x =;(2)4AOC S =V 【详解】试题分析:(1)将点B 的坐标代入2y ax =中解出a 的值即可得到抛物线的解析式;(2)由(1)中所得抛物线的解析式和直线的解析式组合构成方程组,解方程组即可求得点C 的坐标,点A 的坐标即可求得△AOC 的面积.试题解析:(1)把点B 的坐标(1,1)代入2y ax =得:1a =,∴抛物线的解析式为:2y x =;(2)由22y x y x ⎧=⎨=-+⎩解得:1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,∵点C 在第二象限,∴点C 的坐标为(2 4)-,,∵点A 的坐标为(2,0),∴OA=2,∴S △AOC =12OA×4=4.20.如图,在矩形ABCD 中,DE ⊥AC 于E ,cos ∠ADE=35,AB=3.(1)求AD 的值;(2)直接写出S △DEC 的值是_____.【正确答案】(1)4;(2)5425.【详解】试题分析:(1)首先证明∠ADE =∠ACD ,可得cos ∠ACD =cos ∠ADE =35=CD AC ,由此即可求出AC ,再利用勾股定理求出AD 即可;(2)根据cos ∠DCE =EC CD =35,求出EC ,再利用勾股定理求出DE ,即可解决问题;试题解析:解:(1)∵四边形ABCD 是矩形,∴AB =CD =3,∠ADC =90°.∵DE ⊥AC ,∴∠ADE +∠CDE =90°,∠CDE +∠DCE =90°,∴∠ADE =∠ACD ,∴cos ∠ACD =cos ∠ADE =35=CD AC,∴AC =5,AD.(2)∵cos ∠DCE =EC CD =35,∴CE =95,DE=125,∴S △DEC =12×DE ×EC =12×125×95=5425故答案为5425.点睛:本题考查了矩形的性质、解直角三角形、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,在△ABC 中,AD 是BC 边上的高,ta=cos ∠DAC .(1)求证:AC=BD ;(2)若sinC=1213,BC=34,直接写出AD 的长是_____.【正确答案】(1)证明见解析;(2)44225.【详解】试题分析:(1)根据锐角三角函数的定义,即可求出答案.(2)设AC =BD =x ,由于1213CD AC =,从而列出方程即可求出x .试题解析:解:(1)由题意可知:ta=cos ∠DAC ,∴AD AD BD AC=,∴BD =AC ;(2)设AC =BD =x ,∴CD =BC ﹣BD =34﹣x .∵sin C =1213,∴CD AC =1213,∴34x x -=1213,解得:x =44225.故答案为44225.22.腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图11①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图10②).若已知CD 为10米,请求出雕塑AB 的高度.(结果到0.1.73)【正确答案】雕塑AB的高度约为6.8米【分析】过点C作CE⊥AB于E,根据题目已知条件可以求出AC=5,利用解直角三角形可以求出AE和CE的长度,从而进一步求出BE,即可求得AB=AE+BE.【详解】解:如图,过点C作CE⊥AB于E.∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,∴∠CAD=90°.∵CD=10,∴AC=12CD=5.在Rt△ACE中,AE=AC•sin∠ACE=5•sin30°=5 2,CE=AC•cos∠ACE=5•cos30°=532.在Rt△BCE中,∵∠BCE=45°,∴53 2,∴AB=AE+BE=52+532=523+1)≈6.8(米).所以,雕塑AB的高度约为6.8米.本题主要考查的是解直角三角形,掌握角的三角函数值以及解直角三角形的方法是解题的关键.23.在矩形ABCD 中,AD =3,CD =4,点E 在边CD 上,且DE =1.(1)感知:如图①,连接AE ,过点E 作EF AE ⊥,交BC 于点F ,连接AF ,易证:ADE ECF ≅ (没有需要证明);(2)探究:如图②,点P 在矩形ABCD 的边AD 上(点P 没有与点A 、D 重合),连接PE ,过点E 作EF PE ⊥,交BC 于点F ,连接PF .求证:PDE ECF 和∆∆相似;(3)应用:如图③,若EF 交AB 边于点F ,EF PE ⊥,其他条件没有变,且PEF 的面积是6,则AP 的长为____.【正确答案】(1)见解析;(2)证明见解析;(3)3-【分析】(1)由已知易证∠AED =∠EFC ,∠D =∠C =90°,由AD =3,CD =4DE =1可得AD =CE ,由此即可证得△AED ≌△ECF ;(2)由四边形ABCD 是矩形可得∠D =∠C =90°,∠PEF =90°可证得∠PED =∠EFC ,由此即可证得△PDE ∽△ECF ;(3)过点F 作FH ⊥CD 于点H ,易得四边形AFHD 是矩形,由此可得FH =AD =3,由(2)可得△PDE ∽△EHF ,由此已知条件可证得EF =3PE ,S △12PE ·EF =6,即可解得PE =2,由此在Rt △PDE 中解得PD AP =AD -PD =3-.【详解】(1)∵四边形ABCD 是矩形,EF ⊥AE ,∴∠C =∠D =∠AEF =90°,∴∠DAE +∠AED =90°,∠AED +∠CEF =90°,∴∠DAE =∠CEF ,∵CD =4,DE =1,AD =3,∴EC =CD -DE =3=AD ,∴△ADE ≌△ECF ;(2)同(1)可得:∠D =∠C ,∠DPE =∠CEF ,∴△PDE ∽△ECF ;(3)如图3,在矩形ABCD 中,过点F 作FH ⊥CD 于点H ,∴∠PHD =∠A =∠D =90°,∴四边形AFHD 是矩形,∴FH =AD =3,由(2)可得△PDE ∽△EHF ,∴PE DEEF FH=,∵DE =1,∴13PE EF =,即EF =3PE ,∵S △PEF =12PE ·EF =6,∴3PE 2=12,解得PE =2,∴在Rt △PDE 中,由勾股定理可得:PD =,∴AP =AD -PD =3.24.如图,在四边形ABCD 中,AD//BC ,090C ∠=,BC=4,DC=3,AD=6.动点P 从点D 出发,沿射线DA 的方向,在射线DA 上以每秒2两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1个单位长的速度向点B 运动,点P 、Q 分别从点D,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动.设运动的时间为t(秒).(1)设BPQ ∆的面积为s ,直接写出s 与t 之间的函数关系式是____________(没有写取值范围).(2)当B,P,Q 三点为顶点的三角形是等腰三角形时,求出此时t 的值.(3)当线段PQ 与线段AB 相交于点O ,且2OA=OB 时,直接写出tan BQP ∠=_____________.(4)是否存在时刻t ,使得PQ BD ⊥若存在,求出t 的值;若没有存在,请说明理由.【正确答案】(1)362s t =-+;(2)43t =,78t =;(3)15tan 16BQP ∠=;(4)94t =【详解】试题分析:(1)由题意可得BQ=BC-CQ=4-t ,点P 到BC 的距离=CD=3,由此三角形的面积公式即可得到S 与t 之间的函数关系式;(2)过点P 作PH ⊥BC 于点H ,勾股定理和已知条件把BP 2、BQ 2、PQ 2用含“t ”的代数式表达出来,然后分BP=BQ 、BP=PQ 、BQ=PQ 三种情况列出方程,解方程得到对应的t 的值,再题中的条件检验即可得到符合要求的t 的值;(3)如图2,过点P 作PM ⊥BC 交CB 的延长线于点M ,易证得四边形PMCD 是矩形,由此可得PM=CD=3,CM=PD=2t ,AD=6,BC=4,可得PA=2t-6,BQ=4-t ,MQ=CM-CQ=t ,由AD ∥BC 可得△OAP ∽△OBQ ,2OA=OB 即可求得t 的值,从而可由tan ∠BQP=PM MQ求得其值;(4)如图3,过点D 作DM ∥PQ 交BC 的延长线于点M ,则当∠BDM=90°时,PQ ⊥BD ,即当BM 2=DM 2+BD 2时,PQ ⊥BD ,由此已知条件把DM 2、BM 2和BD 2用含“t ”的式子表达出来,列出方程就可得解得t 的值.试题解析:(1)由题意可得BQ=BC-CQ=4-t ,点P 到BC 的距离=CD=3,∴S △PBQ=12BQ×3=362t -+;(2)如下图,过点P 作PH ⊥BC 于点H ,∴∠PHB=∠PHQ=90°,∵∠C=90°,AD ∥BC ,∴∠CDP=90°,∴四边形PHCD 是矩形,∴PH=CD=3,HC=PD=2t ,∵CQ=t ,BC=4,∴HQ=CH-CQ=t ,BH=BC-CH=4-2t ,BQ=4-t ,∴BQ 2=2(4)t -,BP 2=22(42)3t -+,PQ 2=223t +,由BQ 2=BP 2可得:22(4)(42)9t t -=-+,解得:无解;由BQ 2=PQ 2可得:22(4)9t t -=+,解得:78t =;由BP 2=PQ 2可得:22(42)3t -+223t =+,解得:43t =或4t =,∵当4t=时,BQ=4-4=0,没有符合题意,∴综上所述,78t=或43t=;(3)如图2,过点P作PM⊥BC交CB的延长线于点M,∴∠PMC=∠C=90°,∵AD∥BC,∴∠D=90°,△OAP∽△OBQ,∴四边形PMCD是矩形,12 PA AOBQ BO==,∴PM=CD=3,CM=PD=2t,∵AD=6,BC=4,CQ=t,∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,∴26142tt-=-,解得:65t=,∴MQ=65 t=,又∵PM=3,∠PMQ=90°,∴tan∠BPQ=16153516 PMMQ:==;(4)如图3,过点D作DM∥PQ交BC的延长线于点M,则当∠BDM=90°时,PQ⊥BD,即当BM2=DM2+BD2时,PQ⊥BD,∵AD ∥BC ,DM ∥PQ ,∴四边形PQMD 是平行四边形,∴QM=PD=2t ,∵QC=t,∴CM=QM-QC=t ,∵∠BCD=∠MCD=90°,∴BD 2=BC 2+DC 2=25,DM 2=DC 2+CM 2=9+t 2,∵BM2=(BC+CM)2=(4+t)2,∴由BM 2=BD 2+DM 2可得:22(4)925t t +=++,解得:94t =,∴当94t =时,∠BDM=90°,即当94t =时,PQ ⊥BD.点睛:(1)解本题第2小题的要点是:通过作PH ⊥BC 于点H ,勾股定理和已知条件把BP 2、BQ 2、PQ 2用含“t ”的代数式表达出来,这样分BP=BQ 、BP=PQ 、BQ=PQ 三种情况列出方程就能求得对应的“t ”的值了;(2)解本题第4小题的要点是:过点D 作DM ∥PQ ,只要DM ⊥BD 即可得到PQ ⊥DM ,这样由已知条件利用勾股定理的逆定理在△BDM 中由BM 2=BD 2+DM 2建立关于t 的方程,即可求得对应的t 的值了.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(二模)一、选一选(本大题共10题,每题3分,共30分)1.的相反数是【】A.B.22C. D.22-2.下列计算正确的是()A.a+a=2a 2B.a 2•a=2a 3C.(﹣ab )2=ab 2D.(2a )2÷a=4a3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3 cm ,4 cm ,8 cmB.8 cm ,7 cm ,15 cmC.13 cm ,12 cm ,20 cmD.5 cm ,5 cm ,11 cm4.我市某中学举办了以“阳光少年,我们是好伙伴”为主题的演讲比赛,有9名同学参加了决赛,他们的决赛成绩各没有相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.平均数B.众数C.中位数D.方差5.如图,正三棱柱的主视图为().A. B. C. D.6.二次函数2y ax bx c =++的图象如图,且,OA OC =则()A.1ac b +=B.1ab c +=C.1bc a+= D.以上都没有是7.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于()A.73°B.56°C.68°D.146°8.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则BFEF的值是()A.1-B.2C.1D.9.某经销商一批电话手表,个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题(本大题共10题,每题2分,共20分)11.化简2211m m m m÷--的结果是__________.12.我国南海海域的面积约为,2㎞该面积用科学记数法应表示为_______2㎞.13.1x +有意义的x 的取值范围是.14.若n 边形的内角和是它的外角和的2倍,则n =_______.15.已知x 2+x ﹣5=0,则代数式(x ﹣1)2﹣x (x ﹣3)+(x+2)(x ﹣2)的值为____.16.如图,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若2EF =,则菱形ABCD 的周长是__.17.如图,OP 平分AOB ∠,15AOP ∠=︒,//PC OA ,4PC =,PD OA ⊥,垂足为D ,则PD =________.18.已知⊙O 的半径为1,弦AB=32,则∠BAC 的度数为___.19.如图,为保护门源百里油菜花海,由“芬芳浴”游客A 处修建通往百米观景长廊BC 的两条栈道AB ,AC ,若∠B=56°,∠C=45°,则游客A 到观景长廊BC 的距离AD 的长约为_____米.(sin56°≈0.8,tan56°≈1.5)20.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且45EDF ∠=︒,将DAE ∆绕点D 逆时针旋转90︒,得到DCM ∆.若1AE =,则EF 的长为____.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21.计算:11()2sin 30(3)2π--+︒+-︒22.已知实数a 、b 满足(a+2)2=0,则a+b 的值为_____.23.如图,函数y x m =+的图象与反比例函数ky x=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为()2,1.(1)求m 及k 的值;(2)求点C 的坐标,并图象写出没有等式组0kx m x<+≤的解集.24.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了问卷,并根据收集到的信息进行了统计,绘制了下面两幅尚没有完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;(2)若该校共有学生900人,请根据上述结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.26.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,BC =6,23AD BD =.求BE 的长.27.如图,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,△MBC 是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 AC .(1)求过A ,B ,E 三点的抛物线的解析式;(2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得△ABP 的面积等于定值5?若存在,请求出所有的点P 的坐标;若没有存在,请说明理由.2023-2024学年吉林省吉林市中考数学专项提升仿真模拟卷(二模)一、选一选(本大题共10题,每题3分,共30分)1.的相反数是【】A. B.2 C. D.2-【正确答案】C【详解】相反数的定义是:如果两个数只有符号没有同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.的相反数是.故选C.2.下列计算正确的是()A.a+a=2a2B.a2•a=2a3C.(﹣ab)2=ab2D.(2a)2÷a=4a 【正确答案】D【详解】解:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.故选D.3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3 cm,4 cm,8 cmB.8 cm,7 cm,15 cmC.13 cm,12 cm,20 cmD.5 cm,5 cm,11 cm【正确答案】C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、3+4<8,没有能组成三角形,没有符合题意;B、8+7=15,没有能组成三角形,没有符合题意;C、13+12>20,能够组成三角形,符合题意;D、5+5<11,没有能组成三角形,没有符合题意.故选:C.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.我市某中学举办了以“阳光少年,我们是好伙伴”为主题的演讲比赛,有9名同学参加了决赛,他们的决赛成绩各没有相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.平均数B.众数C.中位数D.方差【正确答案】C【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有9个人,且他们的分数互没有相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:C .此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.如图,正三棱柱的主视图为().A . B. C. D.【正确答案】B【详解】试题分析:主视图是从物体的前面往后看到的平面图形,正三棱柱的主视图是矩形,中间有竖着的实线,故选B .考点:几何体的三视图.6.二次函数2y ax bx c =++的图象如图,且,OA OC =则()A.1ac b+= B.1ab c += C.1bc a += D.以上都没有是【正确答案】A 【分析】根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC=∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b+=故选A本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决.7.将一张长方形纸片折叠成如图所示的形状,则∠ABC 等于()A.73°B.56°C.68°D.146°【正确答案】A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=12∠CBE,可得出∠ABC的度数.【详解】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE=12∠CBE=73°.故选:A考点:平行线的性质.8.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则BFEF的值是()A.1-B.2+C.1+D.【正确答案】C【详解】解:作FG⊥AB于点G,由AE∥FG,得BF BG EF GA=,Rt△BGF≌Rt△BCF,再由BC求解BF BGEF GA =1=.故选C .考点:1、平行线分线段成比例,2、全等三角形及角平分线9.某经销商一批电话手表,个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【正确答案】C 【详解】试题分析:根据题意设出未知数,列出相应的没有等式,从而可以解答本题.设这批手表有x 块,550×60+(x ﹣60)×500>55000解得,x >104∴这批电话手表至少有105块考点:一元没有等式的应用10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt△ABC,使∠BAC=90°,设点B 的横坐标为x,设点C 的纵坐标为y,能表示y 与x 的函数关系的图象大致是()A. B. C. D.。
锦江区初2020级适应性专项监测工具数学注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2.在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的主视图是()A .B .C .D .2.ChatGPT 是一种人工智能技术驱动的自然语言处理工具.Snapchat 将推出基于ChatGPT 的自有聊天机器人,最终目标让Snapchat 的7.5亿月活跃用户都可以使用该机器人.其中7.5亿用科学记数法表示为()A .7.5×108B .75×108C .7.5×109D .0.75×1093.下列运算正确的是()A .2a +3b =5abB .()a a a a 222=÷+C .3322)(b a b a ab -=-⋅D .()54232b a b a =-4.如图,AB ∥CD ,∠D =40°,∠F =30°,则∠B 的度数是()A .40°B .50°C .60°D .70°5.若关于x 的分式方程3212=----xx x m 的解为3=x ,则m 的值为()A .1B .2C .3D .56.如图,⊙O 是正方形ABCD 的外接圆,点P 在优弧ADB 上,则∠APB 等于()A .30°B .45°C .55°D .60°7.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)3456人数3211A .中位数是4,平均数是3B .众数是3,平均数是3C .中位数是4,平均数是4D .众数是6,平均数是48.已知竖直上抛物体的高度h (m)与运动时间t (s)的关系可以近似地用公式0025h t v t h ++-=表示,其中0h (m)是物体抛出时离地面的高度,0v (m/s)是物体抛出时的速度.如图是一个竖直向上抛出的物体离地面的高度h (m)与运动时间t (s)的函数图象,下列选项中错误..的是()A .00=h B .物体经过8秒后落地C .物体抛出时的速度为40m/sD .小球运动过程中的最高点距离地面40m第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.分解因式:=-x xy 162.10.如图,在平面直角坐标系xOy 中,正方形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,且OA =2.若反比例函数xky =的图象经过点B ,则k 的值为.11.如图,△ABC 与△DEF 位似,位似中心为点O .已知OA ∶OD =2∶5,若△ABC 的周长等于4,则△DEF 的周长等于.12.如图,AC ,BD 是菱形ABCD 的对角线,若AC=AB =2,则菱形ABCD 的面积为.13.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于21BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(本小题满分12分,每题6分)(1)计算:()1041(45cos 2231-+︒--+-;(2)解不等式组:⎪⎩⎪⎨⎧->--≥.2215143x x x x ,15.(本小题满分8分)2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”。
浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共8小题,满分24分)1.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.112.如图,若⊙O的直径为6,点O到某条直线的距离为6,则这条直线可能是()A.l1B.l2C.l3D.l43.如图所示,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H,AB =8cm,若要使直线l与⊙O相切,则l应沿OC方向向下平移()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°5.如图,四边形ABCD是圆的内接四边形,AB、DC的延长线交于点P,若C是PD的中点,且PD=6,PB=2,那么AB的长为()A.9B.7C.3D.6.如图,PA、PB是圆O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.B.πC.D.7.如图,⊙O的半径为2,弦AB向上平移得到CD(AB与CD位于点O两侧),且CD与⊙O 相切于点E.若的度数为120°,则AD的长为()A.4B.2C.D.38.如图,⊙O内切于△ABC,若∠AOC=110°,则∠B的度数为()A.40°B.60°C.80°D.100°二.填空题(共8小题,满分24分)9.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.10.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.11.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.12.如图,已知⊙P的半径是1,圆心P在抛物线y=x2﹣x﹣上运动,当⊙P与x轴相切时,圆心P的坐标为.13.如图,在△ABC中,∠A=60°,BC=6,△ABC的周长为19.若⊙O与BC,AC,AB三边分别相切于点E,F,D,则DF的长为.14.Rt△ABC的斜边为13,其内切圆的半径等于2,则Rt△ABC的周长等于.15.在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是.(写一个条件即可)16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3,当圆心O与点C重合时,⊙O与直线AB的位置关系为;若⊙O从点C开始沿直线CA移动,当OC=时,⊙O与直线AB相切?三.解答题(共7小题,满分72分)17.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD∥AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅱ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30°,求∠BCD和∠DBC的大小.18.如图,AB是⊙O的直径,点M是△ABC的内心,连接BM并延长交AC于点F交⊙O于点E,连接OE与AC相交于点D.(1)求证:OD=BC;(2)求证:EM=EA.19.如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△PAB是等边三角形;(2)求AC的长.20.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若EB⊥BC,ED=3,求BG的长.21.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.22.如图,AB是⊙O的直径,点C、点D在⊙O上,AC=CD,AD与BC相交于点E,点F在BC 的延长线上,且∠FAC=∠D.(1)求证:AF是⊙O的切线;(2)若EF=12,sin D=,求⊙O的半径.23.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.参考答案与试题解析一.选择题(共8小题,满分24分)1.解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.2.解:∵若⊙O的直径为6,∴圆O的半径为3,∵点O到某条直线的距离为6,∴这条直线与圆相离,故选:A.3.解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选:B.4.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.5.解:∵C是PD的中点,PD=6,∴PC=CD=PD=3,由切割线定理得,PC•PD=PB•PA,即3×6=2×PB,解得,PB=9,∴AB=PA﹣PB=7,故选:B.6.解:连接AB,∵PA、PB是圆O的切线,∴OB⊥BP,OA⊥PA,∵∠P=60°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴的长==,故选:C.7.解:∵的度数为120°,∴∠AOB=120°,连接OE,OE的反向延长线交AB于F,连接OA,OB,如图,∵CD与⊙O相切于点E,∴EF⊥CD,由平移的性质得:CD∥AB,CD=AB,∴EF⊥AB,∵OA=OB,∴∠AOF=∠BOF=∠AOB=60°,AF=BF=AB=DE,∴∠OAF=30°,四边形BDEF是矩形,∴OF=OA=×2=1,BD=EF,∴EF=2+1=3,∴BD=3,在Rt△AOF中,OA=2,OF=1,∴AF===,∴AB=2,∴AD===,故选:C.8.解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110°,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180°﹣∠AOC)=140°,∴∠B=180°﹣(∠BAC+∠BCA)=40°.故选:A.二.填空题(共8小题,满分24分)9.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.10.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm;△PDE∴△PDE的周长为16cm.故答案为16cm.11.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.12.解:设点P(x,y),∵⊙P与x轴相切,∴|y|=1,∴y=±1,当y=1时,1=x2﹣x﹣,解得:x1=3,x2=﹣1,∴点P(3,1),(﹣1,1),当y=﹣1时,﹣1=x2﹣x﹣,解得:x1=x2=1,∴点P(1,﹣1),故答案为:(3,1)或(﹣1,1)或(1,﹣1).13.解:∵⊙O与BC,AC,AB三边分别相切于点E,F,D,∴AD=AF,BD=BE,CE=CF,∵△ABC的周长为19.∴AD+BD+BE+CE+CF+AF=19,即2AD+2BE+2CE=19,∴AD+BC=9.5,而BC=6,∴AD=9.5﹣6=3.5,∵∠A=60°,AD=AF,∴△ADF为等边三角形,∴DF=AD=3.5.故答案为:3.5.14.解:如图,Rt△ABC三边分别切圆O于点D,E,F,得四边形ODBE是正方形,∴BE=BD=OD=OE,∴AF=AD=AB﹣2,CF=CE=BC﹣2,∴AC=AF+CF=AB﹣2+BC﹣2=AB+BC﹣4,∴AB+BC=AC+4=13+4=17,∴AB+BC+AC=17+13=30.∴Rt△ABC的周长等于30.故答案为:30.15.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,当∠TAC=∠B时,∠TAC+∠BAC=90°,即∠OAT=90°,∵OA是圆O的半径,∴直线AT是⊙O的切线,故答案为:∠TAC=∠B(答案不唯一).16.解:如图1,过O作OD⊥AB于D,由勾股定理得:AB===13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>3,∴⊙O与AB的位置关系是相离.①如图2,过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,∵OD⊥AB,∠C=90°,∴∠ODA=∠C=90°,∵∠A=∠A,∴△ADO∽△ACB,∴=,即=,∴AO=,∴OC=5﹣=,②如图3,过O作OD⊥BA交BA延长线于D,则∠C=∠ODA=90°,∠BAC=∠OAD,∴△BCA∽△ODA,∴,∴,∴OA=,∴OC=5+=,答:若点O沿射线CA移动,当OC等于或时,⊙O与AB相切.故答案为:相离,或.三.解答题(共7小题,满分72分)17.解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠BCD=∠DBC=45°;(Ⅱ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠DEB=∠EBA,∵∠EBD=30°,∴∠DEB=60°,∴∠EBA=60°,∴∠ACE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCD=30°,∴∠DBC=60°.18.(1)证明:∵点M是△ABC的内心,∴∠ABE=∠CBE,∴,∴CD=DA,又∵OA=OB,∴OD=BC;(2)证明:连接AM,∵M是△ABC的内心,∴∠BAM=∠CAM,∠ABE=∠CBE,∵∠EMA=∠ABE+∠BAM,∠EAM=∠CAE+∠CAM,∠CBE=∠CAE,∴∠EMA=∠EAM.∴EM=EA.19.解:(1)∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,且∠P=60°,∴△PAB是等边三角形;(2)∵△PAB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC==,∴AC=2×=cm.20.解:(1)AC与⊙O相切.理由如下:连接OE,如图,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠OBE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,而OE为⊙O的半径,∴AC为⊙O的切线;(2)过O作OM⊥BD于M,则四边形OBEM是矩形,∴OM=ED=3,BM=BG,∵EB⊥BC,∴∠C+∠CEB=90°,同理∠2+∠CEB=90°,∴∠2=∠C,∵AB=BC,∴∠2=∠A,∴∠1=∠2=∠A=30°,在Rt△OBM中,tan∠OBM=,∴=,∴BM=,∴BG=2BM=2.21.证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵∠FAC=∠D.∵∠D=∠B,∴∠FAC=∠B,∴∠FAC+∠CAB=90°∴AF是⊙O的切线;(2)解:∵AC=CD,∴∠D=∠CAD,∴∠FAC=∠CAD,又∵∠ACB=90°,∴FC=CE,∵EF=12,∴CE=6,∴,∴AE=10,AC=8,∵在Rt△ACB中,,∴,∴,∴⊙O的半径长为.23.解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.。
2019-2020学年度第二学期大沥镇初中教学质量检测九 年 级 数 学 试 题命题学校:石门实验学校 命题人:农成遐 审核人:李富泉 把关人:大沥镇教育局左世良一.选择题(共10小题,每小题3分,共30分) 1.﹣2020的相反数是( ) A .B .C .2020D .﹣20202.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m ,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为( ) A .5.5×105B .55×104C .5.5×104D .5.5×1063.如图,下列结论正确的是( )A .c >a >bB .C .|a |<|b |D .abc >04.如表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是( ) A .13,11 B .13,13 C .13,14 D .14,13.5 5.在Rt △ABC ,∠C =90°,sin B =,则sin A 的值是( ) A . B . C . D . 6.下列运算中,计算正确的是( ) A .2a +3a =5a 2 B .(3a 2)3=27a 6C .x 6÷x 2=x 3D .(a +b )2=a 2+b 27.下列命题中,假命题的是()A .分别有一个角是110的两个等腰三角形相似B .若5x =8y (xy ≠0),则58y xC .如果两个三角形相似,则他们的面积比等于相似比D .有一个角相等的两个菱形相似 8.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( ) A .=B .=C .=D .=9.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB //x 轴,交反比例函数y =-3x的图象于点B ,以AB 为边作□ABCD ,其中C 、D在x 轴上,则S □ABCD 为( )A. 2B. 3C. 4D. 510.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①abc >0;②2a +b =0;③若m ≠1,则a +b >am 2+bm ;④a ﹣b +c >0;⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2. 其中正确的有( )A .2个B .3个C .4个. D.5个二.填空题(共7小题,每小题4分,共28分) 11.因式分解:x 2﹣9= .12.在平面直角坐标系中点P (﹣2,3)关于x 轴的对称点在第 象限. 13.一个正数a 的平方根分别是2m ﹣1和﹣3m +,则这个正数a 为 .14.已知反比例函数y =(k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是15.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .16.如下左图,DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,则线段BF 长为 cm .17. 如上右图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为 .三.解答题(一)(第18~20题,每题6分,共18分)18.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.先化简,再求值(﹣)÷,其中a,b满足a+b ﹣=0.20.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.四.解答题(二)(第21~23题,每题8分,共24分)21.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF =,求AB的长.22.2020年4月23日是第二十五个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并将获奖人数绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?五.解答题(三)(第24~25题,每题10分,共20分)24.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB 交于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG(1)判断CG 与的位置关系,并说明理由;(2)求证:2OB2=BC·BF;(3)如图2,当∠DCE=2∠F,CE=3,DG=2时,求DE的长.25.如图,直线23y x c=-+与x轴交于点A(3,0),与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m 的值.2019-2020学年度第二学期大沥镇初中教学质量检测九年级数学答案及评分标准一.选择题(共10小题,每小题3分,满分30分)1.C .2.C.3.B4.B5.B6.B7.C8.A9.D10.B二.填空题(共7小题,每小题4分,满分28分)11.(x +3)(x ﹣3).12.第三象限.13.414.k <1.15.8.16.10.17.16三.解答题(一)(第18~20题,每题6分,共18分)18.解:原式=2×﹣1+﹣1+2.............4分=1+.......................6分19.解:原式=•.............3分=, (4)分由a +b ﹣=0,得到a +b =,则原式=2...........6分20.解:(1)如图所示:CO 与⊙O 为所求....................4分(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB =OD ,即d =r ,∴⊙O 与直线AC 相切.......................6分四.解答题(二)(第21~23题,每题8分,共24分)21.解:(1)∵E 是AC 的中点,∴AE =CE ,∵AB ∥CD ,∴∠AFE =∠CDE ,................1分在△AEF 和△CED 中,.6分∵,∴△AEF ≌△CED (AAS ),∴AF =CD ,........3分又AB ∥CD ,即AF ∥CD ,∴四边形AFCD 是平行四边形;........4分(2)∵AB ∥CD ,∴△GBF ∽△GCD ,...............5分∴=,即=,解得:CD =,...............6分∵四边形AFCD 是平行四边形,∴AF =CD =,...................7分.∴AB=AF+BF=+=6................8分22.解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人)..................2分.补全条形图如下:............3分.(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;...............4分(3)树状图如图所示,∵从四人中随机抽到甲和乙两人共有12种可能性结果,每种结果的可能性相同,恰好是甲和乙的结果有两种,分别是(甲,乙),(乙,甲)..............7分∴抽取两人恰好是甲和乙的概率是=........................................................8分23.解:(1)设y与x之间的函数关系式为y=kx+b,..........................1分.将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y=﹣2x+80.......................................................................3分当x=29.6,y=25.2和x=28,y=26也满足上述关系式∴y与x之间的函数关系式为y=﹣2x+80.................................4分当x=23.5时,y=﹣2x+80=33...答:当天该水果的销售量为33千克................................5分(2)根据题意得:(x﹣20)(﹣2x+80)=150,...............................6分解得:x1=35,x2=25.∵20≤x≤32,∴x=25...............................7分答:如果某天销售这种水果获利150元,那么该天水果的售价为25元................................8分五.解答题(三)(第24~25题,每题10分,共20分)24.解:(1)CG与⊙O相切,理由如下:..........1分如图1,连接OC,∵AB是⊙O的直径,∠ACB=∠ACF=90°点G是EF的中点,∴GF=GC=GE∴∠AEO=∠GEC=∠GCE.............................2分∵OF⊥AB ∴∠OAC+∠AEO=90°∴∠OCA+∠GCE=90°∴OC⊥CG∵OC 是⊙O 的半径∴CG 是⊙O 相切...............................3分(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC ∴∠OAE=∠F 又∵∠B=∠B,∴△ABC∽△FBO .............................4分∴BC:BO=AB:BF 即OB·AB=BC·BF ..............................5分∵AB=2OB∴2OB 2=BC·BF ..................6分(3)由(1)知GC=GE=GF ∴∠F=∠GCF∴∠EGC=2∠F...........................7分∵∠DCE=2∠F ∴∠EGC=∠DCE ∵∠DEC=∠CEG ∴△ECD∽△EGC ...............................8分∴EC:EG=ED:EC ∵EC=3,DG=2∴3:(DE+2)=DE:3整理,得:DE 2+2DE-9=0....................................................9分010 1.............10DE DE >∴=- 分2(3,0)3y x c x A =-+25.(1)与轴交于∴0=-2+c,解得:c=2∴B(0,2)..............................1分24+,3y x bx c A B =-+ 抛物线经过(3,0)(0,2)两点-12+3010,223b c b c c +=⎧∴∴==⎨=⎩24102 (333)y x x ∴=-++抛物线的解析式为:分()()22123y x =-+由可知直线AB的解析式为,∵M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2410333P ∴2(m,-m+2),N(m,-m +m+2)222410242,3,2(2)4 (433333)PM m AM m PN m m m m m ∴=-+=-=-++--+=-+分24103332M(m,0),(m,-m+2),N(m,-m +m+2)∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°当∠BNP=90°时,BN⊥MN,N 点的纵坐标为241033∴2-m +m+2=2解得:m=0或m=2.5M(2.5,0).....................................................................5分当∠NBP=90°时,过点N 作NC⊥y 轴于点C,241090, ,33NBC BNC NC m BC m m∠+∠=︒==-+则∵∠NBP=90°,∴∠NBC+∠ABO=90°∴∠ABO=∠BNC ∴Rt△NCB∽Rt△BOA∴NC:OB=BC:OA2410:2():333110811(,0) (68)m m m m m M ∴=-+==∴解得:或分综上可知当以B ,P ,N 为顶点的三角形与△AMP 相似时,点M 的坐标为或;②M ,P ,N 三点为“共谐点”,有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,2241012,3()3332P MN m m m m ++==当为线段的中点时,则有2(-m+2)=-解得:三点重合,舍去或224102)0,3()1333M PN m m m ++===-当为线段的中点时,则有-m+2+(-解得:舍去或2241012),3()3334N PM m m m ++==-当为线段的中点时,则有-m+2=2(-解得:舍去或11“” (1024)M P N m 综上可知当,,三点成为共谐点时的值为或-1或-.分。
2023年春学期九年级数学下册第二章【二次函数】检测卷一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为()A .5-B .3-C .1-D .52.在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度()m y 与水平距离()m x 之间的关系如图所示,点B 为落地点,且1m OA =,4m OB =,羽毛球到达的最高点到y 轴的距离为3m 2,那么羽毛球到达最高点时离地面的高度为()A .25m 4B .9m 4C .3m2D .25m 163.二次函数222=++y x x 的图象的对称轴是()A .=1x -B .2x =-C .1x =D .2x =4.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为()A .B .C .D .5.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是()A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小6.已知抛物线22()1y x =-+,下列结论错误的是()A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大7.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是()A .有最大值4B .有最小值4C .有最大值6D .有最小值68.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是()A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对9.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为()A .5米B .4米C .2.25米D .1.25米10.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x …-2013…y …6-4-6-4…下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大11.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为()A .21(2)42y x =--B .21(1)32y x =--C .21(2)52y x =--D .21(2)62y x =--12.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是()A .第7秒B .第9秒C .第11秒D .第13秒二、填空题(本大题共8小题,每小题3分,共24分)13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.14.如图,在平面直角坐标系中,菱形ABCD 的一边AB 在x 轴上,顶点B 在x 轴正半轴上.若抛物线y =x 2﹣5x +4经过点C 、D ,则点B 的坐标为______.15.已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:①<0abc ;②240b ac ->;③0a b c ++=;④21(2)4am bm a b +<-(其中12m ≠-);⑤若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.16.二次函数23y ax ax c =-+(a<0,a ,c 均为常数)的图象经过()12A y -,、()22B y ,、()30C y ,三点,则1y ,2y ,3y 的大小关系是_____.17.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .18.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.19.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .20.如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .则当水位下降m=________时,水面宽为5m ?三、解答题(本大题共5小题,每小题8分,共40分)21.如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为4m ,宽BC 为3m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.23.如图,抛物线y =x 2+x ﹣2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)抛物线的对称轴上有一动点P ,求PB +PC 的值最小时的点P 的坐标.24.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2 ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.参考答案:1.A2.D3.A4.C5.C6.D7.D8.D9.C10.C11.D12.B13.126414.(2,0)15.316.132y y y <<17.1018.﹣3<x <119.420.1.12521.(1)2114y x =-+(2)23(3)能通过22.(1)213482y x x =-++;(2)12米;(3)3524b ≥.23.(1)A (﹣2,0),B (1,0),C (0,﹣2).(2)P (12-,12-)24.(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.25.(1)()21218y x =--;(2)1(3)26,14,2⎛⎫- ⎪⎝⎭。
华师版九年级数学下册期末学情评估一、选择题(本题共10小题,每小题4分,共40分)1.下列函数是二次函数的是()A.y=2x+1 B.y=2x C.y=3x2+1 D.y=1x2+12.以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量3.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为() A.27°B.108°C.116°D.128°(第3题)(第7题)4.把二次函数y=x2-2x+3化为顶点式,结果正确的是() A.y=(x-1)2+4 B.y=(x+1)2-4C.y=(x+1)2+2 D.y=(x-1)2+25.将抛物线y=12(x-4)2+5向上平移2个单位,得到新抛物线的表达式是()A.y=12(x-4)2+7 B.y=12(x-2)2+5C.y=12(x-6)2+5 D.y=12(x-4)2+36. 小新家4月份前6天的用米量如下表:用米量(kg)0.60.80.9 1.0天数122 1 估计小新家4月份用米量为()A.24 kg B.25 kg C.26 kg D.27 kg7.如图是一个石拱门的截面示意图,已知它是一段优弧,小松测得AB为8 m,石拱门的顶部C到地面AB的距离也为8 m,则这个石拱门所在圆的半径为()A.4 m B.5 m C.6 m D.8 m8.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是() A.1003π B.2003π C.1005π D.2005π9.在同一平面直角坐标系中,函数y=12x2+kx与y=kx+k(k≠0)的图象可以是()10.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2-x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5 B.m=4b+8C.m=6b+15 D.m=-b2+4二、填空题(本题共6小题,每小题4分,共24分)11.抛物线y=x2+3与y轴的交点坐标是__________.12.某校共有1 000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是________.(第12题)(第13题)13.如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O 为圆心,OB为半径作半圆,交AC于点D,则图中阴影部分的面积是________.14.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=________(用含α的代数式表示).(第14题)(第15题)15.如图,⊙O的半径是2,直线l与⊙O相交于A,B两点,M,N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB的面积的最大值是________.16.已知抛物线y=-x2+6x-5的顶点为P,对称轴l与x轴交于点A,N是P A 的中点.M(m,n)在抛物线上,M关于直线l的对称点为B,M关于点N的对称点为C.当1≤m≤3时,线段BC的长随m的增大而发生的变化是:________________________________.(“变化”是指增减情况及相应m的取值范围)三、解答题(本题共9小题,共86分)17.(8分)一个二次函数的图象经过(-3,0),(-1,0),(0,-3)三点,求这个二次函数的表达式.18.(8分)如图,⊙O的直径AB垂直弦CD于点M,且点M是半径OB的中点,CD=6,求直径AB的长.(第18题)19.(8分)某中学九年级部分同学参加全国初中数学竞赛,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如图所示,请根据直方图回答下列问题:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等,请再写出两条信息.(第19题)20.(8分)如图,已知线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边均相切.(第20题)21. (8分)某超市茶叶专柜经销一种安溪铁观音茶叶,每千克成本为100元,市场调查发现,在一段时间内,每天的销售量y (kg)随销售单价x(元/kg)的变化而变化,具体的变化(一次函数关系)如下表:销售单价x(元/kg)120140160180销售量y(kg)1201008060(1)求y与x的函数关系式;(2)设这种茶叶在这段时间内的销售利润为W元,那么当该茶叶的销售单价为多少元/kg时,可获得最大利润?最大利润为多少元?22.(10分)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连结BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.(1)试判断CD与⊙B的位置关系,并说明理由;(2)若AB=23,∠BCD=60°,求图中阴影部分的面积.(第22题)23.(10分)如图,点D在以AB为直径的⊙O上,过点D作⊙O的切线交AB的延长线于点C,AE⊥CD交直线CD于点E,交⊙O于点F,连结AD,FD.(1)求证:∠DAE=∠DAC;(2)求证:DF·AC=AD·DC;(3)若sin C=14,AD=410,求EF的长.(第23题)24.(12分)阅读下面的材料:我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+By+C=0(A,B,C是常数,且A,B均不为0).如图①,点P(m,n)到直线l:Ax+By+C=0的距离(d)计算公式是d=|A×m+B×n+C|A2+B2.例:求点P(1,2)到直线y=512x-16的距离d′时,先将y=512x-16化为5x-12y-2=0,再由上述距离公式求得d′=|5×1+(-12)×2+(-2)|52+(-12)2=2113.解答下列问题:如图②,已知直线y=-43x-4与x轴交于点E,与y轴交于点F,抛物线y=x2-4x+5上的一点M(3,2).(1)求点M到直线EF的距离;(2)点P是抛物线上一动点,求出使△PEF面积最小时点P的坐标及△PEF面积的最小值.(第24题)25.(14分)如图①,抛物线y=ax2+bx-2(a≠0)与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C,直线y=-x与该抛物线交于E,F两点.(1)求抛物线的表达式;(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值;(3)如图②,以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.(第25题)答案一、1.C 2.A 3.B 4.D 5.A 6.B 7.B 8.C 9.C 10.C二、11.(0,3) 12.270 13.53-2π4 14.180°-α2 15.4 216.当1≤m ≤3-2时,BC 的长随m 的增大而减小;当3-2<m ≤3时,BC 的长随m 的增大而增大. 三、17.解:设这个二次函数的表达式是y =ax 2+bx +c ,把(-3,0),(-1,0),(0,-3)代入y =ax 2+bx +c ,得⎩⎨⎧9a -3b +c =0,a -b +c =0,c =-3,解得⎩⎨⎧a =-1,b =-4,c =-3.所以所求的二次函数的表达式是y =-x 2-4x -3. 18.解:如图,连结OC .(第18题)∵直径AB ⊥CD ,∴CM =DM =12CD =3. ∵M 是OB 的中点,∴OM =12OB =12OC .由勾股定理,得OC 2=OM 2+CM 2, ∴OC 2=14OC 2+32, ∴OC =23(负值舍去), ∴直径AB 的长为4 3.19.解:(1)4+6+8+7+5+2=32(名),所以该中学参加本次数学竞赛的有32名同学. (2)由题图可知,该中学参赛同学的获奖率为 7+5+232×100%=43.75%. (3)该中学参赛同学的成绩均不低于60分,成绩在80~90分的人数最多.(答案不唯一,合理即可)20.解:①作∠ACB 的平分线CD ,②在CD 上截取CO =a ,③作OE ⊥CA 于点E ,以O 为圆心,OE 的长为半径作圆. 如图所示,⊙O 即为所求.(第20题)21.解:(1)由题可设y =kx +b (k ≠0),将(120,120),(140,100)代入上式,得⎩⎨⎧120k +b =120,140k +b =100,解得⎩⎨⎧k =-1,b =240. 所以y =-x +240.(2)由题可得,W =(x -100)(-x +240), 整理,得W =-x 2+340x -24 000=-(x -170)2+4 900. 所以当x =170时,W 可取得最大值,W 最大=4 900.即当该茶叶的销售单价为170元/kg 时,可获得最大利润,最大利润为4 900元.22.解:(1)CD 与⊙B 相切.理由:如图,过点B 作BF ⊥CD 于点F ,∴∠BFD =90°.(第22题)∵AD ∥BC ,∴∠ADB =∠CBD .∵CB =CD ,∴∠CBD =∠CDB ,∴∠ADB =∠CDB .又∵BD =BD ,∠BAD =∠BFD =90°,∴△ABD ≌△FBD ,∴BF =BA ,即点F 在⊙B 上,∴CD 与⊙B 相切.(2)∵∠BCD =60°,CB =CD ,∴△BCD 是等边三角形,∴∠CBD =60°,∴∠ADB =60°,∴∠ABD =90°-∠ADB =30°.∵AB =23,∴AD =AB ·tan ∠ABD =23×tan 30°=2,∴阴影部分的面积为S △ABD -S 扇形ABE =12×23×2-30×π×(23)2360=23-π. 23.(1)证明:连结OD .∵DC 为⊙O 的切线,∴OD ⊥CD ,即∠ODC =90°.∵AE ⊥CD ,∴∠AED =90°,∴∠AED =∠ODC ,∴AE ∥OD ,∴∠ODA =∠DAE .∵OD =OA ,∴∠ODA =∠DAC ,∴∠DAE =∠DAC .(2)证明:设∠DAE =α,由(1)可知∠CAD =∠ODA =∠DAE =α.连结BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD =90°-α.∵四边形ABDF 为⊙O 的内接四边形,∴∠AFD +∠ABD =180°,∴∠AFD =90°+α.∵∠CDO =90°,∴∠ADC =90°+α,∴∠AFD =∠ADC .在△AFD 和△ADC 中,∠AFD =∠ADC ,∠F AD =∠DAC ,∴△AFD ∽△ADC ,∴DF CD =AD AC ,即DF ·AC =AD ·DC .(3)解:设OD =x ,在Rt △COD 中,sin C =14,∴OC =4x .根据勾股定理,得CD =15x .∵OD ∥AE ,∴△COD ∽△CAE ,∴OD AE =OC AC =CD CE ,即x AE =4x 5x =15x CE ,∴AE =54x ,CE =5154x , ∴DE =154x .由(2)可知△AFD ∽△ADC ,∴AD AC =AF AD ,即4105x =AF 410, ∴AF =32x .在Rt △ADE 中,AE 2+DE 2=AD 2,∴2516x 2+1516x 2=160,∴x =8(负值舍去).∴AF =32x =4,AE =54x =10,∴EF =AE -AF =10-4=6.24.解:(1)将y =-43x -4化为4x +3y +12=0,由题中距离公式可得点M 到直线EF 的距离为|4×3+3×2+12|42+32=6. (2)设P (t ,t 2-4t +5),则点P 到直线EF 的距离d ″=|4t +3(t 2-4t +5)+12|42+32=|3t 2-8t +27|5 =⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫t -432+6535=35⎝ ⎛⎭⎪⎫t -432+133. ∴当t =43时,d ″最小,为133.当t =43时,t 2-4t +5=⎝ ⎛⎭⎪⎫432-4×43+5=139, 此时P ⎝ ⎛⎭⎪⎫43,139. 在y =-43x -4中,令x =0,则y =-4,∴F (0,-4).令y =0,则x =-3,∴E (-3,0)∴EF =32+42=5,∴△PEF 面积的最小值为12×5×133=656.25.解:(1)∵抛物线y =ax 2+bx -2(a ≠0)与x 轴交于A (-3,0),B (1,0)两点,∴⎩⎨⎧9a -3b -2=0,a +b -2=0,解得⎩⎪⎨⎪⎧a =23,b =43,∴抛物线的表达式为y =23x 2+43x -2.(2)将直线EF 向左平移至直线l ,使l 与抛物线只有一个交点,记为P ′,当点P 在点P ′处时,PH 最大,过点O 作OD ⊥l 于点D ,设直线l 交x 轴于点G ,则PH 最大=OD .∵直线EF 的表达式为y =-x ,∴设直线l 的表达式为y =-x +m ①.由(1)知抛物线的表达式为y =23x 2+43x -2②,联立①②,化简得23x 2+73x -2-m =0,∴Δ=499-4×23×(-2-m )=0, 解得m =-9724,∴直线l 的表达式为y =-x -9724.令y =0,得x =-9724,∴G ⎝ ⎛⎭⎪⎫-9724,0,∴OG =9724,在Rt △ODG 中,易得OD =OG2=97248,∴PH 最大=97248.(3)存在.点M 的坐标为⎝ ⎛⎭⎪⎫-35,-65或(1,-2)或⎝ ⎛⎭⎪⎫-255,55-2或⎝ ⎛⎭⎪⎫255,-55-2.。
九年级学业质量检测考试数学试题(满分:150分 考试时间:120分钟)友情提示:1、作图或画辅助线时需用签字笔描黑。
2、未注明精确度、保留有效数字等的计算问题,结果应为准确数。
3、抛物线c bx ax y ++=2(a ≠0)的顶点坐标为)44,2(2ab ac a b --,对称轴abx 2-= 一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.34-的倒数是( ▲ )A .43- B .43C .34- D .342.下列运算正确的是( ▲ ) A.326a a a =÷B .a a a 2322=- C.532)(a a a =⋅-D .ab b a 725=+3.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔是红色的概率是( ▲ )A .51B . 53C .52D .324.如图所示的几何体的左视图是( ▲ )5.在平面直角坐标系中,点P (-2,5)关于x 轴的对称点在( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6. 如图所示,在△ABC 中,D 是BC 延长线上一点,∠B=040,∠ACD=0120,则∠A 等于( ▲ )A .060B . 070C .080D .090 7.如图,在55⨯方格纸中,将图①中的三角形甲平移到 图②中所示的位置,与三角形乙拼成一个矩形,那么, 下面的平移方法中,正确的是( ▲ ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格(第7题D .先向下平移3格,再向右平移2格8.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图像确定,那么旅 客可携带的免费行李的最大质量为( ▲ )A .20kgB .25kgC .28kgD .30kg 9.下面各正多边形中,不能够单独铺满地面的是( ▲ ) A .正三角形 B .正方形 C .正六边形 D .正七边形 10. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论中正确的结论有( ▲ )个 ①EF 是△ABC 的中位线.②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切; ③设OD=m ,AE+AF=2n ,则S △AEF =mn ; ④A BOC∠+=∠21900; (A )1个 (B )2个 (C )3个(D )4个二、填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置) 11.计算=9 ▲12.2012年4月11日,宁化县普降暴雨,过程雨量达50mm ,部分乡镇出现强雷电、大风、冰雹等强对流天气,据初步统计,风雹灾(第10题图)32O 害造成我县烤烟、果树、茶叶、蔬菜等经济作物严重受损,直接经济损失达5448万元,将数据5448万元保留两个有效数字后为___▲___元13.一组数据:1,-2,a 的中位数是-1,那么这组数据的极差是 ▲ 14.如图所示,在矩形ABCD 中,AB =6,BC =8,对角线AC 、BD相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长 是 ▲15. 如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则 矩形ABCD 的面积为 ▲ .16. 已知函数2()1f x x=+,其中()f a 表示当x a =时对应的函数值,如121)1(+=f ,aa f f 21)(,221)2(+=+=,则(1)(2)f f f ⋅⋅……)100(f =___▲____。
三、解答题(共7题,满分86分,请将解答过程写在答题卡的相应位置)17.(本题满分16分,每小题8分) (1)解不等式组⎩⎨⎧x+23<1,2(1-x)≤5,并把解集在数轴上表示出来。
(2)先化简,再求值2221xxx x x +⋅-,其中2x =。
18.(本题满分10分)放风筝是大家喜爱的一种运动.星期天的上午,小明在大洲广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树CD 的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处7米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此时所收回的风筝线的长度是多少米?(本题中风筝线均视为线段,2≈1.4,3≈1.7最后结果精确到1米)19.(本题满分10分)吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:(1)直接写出频数分布表中a、b、c的值;并补全频数分布直方图;(8分)(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为多少度?(2分)20.(本题满分12分)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(8分)(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟内同时通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.(4分)21.(本题满分12分)如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(6分)(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.(6分)22.(本题满分12分)在Rt △ABC 中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC 的中点O 处,将三角板绕点O 旋转,三角板的两直角边分别交AB ,BC 或其延长线于E ,F 两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O 旋转,△OFC 是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC 是等腰直角三角形时BF 的长);若不能,请说明理由;(4分)(2)三角板绕点O 旋转,线段OE 和OF 之间有什么数量关系?用图①或②加以证明;(4分)(3)若将三角板的直角顶点放在斜边上的点P 处(如图③),当AP:AC=1:4时,PE 和PF有怎样的数量关系?证明你发现的结论.(4分)23.(本题满分14分)如图1,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c(a >0)的图像顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 1 3.(1)求这个二次函数的解析式;(4分)(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x轴相切,求该圆的半径长度;(5分)(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP 的面积最大?求此时点P的坐标和△AGP的最大面积.(5分)初中毕业生质量检测试题数学试题答案二、填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡的相应位置11.3 12.7104.5⨯ 13. 3 14.42515.2 16.5151三、解答题(共7题,满分86分,请将解答过程写在答题卡的相应位置)17.(1)解:由(1)得1<x ……3分由(2)得23-≥x ……6分所以原不等式组的解集为123<≤-x ……7分 数轴略……8分 (2)解原式=分...6 .. (1)1)1()1)(1(2-=+∙-+x x x x x x x ……4分当2x =时分..81 (1)1=-x18. 解:设CD 为x 米.……1分∵∠ACD=90°,在直角△A DC 中,∵∠DAC=30°,∴AD=2x AC=A D•cos30°=错误!未找到引用源。
x ,,……3分在直角△BCD 中,∠DBC=45°,BC=CD=x ,BD=错误!未找到引用源。
=错误!未找到引用源。
x ,……5分∵AC﹣BC=AB=7米,∴错误!未找到引用源。
x ﹣x=7,又∵错误!未找到引用源。
≈1.4,错误!未找到引用源。
≈1.7,∴x=10米,……8分则小明此时所收回的风筝的长度为:AD ﹣BD=2x ﹣错误!未找到引用源。
x=6米.……10分19. 解:(1)12.0505===,c ,b a ……………………………… (6分)(每空2分)……………(8分)(2)分10...........72%2036000=⨯20.(本小题12分)解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,(1分)由题意得:⎩⎨⎧=+=+800)(4560)2(2y x y x (4分)解得:⎩⎨⎧==80120y x (7分)答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生。
(8分)(2)这栋楼最多有学生4×8×45=1440(名)拥挤时5分钟4道门能通过:%)201)(80120(25-+⨯=1600(名)(10分)∵1600>1440∴建造的4道门符合安全规定。
(12分)21.(1)连接OD. 设⊙O 的半径为r.∵BC 切⊙O 于点D ,∴OD⊥BC. ····· (2分) ∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC. (3分)∴OD AC = OB AB ,即 r 6 = 10-r 10. 解得r = 154, (5分) ∴⊙O 的半径为154. ··············· (6分) (2)四边形OFDE 是菱形. ········· (7分) ∵四边形BDEF 是平行四边形,∴∠DEF=∠B.∵∠DEF=12∠DOB ,∴∠B=12∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE 是等边三角形.∴OD=DE.∵OD=OF,∴DE=OF.∴四边形OFDE 是平行四边形. ········· (11分)∵OE=OF,∴平行四边形OFDE 是菱形. ······ (12分)22.解答:解:(1)△OFC 是能成为等腰直角三角形,①当F 为BC 的中点时,∵O 点为AC 的中点,AB=BC=5,∴OF∥AB,∴CF=OF=错误!未找到引用源。