混凝土箱梁温度应力三维分析
- 格式:pdf
- 大小:426.28 KB
- 文档页数:6
混凝土结构温度应力分析一、背景介绍混凝土结构是建筑工程中常见的结构类型,其具有高强度、耐久性好等特点。
然而,在使用过程中,混凝土结构受到温度变化的影响,会产生应力,从而影响其性能和安全性。
因此,混凝土结构温度应力分析是建筑工程中必不可少的一项工作。
二、混凝土结构温度应力的形成原因混凝土结构温度应力主要是由于混凝土受到温度变化的影响,导致结构发生体积变化而产生的应力。
温度变化主要有以下几种情况:1.环境温度变化环境温度变化是指空气温度的变化,这种变化会对混凝土结构产生直接的影响。
当环境温度升高时,混凝土结构会膨胀,产生压应力;当环境温度降低时,混凝土结构会收缩,产生拉应力。
2.日夜温差变化日夜温差变化是指白天和晚上温度的变化,这种变化对混凝土结构的影响较大。
在白天高温时,混凝土结构表面会因为受热而膨胀,而混凝土结构内部由于温度变化慢,膨胀较小,因此产生了表面和内部的温差,从而产生了应力。
3.季节温度变化季节温度变化是指春夏秋冬四季的温度变化,这种变化对混凝土结构的影响最为显著。
由于季节的变化,混凝土结构被不同的温度影响,从而导致结构产生应力。
三、混凝土结构温度应力分析方法混凝土结构温度应力分析方法主要有以下几种:1.传统方法传统方法是指根据混凝土结构的热学参数(如热膨胀系数、热导率等)和温度变化数据,通过计算得出混凝土结构的温度应力。
这种方法简单快捷,但是精度较低,难以考虑到混凝土结构内部的复杂应力分布情况。
2.有限元方法有限元方法是指将混凝土结构分割成若干小单元,通过计算每个小单元的温度应力,最终得出整个混凝土结构的温度应力分布情况。
这种方法精度高,能够考虑到混凝土结构内部的复杂应力分布情况,但是计算量大,需要专业的有限元软件支持。
3.试验方法试验方法是指通过对混凝土结构进行温度应力试验,得出其温度应力分布情况。
这种方法能够直接得到混凝土结构的实际温度应力情况,但是试验成本高,且受试验条件的限制较大。
SimWe仿真论坛»C06:ANSYS--实例赏评»混凝土箱梁日照温度场、温度应力ANSYS分析结果混凝土箱梁日照温度场、温度应力ANSYS分析结果混凝土箱梁在日照和气温变化等气象因素作用下,会在截面内产生非线性温度分布,引起较大的纵向、横向温度应力,在超静定结构中还会引起温度次应力。
应力大小往往会超过列车或汽车荷载效应,特别是横向温度应力对混凝土箱梁纵向裂纹的出现有很大的贡献。
下面首先发几张混凝土箱梁日照温度场ANSYS分析结果的图片,希望对这方面感兴趣的网友在此讨论。
Ⅰ:夏季日照温度场。
由于,桥轴线走向和纬度的关系,腹板在夏季腹板几乎不受日照,因此截面温度梯度主要在竖向。
peregrine2007-7-14 15:07夏季,t=10:00的温度场peregrine2007-7-14 15:09夏季,t=14:00的温度场[[i] 本帖最后由 peregrine 于 2007-7-14 15:15 编辑 [/i]]peregrine2007-7-14 15:15回复 #3 peregrine 的帖子夏季,t=03:00,夜间负温差peregrine2007-7-14 15:19Ⅱ:冬季温度场。
本箱梁冬季腹板也会受到一定的日照。
冬季,t=16:00bridge-7-18 21:481、底板温度基本是处于均匀温度状态原来做过实桥试验,上下底板也是相差很大的,是不是所处环境不同了2、“夏季,t=03:00,夜间负温差”跟实测也是差的很远,基本上是处于均匀温度状态。
3、希望提供你的计算思路,偶们好学习一下。
peregrine2007-7-19 20:15回复 #6 bridge5209 的帖子回楼上我这是根据多年气象资料计算的最不利状况下的温度分布,与楼上在某一座桥的实测数据有出入,是正常的。
1、底板温差主要受气温变化和地面或水面对太阳辐射的反射率影响,地面太阳辐射发射率随环境变化很大,难以准确确定,计算时一般偏于不利考虑,取较小值,因此计算的底板上下温差比较小,在本算例中为℃(14:00)2、夜间负温差看起来很大,但要注意的是,最高温度出现在箱梁梗胁加厚处的内部,而最低温度出现在悬臂端部板厚最薄处,特别是在悬臂端部,在很小的范围内温度降低很多,因为这个部位不仅尺寸小,而且夜间呈三面放热的状态,温度下降自然比结构主体要大得多。
文章编号:0451-0712(2004)06-0076-03 中图分类号:U448.213.15 文献标识码:B各国规范关于混凝土箱梁桥温度应力计算的分析与比较王 林,项贻强,汪劲丰,王建江(浙江大学交通工程研究所 杭州市 310027)摘 要:参照国内外5种规范对温度梯度的规定,采用相同的升(降)温温差,对一大跨径连续刚构箱形梁桥的温度效应进行计算分析和比较,结果显示温度荷载在主梁下缘引起拉应力,它与混凝土张拉预应力筋引起的二次应力相组合,将产生较大的拉应力,从而降低主梁截面的抗裂性能,在设计计算时应予以高度重视。
关键词:混凝土箱梁;温度梯度;温度应力;分析 混凝土箱梁在日照作用下,向阳面的温度变化较大,背阳面的温度变化很小,由于混凝土材料的热传导性能差,结构内部大部分区域仍处于原来的温度状态,从而在箱梁中形成了较大的温度梯度。
温差作用产生的变形,受到箱梁截面的纵横向纤维约束或超静定结构体系多余约束的制约时,就会产生很大的温差应力。
理论分析及实验研究表明:在大跨预应力混凝土箱梁桥特别是超静定结构体系中,温差应力可以达到甚至超过活载产生的应力,已被认为是预应力混凝土桥梁结构产生裂缝的主要原因之一[1]。
随着桥梁跨径的不断增加,温度效应对桥梁结构的危害也越来越大,我国现行的公路桥梁规范(JT J 023-85),受研究水平的限制,只给出了T 形截面梁的日照温差分布图,已经不能满足箱形梁温度应力计算的要求[2,3]。
本文以一座典型的三跨连续刚构桥为背景,通过对国内外几种规范所规定的温度梯度模式的计算和分析比较,给出了有关建议和结论。
1 各国规范对温度梯度的规定图1、表1分别列出了国内外几种规范对温度梯度的规定。
为叙述方便,将7种温度模式分为表1所示的7种工况来描述。
收稿日期:2004-04-05 公路 2004年6月 第6期 HIG HW A Y Jun .2004 N o .6 图1 各国规范对温度梯度的规定表1 各国规范对特征值T 的规定工况国名规范简称特征T 取值备注1中国公路桥规JT J 023-855℃23中国铁路桥规TB10002.3-9920℃10℃降温45英国BS540013.5℃8.4℃降温6美国AASHTOT 1=20℃T 2= 6.7℃取第二气候区值7新西兰32℃2 计算模型及结果分析2.1 工程背景根据上述几种规范的规定,选取一典型的三跨预应力混凝土连续刚构箱梁桥作为计算研究对象,其跨径组合为138.7m +268m +138.7m=545.4m ,双向六车道,全桥分为两半幅桥,每半幅宽16.4m ,主梁截面形式为单箱单室,箱梁顶板宽16.4m,底板宽7.5m,箱梁梁底按1.6次抛物线变化,根部梁高15m ,跨中合拢段梁高4.5m ,顶板厚0.28m;底板厚度0.32~ 1.7m,变化规律同梁底;腹板厚度按0.7~0.6~0.5~0.45m 变化。
日照下混凝土箱梁温度场和温度应力研究1. 本文概述本文主要研究了日照作用下混凝土箱梁的温度场分布和温度应力。
随着土木工程技术的发展,钢筋混凝土箱梁结构被广泛应用于建筑领域。
在实践中发现,日照会对钢筋混凝土箱梁产生明显的温度效应,影响结构的受力性能和安全性。
研究混凝土箱梁的日照温度效应具有重要意义。
本文首先通过实验和数值模拟方法,对不同条件下的箱梁日照温度效应进行了研究。
研究结果表明,日照时间、强度、角度等因素都会影响箱梁的温度分布。
箱梁表面的温度变化幅度较大,而内部温度变化幅度较小。
太阳辐射强度对箱梁的温度分布和应力分布也有较大影响,高辐射强度会导致箱梁表面温度升高,从而引发更大的应力。
箱梁的传热性能与其结构尺寸、材料参数等因素有关,这些因素会影响日照温度效应的表现。
为了更好地理解和预测日照温度效应,本文还分析了钢筋混凝土箱梁日照温度应力的形成机理和计算方法。
同时,以现行的桥梁规范为依据,计算了试验模型的温度应力,并提出了钢筋混凝土箱梁日照温度裂缝控制的建议。
这些研究成果对于工程设计人员和规范编制具有重要的参考价值。
本文的研究旨在提高对混凝土箱梁日照温度效应的认识,为实际工程中箱梁的结构设计和安全评估提供科学依据,从而提高结构的安全性和耐久性。
2. 混凝土箱梁温度场的影响因素分析混凝土的热物理性质,如比热容、导热系数和热膨胀系数,对其温度响应至关重要。
比热容影响材料吸收和释放热量的能力,导热系数决定热量在材料内部的传导速度,而热膨胀系数则关系到材料在温度变化时的体积变化。
日照条件下,环境温度、相对湿度、风速和太阳辐射强度是主要的环境影响因素。
太阳辐射直接加热箱梁表面,而环境温度和风速影响热量的对流和辐射损失。
相对湿度则通过影响水分的蒸发和混凝土的干燥速率来间接影响温度场。
混凝土箱梁的几何尺寸、形状和方向对其温度分布有显著影响。
较大的表面积和较薄的截面会导致更快的温度变化。
箱梁的朝向也会影响其接收到的太阳辐射量,从而影响温度分布。