声表面波简介
- 格式:doc
- 大小:43.00 KB
- 文档页数:6
声表面波原理声表面波(Surface Acoustic Wave, SAW)是一种在固体表面传播的机械波,具有许多独特的特性和应用。
声表面波可以在固体表面上沿着微细晶体结构传播,其传播速度和频率范围可通过晶体材料的选择和加工工艺进行调控。
声表面波技术已经在无线通信、传感器、滤波器、延迟线、微波器件等领域得到广泛应用。
声表面波的原理主要基于固体材料的弹性性质和表面结构的特殊性。
当外部施加声激励信号时,固体表面上的晶格结构会发生微小的变形,这种变形会形成一种沿着表面传播的机械波,即声表面波。
声表面波的传播速度取决于材料的弹性模量和密度,而频率范围则取决于晶格结构和加工工艺。
声表面波的特性使其在无线通信领域得到了广泛的应用。
利用声表面波器件可以实现无源无线传感器网络中的无源传感器节点与中心控制器之间的无线通信,同时也可以实现射频信号的滤波和延迟线功能。
声表面波滤波器具有高品质因数和良好的频率选择性,可以用于无线通信系统中的信号调制和解调,以及频谱分析等应用。
另外,声表面波传感器也是声表面波技术的重要应用之一。
声表面波传感器利用声表面波在固体表面上的传播特性,可以实现对压力、温度、湿度、气体浓度等物理量的高灵敏度、高精度检测。
声表面波传感器具有体积小、功耗低、响应速度快等优点,已经在环境监测、医疗诊断、工业控制等领域得到了广泛应用。
此外,声表面波技术还可以用于微波器件中的延迟线和滤波器。
声表面波延迟线可以实现微波信号的相移和延迟,用于无线通信系统中的信号处理和频率合成。
声表面波滤波器则可以实现对微波信号的频率选择性和抑制非期望频率成分,用于无线通信系统中的信号调制和解调。
总的来说,声表面波技术具有许多独特的特性和应用,已经成为无线通信、传感器、滤波器、延迟线、微波器件等领域中的重要技术手段。
随着固体材料和加工工艺的不断进步,声表面波技术将会在更多领域得到广泛应用,并为人类社会的发展带来更多的便利和可能。
声表面波标签的特点声表面波标签(Surface Acoustic Wave Tags,SAW标签)是一种无源无源电子标签,它利用声表面波技术实现数据的传输和存储。
它具有许多独特的特点,使其在各个领域广泛应用。
本文将深入探讨声表面波标签的特点,并分享对其的观点和理解。
一、声表面波标签的基本原理声表面波标签的基本原理是利用声表面波传感器和反射器实现数据的传输。
当读写设备中的射频场与标签中的天线共振时,数据被通过声表面波传感器转化为声表面波信号,并在反射器中反射回来。
读写设备通过解码声表面波信号来获取数据,并实现对标签的读写操作。
二、声表面波标签的特点1. 高安全性:声表面波标签采用接触式读写方式,相比于其他无源电子标签(如RFID标签),其读写距离更短,减少了无意中被非法读取或克隆的风险,提高了数据的安全性。
2. 高可靠性:声表面波标签的数据传输基于声表面波技术,可以克服传统电磁波通信中的多径效应和多径干扰问题,减少信号的丢失和干扰,提高了数据传输的可靠性。
3. 高读取精度:声表面波标签的传感器具有较高的灵敏度,可以实现高精度的数据读取。
这使得声表面波标签在要求读取精度较高的场景中得到广泛应用,如物流追踪、库存管理等。
4. 高适应性:声表面波标签可以工作在不同频率范围内,具有很强的适应性。
由于其无源无源的特点,不需要电池供电,可以在各种环境下工作并且具有较长的使用寿命。
5. 大容量存储:声表面波标签中的反射器可以根据实际需求设计成各种形式,从而提供不同容量的存储空间。
这使得声表面波标签适用于不同规模和需求的应用场景。
三、对声表面波标签的观点和理解声表面波标签作为一种新兴的无源无源电子标签技术,具有广泛的应用前景。
我对于声表面波标签的特点和优势表示认同。
声表面波标签的高安全性对于一些对数据安全性要求较高的场景具有重要意义。
在金融领域和军事领域,声表面波标签可以有效防止敏感信息被非法读取或篡改,提高数据的安全性。
声表面波滤波器技术综述摘要:目前广泛使用的滤波器作为电子系统中的关键性器件,滤波器的性能直接影响了整个电子系统的性能。
各国的研究工作者致力于提高滤波器的性能和应用范畴。
关键词:声表面波滤波器叉指换能器压电材料1前言目前广泛使用的滤波器作为电子系统中的关键性器件,滤波器的性能直接影响了整个电子系统的性能。
各国的研究工作者致力于提高滤波器的性能和应用范畴。
声表面波(SAW)是英国物理学家 Rayleigh 在对地震波的研究中发现并提出的,是一种沿着固体表面或界面传播的弹性波,存在于一切固体中,包括各向同性和各向异性材料。
SAW器件就是利用SAW理论和技术来实现一些特定功能或进行信号处理的器件,广泛用于广播、电视机、通信和导航等领域。
Jacques Curie和Pierre Curie在1880年~1881年相继发现了压电效应和逆压电效应,为叉指换能器(InterdigitalTransducer,IDT)的发现奠定了材料和理论基础。
20 世纪 60 年代,随着光刻技术的出现和半导体平面工艺水平的发展,SAW 技术在电子领域中的应用研究开始受到重视。
声表面波滤波器是一种利用声表面波效应和谐振特性制成的对频率有选择作用的器件。
2基本原理和基本结构SAW(Surface Acoustic Wave)即声表面波,是一种在压电基片材料表面产生和传播、且振幅随深入基片材料的深度增加而迅速减少的弹性波。
某些材料沿一定方向受机械力作用而发生变形(包括压缩和拉伸2种状态),其内部会产生极化现象,并使材料相对的2个表面产生等量异号电荷。
施加的外力越大,产生的电荷量也越多;当外力消失后,材料又恢复到起始不带电的状态;将这种现象称为正压电效应。
如果给同样的材料施加电场,这些材料将会发生机械形变;外加电场消失后,材料的形变也随之消失;如果对材料施加交变电场,将会发生机械振动;这种现象称作逆压电效应。
将具有正、逆压电效应的材料称作压电材料。
什么是SAWF(声表面滤波器),特点及用途什么是SAWF(声表面波滤波器)声表面波滤波器是利用石英、铌酸锂、钛酸钡晶体具有压电效应的性质做成的。
所谓压电效应,即是当晶体受到机械作用时,将产生与压力成正比的电场的现象。
具有压电效应的晶体,在受到电信号的作用时,也会产生弹性形变而发出机械波(声波),即可把电信号转为声信号。
由于这种声波只在晶体表面传播,故称为声表面波。
声表面波滤波器的英文缩写为SAWF,声表面波滤波器具有体积小,重量轻、性能可靠、不需要复杂调整。
在有线电视系统中实现邻频传输的关键器件。
声表面波滤波器的特点是:(1)频率响应平坦,不平坦度仅为±0.3-±0.5dB,群时延±30-±50ns。
(2)SAWF矩形系数好,带外抑制可达40dB以上。
(3)插入损耗虽高达25-30dB,但可以用放大器补偿电平损失。
声表面波滤波器包括声表面波电视图像中频滤波器、电视伴音滤波器、电视频道残留边带滤波器。
声表面波滤波器的典型技术指标如下表所示。
声表面滤波器封装的分类插件型和贴片型(具体的图片如下图声表面波滤波器的应用及发展1 前言声表面波—SAW(SurfaceAcousticWave)就是在压电基片材料表面产生和传播、且振幅随深入基片材料的深度增加而迅速减少的弹性波。
SAW滤波器的基本结构是在具有压电特性的基片材料抛光面上制作两个声电换能器——叉指换能器(IDT)。
它采用半导体集成电路的平面工艺,在压电基片表面蒸镀一定厚度的铝膜,把设计好的两个IDT的掩膜图案,利用光刻方法沉积在基片表面,分别作为输入换能器和输出换能器。
其工作原理是输入换能器将电信号变成声信号,沿晶体表面传播,输出换能器再将接收到的声信号变成电信号输出。
2 SAW滤波器的特点SAW滤波器的主要特点是设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择性优良(可选频率范围为10MHz~3GHz)、输入输出阻抗误差小、传输损耗小、抗电磁干扰(EMI)性能好、可靠性高、制作的器件体小量轻,其体积、重量分别是陶瓷介质滤波器的1/40和1/30左右,且能实现多种复杂的功能。
声表面波简介声表面波技术是六十年代末期才发展起来的一门新兴科学技术,它是声学和电子学相结合的一门边缘学科。
由于声表面波的传播速度比电磁波慢十万倍,而且在它的传播路径上容易取样和进行处理,因此,用声表面波去模拟电子学的各种功能,能使电子器件实现超小型化和多功能化。
同时,由于声表面波器件在甚高频和超高频波段内以十分简单的方式提供了其它方法不易得到的信号处理功能,因此,声表面波技术在雷达、通信和电子对抗中得到了广泛的应用。
声表面波是沿物体表面传播的一种弹性波。
早在九十多年前,人们就对这种波进行了研究。
1885 年,瑞利根据对地震波的研究,从理论上阐明了在各向同性固体表面上弹性波的特性。
但由于当时的科学技术水平所限,这种弹性表面波一直没有得到实际上的应用。
直到六十年代,由于半导体平面工艺以及激光技术的发展,出现了大量人造压电材料为声表面波技术的发展提供了必要的物质和技术基础。
1949 年,美国贝尔电话实验室发现了LiNbO3单晶。
1964 年产发表了激发弹性表面波平面结构换邹器的专利。
特别应该指出的是,1965 年,怀特(R . M.white)和沃尔特默(F.W.voltmer )在应用物理杂志上发表了题为“一种新型表面波声-电换能器― 叉指换能器”的论文,从而取得了声表面波技术的关键性突破。
声表面波器件的基本结构和工作原理声表面波器件是在压电基片上制作两个声一电换能器―叉指换能器。
所谓叉指换能器,就是在压电基片表面上形成形状像两只手的手指交叉状的金属图案,它的作用是实现声一电换能。
声表面波器件的工作原理是,基片左端的换能器(输入换能器)通过逆压电效应将愉入的电信号转变成声信号,此声信号沿基片表面传播,最终由基片右边的换能器(输出换能器)将声信号转变成电信号输出。
整个声表面波器件的功能是通过对在压电基片上传播的声信号进行各种处理,并利用声一电换能器的待性来完成的。
声表面波技术有如下的特点:第一,声表面波具有极低的传播速度和极短的波长,它们各自比相应的电磁波的传播速度的波长小十万倍。
声表面波原理声表面波是一种沿着固体表面传播的超声波,它具有很强的穿透力和灵敏度,因此在材料的缺陷检测和应力分析中得到了广泛的应用。
声表面波原理是指声表面波在固体表面传播的物理机制,了解声表面波原理对于深入理解声表面波的特性和应用具有重要意义。
声表面波是一种横波,它沿着固体表面传播,其传播速度远远高于体波。
声表面波的传播速度与材料的弹性常数和密度有关,因此可以通过测量声表面波的传播速度来确定材料的力学性质。
声表面波的频率范围通常在MHz级别,因此可以应用于微小缺陷的检测和材料的微观结构分析。
声表面波的产生和接收通常通过压电材料实现。
压电材料具有压电效应,当施加外加电压时,会产生机械振动,从而产生声波。
而当声波传播到压电材料上时,又会产生电信号,从而实现声表面波的接收。
通过合理设计和选择压电材料,可以实现高效的声表面波的产生和接收。
声表面波的传播受到表面结构和材料性质的影响。
表面的粗糙度和涂层等对声表面波的传播会产生影响,因此需要对表面进行适当的处理和准备。
此外,材料的吸收和散射也会对声表面波的传播产生影响,因此需要对材料的声学特性进行充分的了解。
声表面波的应用包括材料的缺陷检测、应力分析、涂层测厚等领域。
在材料的缺陷检测中,声表面波可以检测出微小的裂纹和气泡等缺陷,对于保证材料的质量具有重要意义。
在应力分析中,声表面波可以通过测量不同方向上的传播速度来确定材料的应力状态,为工程结构的设计和安全评估提供重要依据。
在涂层测厚中,声表面波可以通过测量涂层上的声波传播时间来确定涂层的厚度,为涂层工艺的控制提供重要参考。
总的来说,声表面波原理是声表面波传播的物理机制,了解声表面波原理对于深入理解声表面波的特性和应用具有重要意义。
声表面波具有很强的穿透力和灵敏度,因此在材料的缺陷检测和应力分析中得到了广泛的应用。
声表面波的产生和接收通常通过压电材料实现,而其传播受到表面结构和材料性质的影响。
声表面波的应用包括材料的缺陷检测、应力分析、涂层测厚等领域,为工程技术和材料科学的发展提供了重要支持。
什么是SAWF(声表面滤波器),特点及用途(2009-08-01 10:44:52)转载标签:声表滤波器振荡器晶振杂谈什么是SAWF(声表面波滤波器)声表面波滤波器是利用石英、铌酸锂、钛酸钡晶体具有压电效应的性质做成的。
所谓压电效应,即是当晶体受到机械作用时,将产生与压力成正比的电场的现象。
具有压电效应的晶体,在受到电信号的作用时,也会产生弹性形变而发出机械波(声波),即可把电信号转为声信号。
由于这种声波只在晶体表面传播,故称为声表面波。
声表面波滤波器的英文缩写为SAWF,声表面波滤波器具有体积小,重量轻、性能可靠、不需要复杂调整。
在有线电视系统中实现邻频传输的关键器件。
声表面波滤波器的特点是:(1)频率响应平坦,不平坦度仅为±0.3-±0.5dB,群时延±30-±50ns。
(2)SAWF矩形系数好,带外抑制可达40dB以上。
(3)插入损耗虽高达25-30dB,但可以用放大器补偿电平损失。
声表面波滤波器包括声表面波电视图像中频滤波器、电视伴音滤波器、电视频道残留边带滤波器。
声表面波滤波器的典型技术指标如下表所示。
声表面滤波器封装的分类插件型和贴片型(具体的图片如下图声表面波滤波器的应用及发展1 前言声表面波—SAW(SurfaceAcousticWave)就是在压电基片材料表面产生和传播、且振幅随深入基片材料的深度增加而迅速减少的弹性波。
SAW滤波器的基本结构是在具有压电特性的基片材料抛光面上制作两个声电换能器——叉指换能器(IDT)。
它采用半导体集成电路的平面工艺,在压电基片表面蒸镀一定厚度的铝膜,把设计好的两个IDT的掩膜图案,利用光刻方法沉积在基片表面,分别作为输入换能器和输出换能器。
其工作原理是输入换能器将电信号变成声信号,沿晶体表面传播,输出换能器再将接收到的声信号变成电信号输出。
2 SAW滤波器的特点SAW滤波器的主要特点是设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择性优良(可选频率范围为10MHz~3GHz)、输入输出阻抗误差小、传输损耗小、抗电磁干扰(EMI)性能好、可靠性高、制作的器件体小量轻,其体积、重量分别是陶瓷介质滤波器的1/40和1/30左右,且能实现多种复杂的功能。
声表面波传感器的应用一.声表面波简介声表面波(SAW)技术是声学和电子学相结合而形成的一门新兴边缘学科。
在该技术的基础上,现已经成功地研制出声表面波带通滤波器、振荡器、表面波卷积器和传感器等声表面波器件。
由于声表面波器件具有体积小、可靠性高、一致性好以及设计灵活等优点,所以在雷达、通信等领域的研究得到了广泛的应用。
把声表面波技术应用于传感器技术领域在近十年来得到了很大的发展。
目前, 采用技术来研制力、加速度、温度、湿度、气体及电压等一系列新型传感器的工作逐渐成为传感器研究的一个热点。
二.声表面波传感器工作原理SAW传感器构成的识别系统由一个SAW传感器标签、一个带主动式天线的阅读器和一个信号后处理单元组成。
SAW 标签由传感器天线、压电模式、指换能器和经传感器体外编码的反射区组成。
传感器天线接收由远处阅读器发送来的访问电磁脉冲信号,通过叉指换能器转化为声表面波,遇到反射条后形成回波,回波通过叉指换能器重新转化为电磁波并再次通过天线发射出去。
这些回波信号形成了由晶体表面的反射条的数目和位置决定的脉冲序列,它类似于条形码图案,每个脉冲的时间延迟取决于SAW 传播速度。
信号后处理单元对脉冲延迟变进行估计,实时解调出识别码。
天线接收到询问信号后,由IDT将电信号转换为声波信号,声波信号撞击反射区。
反射区位置不同,个数不同,会产生不同的振幅和不同的相位变化。
三.声表面波传感器的应用(1) LiNb03的声表面波应用声表面波器件(SAW)的基本原理是在压电基体上通过光刻的方法制出由相互交叉的电极(一般为铝电极)组成的叉指电极(叉指换能器),利用基片的压电效应激发起沿着表面层传播的高频超声波,从而实现滤波、延时、脉冲压缩与扩展、卷积等多种电子学功能。
叉指换能器的基本构造如图,换能器的中心频率f0由声表面波的相速vs和电极的周期λ0确定:fo=vs/λ0,即声表面波器件的中心频率和声波的传播速率成正比,与电极的周期成反比,所以提高器件的中心频率主要在于如何提高声表面波的传播速率和缩短电极周期,又因为光刻技术的限制不可能无限制地缩短电极周期,因此当前制作高频声表面波器件的关键在于选择合适的基体材料和不断提高改进基体的晶体质量和提高压电性能,同时降低传输损耗。
声表面波谐振器
声表面波(SAW)谐振器
声表面波滤波器/SAW 声表面波谐振器(surface- acoustic- wave)。
SAW 声表面波元件主要作用原理是利用压电材料的压电特性,利用输入与输出换能器(Transducer)将电波的输入讯号转换成机械能,经过处理后,再把机械能转换成电的讯号,以达到过滤不必要的讯号及杂讯,提升收讯品质的目标。
被广泛应用在各种无线通讯系统、电视机、录放影机及全球卫星定位系统接收器上。
主要功用在于把杂讯滤掉,比传统的 LC 滤波器安装更简单、体积更小。
SAW 声表面波元件的制作可分为晶圆清洗、镀金属膜、上光阻、显影、蚀刻、去光阻、切割、封装、等相关步骤,具有可大量生产、损耗低及选择性高,适用于各型手机等特点。
有性能稳定、尺寸小的特点,主要应用于无线设备。
声表滤波器中的FL系列主要应用于蜂窝如移动通讯、接收器等。
FM系列有低损耗性、高强度的排他性以及对外部阻抗的低匹配性。
它可应用于汽车TPMS、远程无键进入(RKE)、安全系统和有源RFID标签。
声表面波简介声表面波技术是六十年代末期才发展起来的一门新兴科学技术,它是声学和电子学相结合的一门边缘学科。
由于声表面波的传播速度比电磁波慢十万倍,而且在它的传播路径上容易取样和进行处理,因此,用声表面波去模拟电子学的各种功能,能使电子器件实现超小型化和多功能化。
同时,由于声表面波器件在甚高频和超高频波段内以十分简单的方式提供了其它方法不易得到的信号处理功能,因此,声表面波技术在雷达、通信和电子对抗中得到了广泛的应用。
声表面波是沿物体表面传播的一种弹性波。
早在九十多年前,人们就对这种波进行了研究。
1885 年,瑞利根据对地震波的研究,从理论上阐明了在各向同性固体表面上弹性波的特性。
但由于当时的科学技术水平所限,这种弹性表面波一直没有得到实际上的应用。
直到六十年代,由于半导体平面工艺以及激光技术的发展,出现了大量人造压电材料为声表面波技术的发展提供了必要的物质和技术基础。
1949 年,美国贝尔电话实验室发现了LiNbO3单晶。
1964 年产发表了激发弹性表面波平面结构换邹器的专利。
特别应该指出的是,1965 年,怀特(R . M.white)和沃尔特默(F.W.voltmer )在应用物理杂志上发表了题为“一种新型表面波声-电换能器― 叉指换能器”的论文,从而取得了声表面波技术的关键性突破。
声表面波器件的基本结构和工作原理声表面波器件是在压电基片上制作两个声一电换能器―叉指换能器。
所谓叉指换能器,就是在压电基片表面上形成形状像两只手的手指交叉状的金属图案,它的作用是实现声一电换能。
声表面波器件的工作原理是,基片左端的换能器(输入换能器)通过逆压电效应将愉入的电信号转变成声信号,此声信号沿基片表面传播,最终由基片右边的换能器(输出换能器)将声信号转变成电信号输出。
整个声表面波器件的功能是通过对在压电基片上传播的声信号进行各种处理,并利用声一电换能器的待性来完成的。
声表面波技术有如下的特点:第一,声表面波具有极低的传播速度和极短的波长,它们各自比相应的电磁波的传播速度的波长小十万倍。
在VHF 和UHF 绳段内,电磁波器件的尺寸是与波长相比拟的。
同理,作为电磁器件的声学模拟声表面波器件,它的尺寸也是和信号的声波波长相比拟的。
因此,在同一频段上,声表面波器件的尺寸比相应电磁波器件的尺寸减小了很多,重量也随之大为减轻。
例如,用一公里长的微波传愉线所能得到的延迟,只需用传输路径为1 。
m 的声表面波延迟线即可完成。
这表声表面波技术能实现电子器件的超小型化。
第二,由于声表面波系沿固体表面传播,加上传播速度极慢,这使得时变信号在给定瞬时可以完全呈现在晶体基片表面上。
于是当信号在器件的输入和输出端之间行进时,就容易对信号进行取样和变换。
这就给声表面波器件以极大的灵活性,使它能以非常简单的方式去.完成其它技术难以完成或完成起来过于繁重的各种功能。
比如脉冲信号的压缩和展宽,编码和译码以及信号的相关和卷积。
一个实际例子是1976 年报道的一个长为一英寸的声表面波卷积器,它具有使两个任意模拟信号进行卷积的功能,而它所适应的带宽可达100MHz ,时带宽积可达一万。
这样一个卷积器可以代替由几个快速傅里叶变换(FFT )链作成的数字卷积器,即实际上可以代替一台专用卷积计算机。
此外,在很多情况下,声表面波器件的性能还远远超过了最好的电磁波器件所能达到的水平。
比如,用声表面波可以作成时间-带宽乘积大于五千的脉冲压缩滤波器,在UHF 频段内可以作成Q 值超过五万的谐振腔,以及可以作成带外抑制达70dB 、频率达1 低Hz 的带通滤波器。
第三,由于声表面波器件是在单晶材料上用半导体平面工艺制作的,所以它具有很好的一致性和重复性,易于大量生产,而且当使用某些单晶材料或复合材料时,声表面波器件具有极高的温度稳定性。
第四,声表面波器件的抗辐射能力强,动态范围很大,可达100dB 。
这是因为它利用的是晶体表面的弹性波而不涉及电子的迁移过程。
SAW滤波器的特点SAW滤波器的主要特点是设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择性优良(可选频率范围为10MHz~3GHz)、输入输出阻抗误差小、传输损耗小、抗电磁干扰(EMI)性能好、可靠性高、制作的器件体小量轻,其体积、重量分别是陶瓷介质滤波器的1/40和1/30左右,且能实现多种复杂的功能。
SAW滤波器的特征和优点,适应了现代通信系统设备及便携式电话轻薄短小化和高频化、数字化、高性能、高可靠等方面的要求。
其不足之处是所需基片材料的价格昂贵,对基片的定向、切割、研磨、抛光和制造工艺要求高。
受基片结晶工艺苛刻和制造精度要求严的影响,日本富士通、三洋电器、丰田等少数几家掌握压电基片生产技术的制造商垄断了世界SAW滤波器市场。
富士通公司控制了移动电话用小型射频SAW滤波器全球市场40%左右的份额,目前其年产量在1.5亿只以上,最小的产品尺寸已达到2.5mm×2mm,重22mg,集倒装式组件和专利谐振器型滤波器设计于一体,使滤波器性能突破性飞跃。
三洋电器公司是世界最大的视听家电用SAW滤波器制造商之一,为保持其价格上的优势,该公司在我国深圳设有组装厂,年产5000万只。
丰田公司主要生产移动通信用SAW滤波器,可提供30多种标准型产品,均适用于表面安装。
SAW滤波器的应用SAW滤波器在抑制电子信息设备高次谐波、镜像信息、发射漏泄信号以及各类寄生杂波干扰等方面起到良好的作用,可以实现任意所需精度的幅频和相频特性的滤波,这是其它滤波器难以完成的。
近年来国外已将SAW滤波器片式化,重量只有0.2g;另外,由于采用了新的晶体材料和最新的精细加工技术,使SAW 器件上使用上限频率提高到2.5GHz~3GHz。
从而促使SAW滤波器在抗EMI领域获得更广泛的应用。
SAW滤波器以极陡的过渡带使CATV的邻频传输得以实现,与隔频传输相比,频谱利用率提高了1倍。
电视接收机如果不采用SAW滤波器,不可能稳定可靠地工作。
事实上,早期SAW滤波器的主要应用领域就是以电视机为代表的视听家电产品,20世纪80年代末,由于电子信息特别是通信产业的高速发展,为SAW 滤波器提供了一个广阔的市场空间,致使其产量和需求呈直线上升趋势。
目前世界SAW滤波器的年产量在6亿只以上,其中移动通信等用小型化RFSAW滤波器就达4.3亿只。
移动通信系统的发射端(TX)和接收端(RS)必须经过滤波器滤波后才能发挥作用,由于其工作频段一般在800MHz~2GHz、带宽为17MHz~30MHz,故要求滤波器具有低插损、高阻带抑制和高镜像衰减、承受大功率、低成本、小型化等特点。
由于工作频段、体积和性能价格比等方面的优势,SAW滤波器在移动通信系统的应用中独占鳌头,这是压电陶瓷滤波器和单片晶体滤波器望尘莫及的。
在无线寻呼系统中,BP机接收到的RF信号需先经滤波再进行放大。
滤波器的电气特性直接影响到接收信号的灵敏度和精确度,早期生产的BP机一般采用LC滤波器,但由于LC滤波器的调试复杂,选择性和稳定性又较差,因此现在逐渐被SAW滤波器所取代。
随着Internet的迅猛发展,全球上网用户愈来愈多,但目前通过电话上网的最大缺点是带宽太窄(几十千赫),下载速度极慢,而CATV网络频率资源丰富,不少商家因此均在开发基于CATV网的宽带多媒体数据广播系统(如VOD等),通过CATV上网可使信息传输速度提高几十倍以上,在这些系统中都要用到高性能的SAW滤波器来解决邻频抑制问题。
可见,SAW滤波器的市场前景十分可观。
声表面波(SarfaceAcoustic Wave简写为SAW)就是在压电固体材料表面产生和传播的声波。
它是由英国物理学家瑞利 l 885年发现的,因此又称为瑞利波。
直到1965年怀特和沃尔默=:人提出了冲}激励和检测SAW 的叉指换能器(英文简写为rD'r),这一关键技术的突破,为SAW器件的发展奠定了基础。
到目前为止,世界各国已研制成了SAW 滤波罂、脉冲压缩滤波器、延迟线、谐振器、卷积器、放大器和振荡器等不同功能的100多种器件,广泛地用于移动通信、光纤通信和卫星通信等无线电电子技术各个领域,显示出它的强大优势。
SAW 滤波器丰要是由IDT和压电晶体、压电陶瓷等组成,采用半导体集成电路的平面工艺,在压电基片表面蒸镀一定厚度的铝膜,把设计定型的两个IDT的掩膜图案,利用光刻的方法,沉积在基片表面.一个作发射IDT,一个作接收IDT,IDT的特点有:(1)它的频率特性呈的变化规律(2)IDT激发的强度与叉指周期段数目N的l甲方成正比(3)IDT的指条宽度决定了换能器的工作频率,指条愈窄、频率愈高(4)IDT的特性与叉指条的几何结构密切相关,如改变它的叉指数日、声孔径重叠长度(按不同加权函数的规律变化)、指条宽度和隔等,可设计出具有不同频率特性的器件,以适应不同信号处理功能的需要,因而适应性和灵活性强;(5)在小信号下,IDT是线性器件,因而满足互易定理,即IDT作为发射时的特性与作为接收时的特性是相同的SAW 滤波器的特点有:(1)SAW 传播速度快,制作的器件尺寸小、重量轻;(2)设计灵活性天,能实现多种复杂的功能;(3)可选用的频率范围广(10MHz~3GHz).时间带宽乘积大,可选l 数量级;(4)动态范围可达100分见传输损耗小,其姆个波长的衰减比波导传输的电磁渡小二个数量级;(5)声波是质点振动,不涉及到电子迁移过程,在传辅过程中不受电磁波的影响,所以器件的可靠性高,抗辐射性能好。
SAW滤波器的发展趋势小型片式化SAW滤波器的小型片式化,是移动通信和其他便携式产品提出的基本要求。
为缩小SAW滤波器的体积,通常采取三方面的措施:一是优化设计器件用芯片,使其做得更小;二是改进器件的封装形式,现已由传统的圆形金属壳封装改为方形或长方形扁平金属封装或LCCC(无引线陶瓷芯片载体)表面贴装;三是将不同功能的SAW滤波器封装在一起构成组合型器件以减小PCB面积,如应用于1.9GHzPCS终端60MHz带宽的双频段SAW滤波器以及近来富士通公司开发的双带式(可支持模拟和数字两种模式)便携式手机用SAW滤波器,均装有两个滤波器。
高频、宽带化为适应电子整机高频、宽带化的要求,SAW滤波器也必须提高工作频率和拓展带宽。
研究表明,当压电基材选定之后,SAW滤波器的工作频率则由IDT电极条宽决定,IDT电极条愈窄,频率愈高。
采用0.35μm~0.2μm级的半导体微细加工工艺,可制作出2GHz~3GHz的SAW滤波器。
拓展SAW滤波器的带宽通常从优化设计IDT的电极结构入手。
如将IDT按串联和并联形式连接成梯形若干级联的结构,输入/输出直接实现连接,采用0.4μm以下的微细加工技术,就可制作出用于无线局域网(LAN)的2.5GHz梯形结构谐振式SAW滤波器,带宽达100MHz;在多重模式滤波器中,采用纵向连接的滤波器带宽要比横向耦合型滤波器大一些,因此被广泛用于蜂窝电话和寻呼机的RF滤波,而后者具有陡削的窄带特性,可用于个人数字蜂窝(PDC)和模拟电话的中频(IF)滤波。