几种典型的电流源结构和高精度基准电流源的设计
- 格式:pdf
- 大小:473.47 KB
- 文档页数:5
摘要基准电压源是模拟电路设计中广泛采用的一个关键的基本模块。
所谓基准电压源就是能提供高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,但是它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。
本文的目的便是设计一种高精度的CMOS带隙基准电压源。
本文首先介绍了基准电压源的国内外发展现状及趋势。
然后详细介绍了带隙基准电压源的基本结构及基本原理,并对不同的带隙基准源结构进行了比较。
接着对如何提高带隙基准的电源抑制比以及带隙基准电压源的温度补偿原理进行了分析,还总结了目前提高带隙基准电压源温度特性的各种方法。
在此基础上运用曲率校正、内部负反馈电路、RC滤波器、快速启动电路,设计出了具有良好的温度特性和高电源抑制比的带隙基准电压源电路。
最后应用HSPICE仿真工具对本文中设计的带隙基准电压源电路进行了完整模拟仿真并分析了结果。
模拟和仿真结果表明,电路实现了良好的温度特性和高电源抑制比,0℃~100℃温度范围内,基准电压温度系数大约为11.2ppm/℃,在1Hz到10MHz频率范围内平均电源抑制比(PSRR)可达到-80dB,启动时间为700s 。
关键词: 带隙基准电压源;温度系数;电源抑制比;AbstractV oltage reference is the vital basic module which is widely adopted in analog circuits. It can supply a voltage with high stability. The power supply, technics parameter rand temperature has lesser effete to this voltage. Its temperature stability and antinoise capability influence the precision and performance of the whole system. The purpose of this article is to design a high precision CMOS bandgap voltage reference.In this article, the present situation and developmental trend of voltage reference studies both at home and abroad are presented. The structure and principle of voltage reference are analyzed in detail, and then the different structures of bandgap voltage reference are compared. By analyzing the power supply rejection ratio (PSRR) and the principle of temperature compensation, the method of improving the temperature characteristic is summarized. The design of a bandgap voltage reference circuit with high power supply rejection ratio and good temperature characteristic is completed by applying curvature emendation, inside negative feedback technology, RC filter and fast start-up circuit. At last, the circuits have been simulated with HSPICE simulation tools.The simulation results show that,the circuit with good temperature characteristic and high power supply rejection ratio, and at the temperature range of 0℃to 100℃, the temperature coefficient(TC) is about 11.2ppm/℃. In the frequency range of 1Hz to 10MHz, the average power supply rejection ratio is more than -80dB and it has a turn-on time less than 700s .Key Words: bandgap voltage reference; temperature coefficient; power supply rejection ratio;目录1. 绪论 (1)1.1 国内外研究现状与发展趋势 (1)1.2 课题研究的目的意义 (2)1.3 本文的主要内容 (2)2. 基准电压源的原理与电路 (3)2.1 基准电压源的结构 (3)2.1.1直接采用电阻和管分压的基准电压源 (3)2.1.2有源器件与电阻串联组成的基准电压源 (4)2.1.3带隙基准电压源 (6)2.2 带隙基准电压源的基本原理 (6)2.2.1与绝对温度成正比的电压 (7)2.2.2负温度系数电压V BE (7)2.3 带隙基准源的几种结构 (8)2.4 V BE的温度特性 (11)2.5 带隙基准源的曲率校正方法 (13)2.5.1线性补偿 (13)2.5.2高阶补偿 (13)本章小结 (17)3. 高精度CMOS带隙基准源的电路设计与仿真 (18)3.1 高精度CMOS带隙基准电压源设计思路 (18)3.2 核心电路 (19)3.3 提高电源抑制比电路 (20)3.3.1负反馈回路 (21)3.3.2 RC滤波器 (22)3.4 快速启动电路及快速启动电路的控制电路 (23)3.4.1快速启动电路的控制电路 (23)3.4.2快速启动电路 (24)3.5 CMOS带隙基准电压源的温度补偿原理 (24)3.6 高精度CMOS带隙基准电压源的电路仿真 (27)3.6.1仿真工具的介绍 (27)3.6.2 核心电路的仿真结果 (27)3.6.3 电源抑制比电路的仿真结果 (28)3.6.4 快速启动电路的仿真结果 (28)3.6.5 整体电路的仿真结果 (29)本章小结 (30)结论 (32)致谢 (33)参考文献 (34)1.绪论基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。
ADC中高精度CMOS基准电源的设计4青岛展芯微电子科技有限公司摘要:本论文针对ADC中高精度CMOS基准电源的设计进行研究。
通过对现有研究进行综述,并提出针对高精度CMOS基准电源的设计思路。
论文详细介绍了电路的拓扑结构、器件选型及布局等方面的实现。
借助仿真软件进行系统仿真,并对包括电压稳定度、温度稳定度、功耗、噪声等指标的仿真结果进行分析。
关键词:ADC;CMOS基准电源;高精度;电路设计;仿真分析一、研究背景和意义1.CMOS基准电源的重要性在模拟数字转换器(ADC)电路中,基准电源是确保ADC精度和性能的关键因素之一。
基准电源提供了稳定的参考电平,用来确定模拟电压与数字码之间的对应关系。
CMOS基准电源由于其低功耗、高精度和低噪声等优点,成为ADC设计中不可或缺的组成部分。
首先,CMOS基准电源具有低功耗的特性,可以降低整个系统的能耗。
这对于需要长时间运行或电池供电的应用非常重要,可以延长设备的使用寿命,并降低维护成本。
其次,CMOS基准电源具有高精度的特点,能够提供稳定且准确的参考电平。
这对于ADC的精准采样和转换是至关重要的。
高精度的基准电源可以减小ADC的非线性和偏差,从而提高转换的准确性和重现性。
此外,CMOS基准电源还具有低噪声的特性,能够减少电源的干扰和噪声对ADC的影响。
低噪声的基准电源可以提高ADC的信噪比和动态范围,保证输入信号的清晰度和准确性。
2.高精度基准电源在ADC中应用的意义高精度基准电源能够提供稳定可靠的参考电平。
由于信号的转换是基于基准电平进行的,如果基准电源不稳定,就会导致ADC输出的数据存在偏差或误差。
而高精度基准电源通过提供稳定的参考电平,确保了ADC在采样和转换过程中的准确性。
高精度基准电源能够提高ADC的采样精度。
采样精度是指ADC对输入信号进行离散化时的精度。
通过提供高精度的基准电源,ADC能够更准确地对输入信号进行采样和量化,从而提高数据的精确度和分辨率。
第九届ICEMI国际电子测量与仪器会议ICEMI'2009一种高精度电流源的设计于鹏王彦超夏少军哈尔滨工业大学92号西大直街哈尔滨,150001,中国电子邮箱:摘要——电流源是电气测量和控制系统的关键部件之一。
然而,由温度漂移和其它干扰引入的噪声,使其成为系统误差的重要来源。
为了制定一个精度高、稳定性好的电流源,本文提出一种基于Howland的电压电流转换(V/I)电路。
电流源所使用的DSP RS-232接口是完全可编程的。
此外,还有一个采样电路,利用抽样结果,使校准进一步减少电流源输出误差。
实验结果表明,在140欧姆的恒定负载下,电流输出范围为-50mA至50mA,误差小于3 μA,并且具有较低的温度漂移和较小波形失真度。
这为设计一种精确度高、输出电流变化范围稳定的电流源提供了一种有效的方法。
关键词——电流源;Howland;校准一、引言随着科技的进步,精密的电流源在自动测试、测量以及各种应用中起着日益重要的作用。
然而,要满足高精确的目标,然而,要满足高精度的目标,并且保持输出稳定,这一点随温度的升高而变得越来越困难。
在所有的应用中,目前大部分测量领域中使用的精度高和输出稳定的电流源,都是电压控制型电流源(VCCS)。
由于超精密运算放大器的运用,使得VCCS的电流输出精度高,且稳定。
但是,电流源输出范围往往有限,而且由温度和非线性引入的误差也是一个很大的难题。
图1显示的一个电路,它也被称为Howland模型,采用电阻匹配实现反馈回路,从而使负载两端电流输出稳定[3]。
它采用了超精密运算放大器OP177生成精确和稳定的电流输出。
尽管OP177在精确度性能方面远胜其它任何运算放大器,但其输出范围只局限于-22mA〜32mA[4]。
图1——Howland电流源为了更好地解决这一难题,精度高、宽范围和输出稳定的电流源的设计便自然而然的被提出来。
由D / A模数转换器产生一个电压,然后将电压转换为电流。
模拟集成电路课程设计——实验报告实验项目:50nA高精度基准电流源设计指导老师:组别:第组年级专业:2009级微电子学学号:姓名:同组组员:实验地点:实验日期:第2周—第10周50nA高精度基准电流源设计第一章引言基准电流源是指在模拟集成电路中用来作为其他电路的电流基准的高精度、低温度系数的电流源。
电流源作为模拟集成电路的关键电路单元,广泛用于运算放大器、A/D转换器、D/A转换器中。
偏置电流源的设计时基于一个已经存在的标准参考电流源的复制,然后输出给系统的其他模块。
因此,电流源的精度直接影响到整个系统的精度和稳定性。
基准电流源是模拟电路所必不可少的基本部件,高性能的模拟电路必须有高质量、高稳定性的电流和电压偏置电压来支撑,它的性能会直接影响电路的功耗、电源抑制比、开环增益以及温度等特性。
本次课设是设计50nA高精度基准电流源。
第二章基准电流源的工作原理基准电流源的一个基本要求是输出基准电流不随电流电压V DD的变化而变化。
为了得出一个对V DD不敏感的解决方法,要求基准电流I REF与输出电流I OUT 镜像,也就是说,I OUT是I REF的一个复制。
图2-1所示就是一种电流复制的电路实现。
其工作原理如下:图2-1 基准电流源的工作原理M1与M2构成一对电流镜结构,因为M1与M2具有相同的尺寸,所以I REF =I OUT 。
但是由于电压V 的作用,M3与M4的V GS 不相等,我们假设M4的宽长比是M3的K 倍,由于V GS3=V GS4+V 即34TH TH V V V =+如果忽略体效应的影响,可得V TH3=V TH4从而V -= 因此22(/)2(1O U T V nC ox WL n I =-μ正如所希望的,电流与电源电压V DD 无关,但仍旧是工艺和温度的函数。
为了消除输出基准电流对温度的影响,我们可以根据电压差V 产生的不同方式,分别采取不同的温度补偿方法。
第三章 基准电流源的性能参数3.1 温漂系数基准电流源的一个重要指标是电流基准在宽温度范围下的工作稳定程度。
几种简单的恒流源电路恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。
1.由7805组成的恒流电路,电路图如下图1所示:电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以这个电路在精度要求有些高的场合不适用。
2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R<Vref=1.25),Iadj的输出电流是微安级的所以相对于Io可以忽略不计,由此可见其恒流效果较好。
3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25>,他的恒流会更好,另外他是低压差稳压IC。
摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。
设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。
人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。
关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻一、方案论证根据题目要求,下面对整个系统的方案进行论证。
方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。
当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。
BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。
当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。
图 1.1 采用开关电源的恒流源优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。
几种电压基准源的比较分析罗先才无锡华润矽科微电子有限公司摘要:电压基准根据参考源的不同可分为对正电源基准源、对负电源基准源、对地基准源和浮动基准源四种;根据电压的不同可分为1V低电源基准、1.25V基准、2.5V基准、高压基准和任意电压基准;根据使用的核心补偿器件不同又可分为传统带隙基准、耗尽增强型基准、齐纳二极管基准等几种结构。
在电路设计过程中,如何根据工艺条件和电路需要自由地选择合适的基准源电路,是电路得以快速设计成功的基石。
本文通过分析比较各种结构的实现原理、优缺点以及改进措施,使这一选择变得更加的清晰和简明。
关键词:带隙基准,齐纳二极管,耗尽型MOS场效应管,低电源带隙基准,浮动基准1引言在模拟或数模混合集成电路设计领域中,高性能电压基准源设计是关键技术之一,电压基准源为电路提供高精度基准电压或由其转化为高精度电流,为电路提供稳定而又精确的偏置。
由于工艺离散性的存在,如何选择合适的基准源结构,降低温度漂移,提高电路精度、保证批量制造IC时带隙基准电压源精度的一致性,是进一步改进基准电压源设计的重要课题。
因此需要在工艺条件有限的情况下,更多地从电路设计结构选择上着手,并在所选结构上加以改进以设计出满足要求的基准源电路。
2传统带隙基准2.1经典带隙结构及其改进传统带隙基准源是用一个正温漂得UT 和一个负温漂的UBE求和得到的一个零温漂的参考电压。
其基本原理如下左图所示,三极管发射结压降UBE在室温下的温度系数为-2.2mv/.C,而热电压UT(k.T/q)的温度系数为0.085mV/.C,如图中,将这两个参数求和得:UREF =KUT+UBE在室温条件下上式对温度T求微分,并使这一微分结果为零,即可解出K得理论设计值,最后使得输出电压UREF理论上在室温附件基本零温漂。
其图中的PNP通常是Nwell工艺中的寄生P+/NW/Psub三极管,设计出来的基准通常是相对GND的稳定电压。
在Pwell工艺中寄生三极管则是N+/PW/Nsub,下面的示意图正好上下颠倒过来即可,这样设计出来的基准也正好是相对电源的稳定电压。
MOSFET电流源电路设计MOSFET(金属氧化物半导体场效应晶体管)作为一种重要的电子器件,在电路设计中发挥着关键作用。
本文将着重探讨MOSFET电流源电路的设计原理和方法。
一、MOSFET电流源电路概述MOSFET电流源电路是一种常用的电子电路,用于稳定输出电流。
它利用MOSFET的特性来实现输入电压变化对输出电流的影响降至最低,从而提高电路的稳定性和性能。
二、MOSFET电流源电路的设计原理MOSFET电流源电路的设计原理主要包括两个方面:负反馈和源极偏置。
负反馈通过连接反馈电阻来调节输出电流,使其稳定在设定值。
源极偏置则通过适当的电压偏置来保证MOSFET处于正常工作区域。
三、MOSFET电流源电路的设计步骤1. 选择合适的MOSFET。
根据设计需求选择适合的MOSFET型号,考虑最大电流、最大功率、漏极-源极电压等参数。
2. 确定输出电流。
根据设计要求确定所需输出电流大小,并计算得到需要的电阻数值。
3. 确定电压源。
根据MOSFET的工作特性和输出电流大小,选择合适的电压源并进行连接。
4. 进行仿真和调试。
利用电子设计软件进行仿真分析,根据仿真结果调整电路参数,直到达到设计要求。
四、MOSFET电流源电路设计的注意事项1. 保证电路稳定性。
在设计过程中要注意保证电路的稳定性和可靠性,避免出现电压漂移等问题。
2. 合理布局电路。
在实际布局中要合理放置元件,减小干扰和回路长度,提高电路的工作效率。
3. 注意集热和散热。
MOSFET在工作过程中会产生一定热量,需要注意良好的散热,以免影响电路性能。
五、结论MOSFET电流源电路是一种常用的电子电路设计,通过合理的设计原理和步骤,可以实现稳定的输出电流。
在实际设计中要注意选型、电路布局和散热等问题,以确保电路的正常工作和性能。
通过本文的介绍,相信读者对MOSFET电流源电路的设计有了更深入的了解,希望能够对读者在实际工程设计中有所帮助。
一种高精度的电流反馈型带隙基准源的设计作者:李精文刘军蒋国平来源:《现代电子技术》2008年第02期摘要:采用0.5 μm,N阱CMOS工艺设计一种高精度带隙基准电压源,基准电压为1.245 V,在0~70 ℃内温度系数仅为12.5 ppm/℃,工作电压为2.8~8 V,具有非常高的电源抑制比(PSRR),低频下高达107 dB。
此电路为电流反馈型基准源,能够产生自偏置电流,使电路建立稳定工作点。
其结构能有效减小运算放大器的失调电压对基准输出的影响。
关键词:带隙基准;PSRR;温度系数;反馈中图分类号:TN710 文献标识码:B 文章编号:1004-373X(2008)02-061-04(Dalian University of TechnAbstract:This paper describes the design of a high precision bandgap reference,implemented in 0.5 μm n-well CMOS technology.The circuit generates a reference voltage of 1.245 V and has a temperature coefficient of 12.5 ppm/℃ between 0 and 70 ℃.It can operate with supply voltages between 2.8 V and 8 V.It has a PSRR of 107 dB under low frequency.This circuit works in a current feedback mode,and it generates its own reference current,resulting in a stable operation.ThearcKeywords:1 引言无论在数字电路或模拟电路中,基准电压源对电路整体性能的影响都是十分重要的。
高精度恒流源电路图大全(十款高精度恒流源电路设计原理图详解)高精度恒流源电路图(一)采用集成运放构成的线性恒流源电路构成如图所示,两个运放(一片324)构成比较放大环节,BG1、BG2三极管构成调整环节,RL为负载电阻,RS为取样电阻,RW为电路提供基准电压。
工作原理:如果由于电源波动使Uin降低,从而使负载电流减小时,则取样电压US必然减小,从而使取样电压与基准电压的差值(US-Uref)必然减小。
由于UIA为反相放大器,因此其输出电压Ub=(R5/R4)×Ua必然升高,从而通过调整环节使US升高恢复到原来的稳定值,保证了US的电压稳定,从而使电流稳定。
当Uin升高时,原理与前类同,电路通过闭环反馈系统使US下降到原来的稳定值,从而使电流恒定。
调整RW,则改变Uref,可使电流值在0~4A之间连续可调。
高精度恒流源电路图(二)一款高精度恒流源电路如下图所示,在恒流电路与负载之间增设接地回路,这样在负载变化时电流能快速恢复稳定。
A1和VT1构成电压/电流转换电路,可将地电平信号转换为后级恒流电路所需要的+15V电平,A2、VT2、VT3等构成标准的恒流电路,R1=R2,则I1=I2。
VT5的基极由稳压二极管VS1提供+5V的稳定电压,则VT5的发射极电压不受负载变化的影响,保持为+5.7V。
另外,由于共基极电路的发射极输入阻抗低,因此A2与VT2构成的恒流源不受负载变化的影响,处于理想的工作状态。
将下图所示的恒流源与开关电路组合,便可得到一个高精度脉冲发生电路,如图5所示。
多个这种电路可构成高精度D/A转换器。
VD2和VD3构成电平移动电路,VD1和VD4是肖特基二极管,构成开关电路。
高精度恒流源电路图(三)采用开关电源的开关恒流源电路构成如图2.3.2所示。
BG1为开关管,BG2为驱动管,RL为负载电阻,RS为取样电阻,SG3524为脉宽调制控制器,L1、E2、E3、E4为储能元件,RW提供基准电压Uref。