200x年中考复习专题四(各种题型的解题方法)
- 格式:ppt
- 大小:1.12 MB
- 文档页数:72
【中考复习】中考数学各类题型的解法指导
中考
数学选择题的解法技巧
1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,
自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题
的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进
行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类
问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这
些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特
别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的中考题中常
被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、
试误验证、总结、归纳等过程使问题得解。
感谢您的阅读,祝您生活愉快。
中考数学压轴题的常见类型与解题思路中考数学压轴题是中考数学试卷中的难点题目,通常是在考察学生对数学知识的深层理解和运用能力。
在中考数学压轴题中,常见的类型包括填空题、选择题、解答题等,涉及的知识点也广泛,如代数、几何、概率统计等。
下面将分别介绍中考数学压轴题的常见类型与解题思路。
一、填空题中考数学压轴题中的填空题往往考察学生对知识点的深层理解和运用能力。
填空题通常涉及代数、几何、概率统计等多个知识点,要求学生根据题目所给信息进行逻辑推理和计算,最终得出正确答案。
解题思路:1.审题:仔细阅读题目,明确要求填入的数据或公式,搞清题意。
2.列出已知条件:把题目中所给的信息一一列出,明确已知条件。
3.推理和计算:根据已知条件进行推理和计算,利用相关的数学公式或方法解题。
4.结果验证:算出结果后,需对答案进行验证,确保填入的数值或公式正确无误。
二、选择题中考数学压轴题中的选择题通常考察学生对知识点的掌握程度和运用能力。
选择题类型多样,既有单项选择题,也有不定项选择题,要求学生在有限的时间内作出正确选择。
解题思路:1.通读选项:先通读全部选项,了解每个选项的意思和含义。
2.分析题目:根据题目的要求,分析所给信息并确定相关知识点。
3.排除干扰:排除明显错误或无关的选项,缩小答案范围。
4.明确答案:通过对选项的排除及相关知识点的应用,确定最终答案。
三、解答题解题思路:1.理清思路:首先要理清解题思路,明确题目要求和解题方法。
2.列出所需步骤:根据题目要求,列出解题所需的步骤和计算方法。
3.细致计算:根据题目所给信息,进行细致计算和逻辑推理,得出正确答案。
4.解题亮点:在解答过程中,可适当突出解题亮点,以突显解题思路和方法。
总结而言,中考数学压轴题的常见类型包括填空题、选择题和解答题。
在解题过程中,学生需要通过仔细审题、列出已知条件、推理和计算、结果验证等步骤来解决填空题;而在选择题中,要通过通读选项、分析题目、排除干扰、明确答案等步骤来进行解答,而解答题则需要通过理清思路、列出所需步骤、细致计算、解题亮点等步骤来解决问题。
中考数学压轴题的常见类型与解题思路
中考数学压轴题是考试中最难的题型,涉及的内容相对较为复杂,解题思路也较为繁琐。
以下是一些中考数学压轴题的常见类型和解题思路。
常见类型一:应用题
应用题是中考数学压轴题中最常见的类型之一。
这类题目通常涉及实际问题,需要运用数学知识进行分析和计算。
解题思路:
1. 仔细阅读题目,理解问题的背景和要求。
2. 分析问题,确定解题的核心思路和步骤。
3. 运用所学的数学知识和技巧,进行计算和推理。
4. 对结果进行合理性检验,确保解答的准确性和完整性。
解题思路:
1. 仔细观察图形,寻找图形的性质和特点。
2. 运用几何性质和定理,进行推理和证明。
3. 利用几何性质,绘制等边、等腰和直角三角形等特殊图形进行推理和计算。
4. 运用实际问题,将几何题转化为代数问题,从而更好地解决问题。
总结:
中考数学压轴题的常见类型包括应用题、几何题、代数题和概率题等。
解题时需要仔细阅读题目、分析问题、运用所学的数学知识和技巧进行计算和推理,并对结果进行合理性检验。
通过充分的准备和练习,掌握解题的方法和技巧,就能够更好地应对中考数学压轴题。
中考数学复习技巧掌握解题思路的四个步骤数学作为一门重要的学科,对于中考来说是必考的科目之一。
想要在考试中取得好成绩,不仅需要熟悉各种数学知识点,还需要掌握解题思路。
本文将介绍中考数学复习技巧,帮助同学们掌握解题的四个步骤。
第一步:理解题意,分析问题在解题之前,首先要仔细阅读题目,充分理解题目的要求。
在理解题意的基础上,我们要学会分析问题。
具体来说,可以采用以下方法:1. 用自己的话复述题目:通过自己的语言描述题目,可以更好地理解题目的意思,避免出现理解偏差。
2. 提取关键信息:在题目中找出与解题有关的关键信息,例如已知条件、要求等。
将这些关键信息提取出来,可以为后续解题提供指导。
3. 拆解分析:对于较长或复杂的问题,可以将问题拆解成几个较小的部分,分别分析,然后集中思路进行综合。
通过以上步骤,我们可以更清晰地把握问题,为解题提供方向和思路。
第二步:寻找解题方法和策略在理解问题的基础上,我们需要针对具体问题寻找解题方法和策略。
不同类型的数学题目可能有不同的解题思路,因此需要根据题目的特点选择合适的方法。
以下是一些常见的解题方法和策略:1. 运用公式和定理:数学中有很多公式和定理,例如勾股定理、平均值不等式等,我们需要在解题中灵活运用这些工具。
2. 归纳法和递推法:对于一些数列、图形等问题,可以通过归纳法和递推法找出规律,从而解决问题。
3. 分析比较法:有时需要通过比较不同对象的特点来解决问题,例如比较两个数的大小、比较两个图形的面积等。
在选择解题方法和策略时,需要结合具体题目的要求和限制条件,找出适合的方法来解决问题。
第三步:进行具体计算和推导在确定解题方法和策略后,我们需要进行具体计算和推导。
具体计算步骤的要求可以根据题目的具体要求进行调整。
有些题目需要进行多步计算和推导,而有些题目则可以直接得出结果。
在进行计算和推导的过程中,需要注意计算的准确性和逻辑的清晰性。
要准确运用所学的数学知识,注意运算的顺序和精确度。
中考数学复习考点知识与题型专题讲义 04 用分式方程解决问题(提高篇)1.从贵阳到广州,乘特快列车的行程约为1800km ,高铁开通后,高铁列车的行程约为900km ,运行时间比特快列车所用的时间减少了16h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.【分析】设特快列车平均速度为xkm /h ,则高铁列车平均速度为2.5xkm /h ,根据高铁列车运行900km 比特快列车运行1800km 的时间减少了16h ,列方程求解.【解答】解:设特快列车的平均速度为x km /h ,根据题意可列出方程为1800x =9002.5x +16,解得x =90.检验:当x =90时,2.5x ≠0.所以x =90是方程的解.答:特快列车的平均速度为90km /h .【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.2.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【分析】(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,根据所购数量是第一批数量的2倍,但单价贵了1元,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题.【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.【点评】本题考查分式方程的应用,解题的关键是学会设未知数,寻找等量关系,注意解分式方程必须检验.3.母亲节前夕,某花店购进康乃馨和百合两种鲜花,销售过程中发现康乃馨比百合销量大,店主决定将百合每枝降价2元促销,降价后100元可购买百合的数量是原来可购买百合数量的54倍. (1)试问:降价后每枝百合的售价是多少元?(2)根掂销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,百合的进价是5元/枝.试问至少需要购进多少枝百合?【分析】(1)可设降价后每枝百合的售价是x 元,根据等量关系:降价后100元可购买百合的数量是原来可购买百合数量的54倍,列出方程求解即可; (2)可设购进百合y 枝,根据不等量关系:购进康乃馨的钱数+购进百合的钱数≤1000元,列出不等式求解即可.【解答】解:(1)设降价后每枝百合的售价是x元,依题意有100 x =100x+2×54,解得:x=8.经检验,x=8是原方程的解.答:降价后每枝百合的售价是8元.(2)设购进百合y枝,依题意有6(180﹣y)+5y≤1000,解得:y≥80.答:至少购进百合80枝.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.4.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用2000元购进医用口罩若干个,第二次又用2000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个3元的价格出售,卖出了a个后购进第二批同款罩,由于进价提高了,药店将口罩的售价也提升至每个3.5元继续销售卖出了b个后,两次共收入4800元.因当地医院医疗物资紧缺,药店决定将剩余的口罩全部捐赠给医院.请问药店捐赠口罩至少有多少个?【分析】(1)设第一次购进医用口罩的数量为x个,根据题意给出的等量关系即可求出答案.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a+3.5b=4800,所以a=1600−76b,根据条件可求出b 的最小值,从而可求出药店捐赠的口罩至少有多少个.【解答】解:(1)设第一次购进医用口罩的数量为x 个,∴第二次购进医用口罩的数量为(x ﹣200)个,∴由题意可知:2000x−200=1.25×2000x ,解得:x =1000,经检验,x =1000是原方程的解,且符合题意,∴x ﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a +3.5b =4800,∴a =1600−76b ,∴1800﹣a ﹣b =1800﹣(1600−76b )﹣b =200+b 6,∵a ≤1000,∴1600−76b ≤1000,∴b ≥51427, ∵a ,b 是整数,∴b 是6的倍数,∴b 的最小值是516,∴1800﹣a ﹣b ≥286,答:药店捐赠口罩至少有286个.【点评】本题考查分式方程,解题的关键是正确找出等量关系,本题属于中等题型.5.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4:3,求贩毒车和警车的速度.【分析】设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据警车与贩毒车之间的时间关系建立方程求出其解,即可得出结果.【解答】解:设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据题意得:3603x −3604x =1.25,解得:x =24,经检验,x =24是原方程的根,∴原方程的根为x =24.∴警车的速度为:4×24=96(km /h ),贩毒车的速度为:3×=72(km /h ).答:警车的速度为96km /h ,贩毒车的速度为72km /h .【点评】本题是一道行程问题的运用题,考查了列分式方程解实际问题的运用、分式方程的解法;根据题意列出方程是解决问题的关键,注意检验.6.某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2倍,用1200元单独购买甲图书比用1200元单独购买乙图书要少25本.(1)甲、乙两种图书每本价格分别是多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍少5本,且用于购买甲、乙两种图书的总经费不超过1800元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用1200元单独购买甲图书比用1200元单独购买乙图书要少25本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x 元,则甲图书每本价格是2x 元,根据题意可得:1200x −12002x =25,解得:x =24,经检验得:x =24是原方程的根,则2x =48,答:乙图书每本价格为24元,则甲图书每本价格是48元;(2)设购买甲图书本数为a 本,则购买乙图书的本数为:2a ﹣5,故48a +24(2a ﹣5)≤1800,解得:a ≤20,故2a ﹣5≤35,答:该图书馆最多可以购买35本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.7.某工厂准备今年春季开工前美化厂区,计划对面积为2000m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据“在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天”,即可得出关于x 的分式方程,解之并检验后,即可得出结论;(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y 的取值范围,取其内的最小正整数即可.【解答】解:(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据题意得:480x −4802x =6,解得:x =40.经检验,x =40是原方程的解,∴2x =80.答:甲工程队每天能完成绿化的面积为80m 2,乙工程队每天能完成绿化的面积为40m 2.(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据题意得:0.4y +0.5(50﹣2y )≤10,解得:y ≥25.答:至少应安排甲队工作25天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x 的分式方程;(2)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y 的一元一次不等式.8.某企业在甲地一工厂(简称甲厂)生产某产品,2017年的年产量过百万,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产98件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客喜欢,2019年该企业在乙地建立新厂(简称乙厂)生产该产品,乙厂的日均生产的该产品数是甲厂2017年的3倍还要多5件,同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n =12:17,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.【分析】(1)设2017年甲厂日均生产该产品x 件,根据题意列出方程即可求出答案.(2)设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,由题意可知 m n =100p 152q ,求出p 与q 的比值即可求出答案.【解答】解:(1)设2017年甲厂日均生产该产品x 件,则改造后日均生产该产品(2x +2)件,∵2002x+2=98x ,解得:x =49,经检验,x =49是原分式方程的解,答:2017年甲厂日均生产该产品49件;(2)由题意可知:2019年乙厂日均生产是152件,2018年甲厂日均生产100件,设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,∴m n=100p 152q =1217, ∴p q =456425,故乙厂先完成.【点评】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.9.为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织总共需要购买2000件物资,请问该爱心组织如何购买这2000件物资,才能使得购买资金最少?【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,根据“灾区对甲种物资的需求量不少于乙种物资的1.5倍”列出不等式.【解答】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,350x+10=300x,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲每件70元,乙每件60元;(2)设甲种物品件数为m件,根据题意得:m≥1.5(2000﹣m).解得:m≥1200.故m最小值为1200,2000﹣m=800.此时:70×1200+60×800=132000(元).答:甲购入1200件,乙购入800件,最少需要132000元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.10.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,假设投入资金全部用完,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种配件最多可购买多少件?【分析】(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据数量=总价÷单价结合用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买甲种配件m件,购买乙种配件n件,根据总价=单价×购买数量,即可得出m=50﹣1.5n,再结合甲种配件要比乙种配件至少要多11件,即可得出关于n的一元一次不等式,解之结合m,n均为非负整数可得出n的最大值.【解答】解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:16x−0.4=24x,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m +1.2n =40,∴m =50﹣1.5n .∵m ﹣n ≥25,∴50﹣1.5n ﹣n ≥25,∴n ≤10,∵m ,n 均为非负整数,∴n 的最大值为10.答:乙种配件最多可购买10件.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.11.某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,根据工作时间=工作总量÷工作效率结合在独立完成面积为360平方米区域的绿化时甲队比乙队少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,根据总费用=700×甲队工作时间+500×乙队工作时间结合这次的绿化总费用不超过14500元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,依题意,得:360x −3601.5x =3,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴1.5x =60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,依题意,得:700m +500×1200−60m 40≤14500, 解得:m ≥10.所以m 最小值是10.答:至少应安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.12.列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的56.求乘坐甲巴士从香港口岸人工岛出发到珠海洪湾需要多长时间.【分析】设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时,则乙巴士的行驶时间需要65x 小时,根据“甲巴士平均每小时比乙巴士多行驶10千米”列出方程并解答.【解答】解:设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时, 则乙巴士的行驶时间需要65x 小时, 根据题意得:55x =5565x +10 解得:x =1112经检验,x =1112是原分式方程的解且符合题意 答:甲巴士从香港口岸人工岛出发到珠海洪湾需要1112小时.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.13.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:90 m =100m+1,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同,此时,购买A款汽车6辆,B款汽车9辆对公司有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.14.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)根据盈利=总售价﹣总进价,进而求出即可.【解答】解:(1)设第一批购进书包的单价为x 元.依题意,得2000x ×3=6300x+4,整理,得20(x +4)=21x ,解得x =80.检验:当 x =80时,x (x +4)≠0,∴x =80是原分式方程的解.答:第一批购进书包的单价为80元,(2)200080×(80−68)+630084×(84−70)=300+1050=1350答:商店共盈利1350元.【点评】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系.15.“阅读陪伴成长,书香润泽人生.”某校为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同.(1)求每本A类图书和每本B类图书的价格各为多少元?(2)根据学校实际情况,需从书店一次性购买A、B两类图书共300册,购买时得知:一次性购买A、B两类图书超过100册时,A类图书九折优惠(B类图书按原价销售),若该校此次用于购买A、B两类图书的总费用不超过5100元,那么最多可以购买多少本A类图书?【分析】(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元.依据“用1200元购进的A类图书与用900元购进的B类图书册数相同”列出方程并解答;(2)设该校A类图书y本,则根据题中的已知条件“该校此次用于购买A、B两类图书的总费用不超过5100元”列出不等式,并解答.【解答】解:(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元,根据题意可得:1200 x =900x−5,解得:x=20,经检验x=20是方程的解,所以x﹣5=20﹣5=15,答:每本A类图书的价格是20元,每本B类图书的价格是15元;(2)设该校A类图书y本,则B类图书(300﹣y),根据题意可得:20×90%y+15×(300﹣y)≤5100,解得:y≤200,答:最多可以购买200本A类图书.【点评】本题考查了分式方程的应用、一元一次不等式的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.16.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,则甲队的工效为13x ,乙队的工效为1x,由已知得:甲队工作了30天,乙队工作了10天完成,列方程得:303x +10x=1,解出即可,要检验;(2)根据(1)中所求得出甲、乙合作需要的天数,进而求出总费用,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:303x +10x=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(120+160)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.【点评】本题考查了分式方程的应用,属于工程问题,明确三个量:工作总量、工作效率、工作时间,一般情况下,根据已知设出工作时间,根据题意表示出工效,找等量关系列分式方程,本题表示等量关系的语言叙述为:“甲队先做20天,剩下的工程再由甲、乙两队合作10天完成”.17.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】方案(1)、(3)不耽误工期,符合要求,求出费用即可判断,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得3 x +xx+6=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得400 x −4002x=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)。
中考数学压轴题的常见类型与解题思路中考数学的压轴题是考试中比较难的部分,涉及的知识点较复杂,解题思路也比较灵活多变。
下面将介绍一些中考数学压轴题的常见类型与解题思路。
一、函数与方程1. 函数的性质与图像:需要理解函数的性质,如函数的单调性、奇偶性、周期性等,以及函数的图像特征,如顶点、焦点、对称轴等。
解题思路是通过对函数的性质和图像进行分析,来确定问题的解。
2. 方程与不等式的解:需要运用方程的基本性质和不等式的特点,进行工整的计算和推理。
解题思路是将方程或不等式化简为标准形式,进行适当的转化和变形,然后通过移项、消元或配方等方法求得解。
二、几何与三角1. 几何图形的相似性:需要理解相似三角形和比例的概念,运用相似三角形的性质进行计算。
解题思路是利用相似三角形的对应边比例相等的特点,建立相应的方程求解。
2. 几何图形的面积与体积:需要掌握各种几何图形的计算公式,以及体积与表面积的计算方法。
解题思路是根据题目所给的条件,建立相应的方程或等式,代入计算公式,求出问题的解。
三、统计与概率1. 统计图表的分析与计算:需要对柱状图、折线图、饼图等进行分析和计算,了解统计图表的含义和数据的规律。
解题思路是根据统计图表上的数据,进行适当的计算和推理,得出问题的解。
2. 概率与事件的计算:需要理解概率的概念和计算方法,以及事件之间的关系和概率的性质。
解题思路是根据事件的定义和已知的概率,利用概率的加法和乘法原理进行计算,求得问题的解。
四、函数与推理2. 推理与判断题:需要根据已知条件进行推理和判断,运用逻辑和数学思维进行推理和计算。
解题思路是根据问题的条件,进行合理的分析和推理,得出问题的解。
中考数学压轴题的解题思路主要是通过对问题的分析和计算,根据已知条件进行适当的推理和计算,得出问题的解。
需要学生灵活运用各种数学方法和知识点,培养逻辑思维和推理能力,从而解决复杂的数学问题。
初三重点冲刺阶段学习中的数学题型与解题思路数学在初三阶段是一个非常重要的学科,也是决定学生升入高中的重要因素之一。
在学习数学时,我们经常遇到各种各样的题型,而如何正确地解决这些题目则是我们需要掌握的关键技巧。
本文将分析初三重点冲刺阶段中常见的数学题型,并提供解题思路。
一、整式与因式分解整式与因式分解是初三数学中常见的题型之一。
在解题时,首先需要对给定的整式进行合并同类项,然后根据因式分解的规律进行处理。
对于以字母表示的整式,可以利用因式分解的方法进行因式分解,再根据题目要求进行进一步计算。
二、代数方程与方程组代数方程和方程组是初三数学中的重点内容。
在解题时,可以先利用变量的代入法对方程进行化简,然后通过解方程的方法求得变量的值。
对于方程组,可以通过联立方程的方法逐步求解,最后得到所有变量的值。
三、几何图形与空间几何几何题型在初三数学中也占据重要地位。
几何图形的题型多种多样,包括直角三角形、相似三角形、圆的性质等。
在解题时,需要掌握几何图形的基本性质,运用相应的定理进行推理,通过画图或者建立几何方程的方法求解。
四、统计与概率统计与概率是初三数学中的一块重点内容。
在解决统计问题时,需要根据给定的数据,确定所需统计的范围,然后进行数据筛选、分类和整理。
对于概率问题,可以通过列出随机事件的样本空间和事件的可能性进行计算。
五、解答题解答题是每个数学考试中必不可少的一部分。
在解答题中,我们需要注意题目中的要求,明确解题思路。
可以通过列方程、画图、建立模型等不同的方法来解答问题,并给出合理的解释。
总结起来,初三数学的学习需要掌握各种题型的解题思路。
在解题时,我们要善于归纳总结,掌握基本的解题方法,灵活运用所学知识来解决问题。
此外,我们还要注重练习,通过大量的题目训练提高解题能力,增强数学思维能力和逻辑推理能力。
希望大家能够在初三重点冲刺阶段中,努力学习数学,攻克各种数学题型,取得优异的成绩。
中考资料数学题型解析与解题技巧数学作为中考科目中的一项重要内容,对于学生来说既是挑战也是机遇。
要在中考数学中取得好成绩,除了掌握扎实的基础知识外,还需要熟悉各种题型的解题技巧。
本文将为大家解析中考数学题型,并提供一些解题技巧,希望可以帮助同学们更好地应对中考数学考试。
一、选择题选择题在中考数学考试中占据很大的篇幅,考查的内容也比较全面。
在解答选择题时,我们可以运用以下技巧:1. 读清题干和选项:要认真阅读题目的要求和给出的选项,并理解题目的意思。
有时候题目会给出类似的选项,需要我们仔细斟酌。
2. 排除法:对于一些选择题,可以通过排除法来选出正确答案。
首先,将明显错误的选项排除,再针对剩下的选项进行比较和分析,选择最符合题目要求的答案。
3. 运算估算:在一些需要进行运算的选择题中,可以通过估算来选出正确答案。
将选项中的数值代入计算,并进行粗略的估算,通过与题目要求相比较,找出最接近的答案。
二、填空题填空题是中考数学中常见的题型,主要考察学生的计算能力和运算规则运用的灵活性。
在解答填空题时,可以采用以下技巧:1. 使用公式和规律:填空题中很多情况下都可以通过运用特定的公式或者数学规律来解答。
因此我们需要对这些公式和规律进行熟练掌握,并能够正确运用。
2. 分步骤解题:对于较为复杂的填空题,可以将其分解成几个简单的步骤来进行解答。
逐步填空,循序渐进地解答问题。
3. 参照例题解题:填空题往往会给出类似的例题,我们可以通过参照例题的解法和思路来解答填空题。
三、解答题解答题在中考数学中也是不可忽视的一部分,这部分题目主要考察学生的思维能力和解题能力。
在解答题时,我们应该注意以下技巧:1. 全面理解题意:解答题通常会给出一段较长的文字题目,我们需要仔细阅读题目,理解每个要求和条件,把握关键信息。
2. 制定解题计划:在全面理解题意后,可以制定一个解题计划,明确解答的步骤和思路,避免无效的尝试。
3. 画图辅助:对于一些几何题或者图形题,画图是解答的重要辅助手段。
中考题型冲刺复习要点及提分技巧详解中考题型冲刺复习要点及提分技巧详解学生们进入了最后的冲刺复习阶段。
下面我们根据中考试卷题型(选择、填空和简答)的组成,给大家一些参考意见。
中考题型冲刺复习要点及提分技巧一.选择题复习技巧在中考中,选择题是最容易拿分的题型,也是最容易失分的题型。
容易拿分是因为选择题的考察点以基础知识为主,得分率基本可以达到90%。
而最容易失分的也就是剩下的10%,问题主要会出现在以下几点:1.被题目绕晕2.不知道解题方法3.概念不清导致出错4.忽略了细节。
选择题在知识的掌握的熟练程度和知识的灵活运用两方面考察比较仔细,解决了这两个问题相信拿到高分并不会太难。
1.掌握基本概念基本概念对于学生来说看似很容易,但要真正掌握除了能够将概念记住之外,记清、记熟也是必不可少2.完整理解基本概念“质量守恒定律”是初三学生最常用也是最熟悉的一个自然规律。
但很多时候学生往往只看到了质量在反应前后不变,而忽略了其根本原因“化学反应前后的元素以及原子个数不发生变化”。
这样便很吃亏,知道这一点不仅有助于对质量守恒定律有更全面的了解,还能为解题提供新的思路。
3.摒弃惯性思维惯性思维也是造成错误的一大原因,在特定环境下学习到的知识往往成为学生惯性思维的“重灾区”,例如:复分解反应、置换反应——学生往往会联想到酸碱盐。
确实两者容易出现在酸碱盐的反应中,但不意味着只有酸碱盐中会出现这两种反应。
4.透过现象看“清”本质各式各样的反应现象是化学学习当中经常打交道的环节,也是最令学生头痛的环节。
有着相同现象但却在不同情况下发生亦或是在相同情况下发生却有着不同现象等等。
但无论如何,正确找到现象发生的原因就会使得这类问题引刃而解。
二.填空与简答复习技巧1.化学符号的题要弄清题意,是写化学符号还是化学符号周围数字的含义2.溶解度题溶解度曲线的表示的意义(1)溶解度曲线表示物质在不同温度下的溶解度或溶解度随温度变化的情况(2)溶解度曲线上的每一个点表示该溶质在某温度下的溶解度,溶液必然是饱和溶液(3)两条曲线交叉点表示两种溶质在同一温度下具有相同的溶解度(4)在溶解度曲线下方的点,则表示溶液是不饱和溶液(5)在溶解度曲线上方的点表示有固体析出的饱和溶液溶解度曲线的变化规律(1)大多数固体物质的溶解度随温度升高而增大,表现在曲线“坡度”比较“陡”,如KNO3,NH4Cl(2)少数固体物质的溶解度受温度的影响很小,表现在曲线“坡度”比较“平”,如NaCl(3)极少数物质的溶解度随温度的升高而减小,表现在曲线“坡度”比较“下降”如Ca(OH)23、流程图题流程分析的基本步骤1)从题干中获取有用信息,了解生产的产品2)分析流程中的每一步骤,从几个方面了解流程:A.反应物是什么B.发生了什么反应C.该反应造成了什么后果,对制造产品有什么作用。
2024年中考数学冲刺复习阶段,同学们需要巩固知识点,熟悉题型,提高解题能力。
以下是一些重要的数学知识点和相应的题型解题法。
一、整数运算题型:计算题、应用题1.完成整数间的加减法计算解题法:根据题目要求,进行整数间的加减法计算,注意正负数的加减法规则。
2.解决应用题解题法:将应用问题转化为数学模型,根据题目中的条件,进行运算并得出答案。
二、小数和分数运算题型:计算题、应用题、比较大小1.小数的四则运算解题法:根据小数的特点,进行小数的加减乘除计算,并按要求保留正确的小数位数。
2.分数的四则运算解题法:根据分数的特点,进行分数的加减乘除计算,并化简结果。
3.比较大小解题法:将小数或分数转化为相同的分母,再进行比较大小。
三、代数式和方程题型:计算题、应用题、方程的解1.代数式的运算解题法:根据代数式的运算法则,进行代数式的加减乘除运算。
2.解决应用题解题法:根据应用问题中的条件,建立代数方程式,解方程并求解。
3.方程的解解题法:根据方程的性质和解题方法,解方程并求解。
四、几何运算题型:计算题、几何问题1.三角形周长和面积的计算解题法:根据三角形的性质,计算三角形的周长和面积。
2.矩形和正方形的周长和面积的计算解题法:根据矩形和正方形的性质,计算矩形和正方形的周长和面积。
3.圆的周长和面积的计算解题法:根据圆的性质,计算圆的周长和面积。
4.解决几何问题解题法:根据几何问题的条件,运用几何知识解决问题。
五、统计与概率题型:统计题、概率题1.统计数据的分析与运算解题法:根据给定的统计数据,进行数据的分析和计算。
2.概率计算解题法:根据问题中的条件,使用概率公式计算概率。
六、函数与图像题型:计算题、函数图像题1.函数的计算解题法:根据函数的定义和性质,进行函数的计算和简化。
2.图像的绘制和分析解题法:根据函数的表达式和图像的特点,绘制函数图像,并分析其特征。
七、解决实际问题题型:应用题、解决实际问题1.实际问题的分析与解决解题法:根据实际问题的条件,进行数学建模并解决问题。
随着时间的推移,中考数学的题型和难度也在不断调整和变化。
为了能够更好地应对2024年中考数学考试,掌握解题方法与技巧是非常关键的。
以下是针对不同题型的解题方法与技巧,供考生参考。
一、选择题选择题通常是中考数学考试中的主要题型,解题方法与技巧如下:1.仔细阅读题干:选择题的题干中往往给出了一些关键信息,比如给定条件、已知量等。
考生需要仔细阅读题干,筛选出与解题有关的信息。
2.归类问题类型:选择题的答案通常是多个选项中的一个,考生可以根据问题的类型,例如几何问题、代数问题等,选择特定的解题方法。
归类问题类型有助于提高解题的准确性和效率。
3.利用排除法:如果不确定选项中的哪一个是正确答案,可以通过排除法来缩小选项范围。
首先,去掉明显不合理的答案;其次,将选项代入题干中进行验证,排除不符合条件的选项。
4.检查答案:在作答完选择题后,建议再次检查答案。
这有助于发现可能存在的错误或者疏忽,并及时更正。
二、填空题填空题要求考生根据给定的条件,填写出符合题意的数或字母,解题方法与技巧如下:1.阅读题目:细心阅读题目,理解所给的条件和要求,根据题目中的提示进行填写。
2.利用已知条件:在解决填空题时,有时会给出一些已知条件,考生可以利用这些条件,通过计算或者推理找出合适的答案。
3.适当估算:如果题目中给出的条件过于复杂,考生可以通过适当的估算,减少计算的复杂性。
首先,确定答案所属的范围;其次,根据已知条件进行适当的估算。
4.检查答案:在填空题中,很容易出现由于疏忽而填写错误的情况。
因此,在作答完毕后,应该认真检查答案,注意避免填写错误或遗漏。
三、解答题解答题是中考数学考试中较为复杂的题型,通常需要考生进行详细的推理或计算,解题方法与技巧如下:1.细心审题:解答题有时会给出一些额外信息,考生需要细心审题,筛选出与解题有关的信息和条件。
2.制定解题方案:在解答题之前,应该清楚地了解要解决的问题和解题思路。
可以通过绘制图形、列出等式、归纳总结等方法来制定解题方案。
中考数学复习技巧理解题型掌握解题方法中考即将到来,数学考试是每个学生都需要重点复习的科目之一。
为了在数学考试中取得好成绩,除了熟悉公式和知识点外,理解题型并掌握解题方法也是非常重要的。
本文将从这两个方面进行讨论,帮助同学们有效地复习数学。
一、理解题型在中考数学考试中,存在着各种不同的题型,如选择题、填空题、解答题等。
对于每一种题型,我们都需要有一个清晰的认识和理解,这样才能更好地应对考试。
以选择题为例,我们需要注意以下几点:1. 仔细阅读题目。
在阅读题目时,要注意题干中的关键词,从中抽取关键信息,理解题目所需求的具体内容。
2. 分析选项。
在解答选择题时,我们应该通盘考虑每个选项,理解它们分别表示的意义,并对比不同选项之间的差异。
3. 排除干扰项。
有时选择题的选项中会出现一些干扰性的内容,我们需要学会排除这些干扰项,并选择正确的答案。
4. 注意题目的问法。
在理解选择题时,要仔细阅读题目的问法,确保自己理解准确,不要在理解上出现偏差。
除了选择题,填空题和解答题也需要我们有一定的应试技巧。
对于填空题,一定要在题目中找到关键词和线索,根据其意义来选择合适的答案。
而对于解答题,我们需要明确问题的要求,运用正确的解题方法进行推理和分析,给出全面准确的解答。
二、掌握解题方法掌握解题方法是数学复习的关键之一。
在解题时,我们需要运用正确的方法,分析问题,找出解题的关键步骤,以便得出正确的答案。
以代数方程为例,我们可以使用以下解题方法:1. 列方程。
将题目中的关键信息转化为代数方程,建立数学模型。
2. 解方程。
根据列出的方程,通过合适的求解方法,解得未知数的值。
3. 验证答案。
将所求的未知数代入原方程,检验是否满足方程的等式关系。
对于几何题,我们可以使用以下解题方法:1. 绘制图形。
根据题目中的要求,准确地绘制出所给的图形。
2. 确定关系。
通过观察图形,找出其中的关系,以及与解题有关的特征。
3. 运用定理和公式。
根据所学定理和公式,运用合适的知识解决问题。
中考数学复习技巧掌握解题四步骤在中考过程中,数学是很多学生头疼的科目之一。
为了让大家更好地备考数学,掌握解题的技巧显得尤为重要。
本文将介绍中考数学解题的四个步骤,帮助学生避免在考试中迷茫,提高解题效率。
第一步:审题、分析解题的第一步是仔细审题、分析。
学生首先要通读题目,理解题目的意思。
在审题过程中,可以在题目上划线圈出重要信息,有助于解题时的思路清晰。
分析题目是解决问题的基础,学生要明确题目中涉及到的数学知识点、条件和要求,以及问题是要求解答什么。
只有全面地理解题目,才能制定出正确的解题策略。
第二步:制定解题策略根据审题分析的结果,学生需要制定解题策略。
解题策略可能是多种多样的,根据题目情况不同而有所差异。
在中考数学中,一些常见的解题策略包括:1. 利用已知条件:将已知条件转化为方程或不等式等,通过计算得出未知数的值。
2. 利用图形分析:画图、标注,通过观察图形性质找到解题线索。
3. 利用逻辑推理:通过逻辑推理,利用条件之间的关系来解题。
4. 利用模型建立:把问题抽象成数学模型,通过求解模型得出答案。
制定解题策略是解题的关键一步,学生需要根据题目的要求和已知条件采取相应的策略,提高解题的精确性和效率。
第三步:具体计算在制定好解题策略后,学生需要进行具体计算。
这一步骤是将策略转化为实际的计算过程,需要注意计算的准确性和规范性。
在计算过程中,要注意单位的换算和保留有效数字等问题,确保计算结果的准确性。
此外,学生还需要注意计算的步骤和顺序,避免出现计算错误。
第四步:检验结果解题的最后一步是检验结果。
在解答题目后,学生应该再次审视题目,通过对解题过程的回顾和思考,判断是否满足了题目的要求。
如果答案合理,符合题目的条件和要求,那么解题成功。
如果答案不合理或不满足要求,学生应该重新审视分析题目,找出解题中可能存在的错误,并进行修正。
除了以上介绍的四个解题步骤,相信每位学生都会有自己独特的解题方法和技巧。
在备考过程中,学生可以通过多做题目,加强练习,提高解题的能力和熟练度。
中考数学常用的经典解题方法中考网为大家提供中考数学常用的经典解题方法,更多中考资讯我们网站的更新!中考数学常用的经典解题方法1、配方法。
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是初中数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。