6函数学案
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
学习目标 1.了解三种函数的增长特征。
2.初步认识“直线上升”“指数爆炸”和“对数增长”.3.尝试函数模型的简单应用.知识点一同类函数增长特点思考同样是增函数,当x从2变到3,y=2x到y=10x的纵坐标增加了多少?梳理当a〉1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x〉0,n>1时,幂函数y=x n是增函数,并且当x〉1时,n越大其函数值的增长就越快.知识点二指数函数、幂函数、对数函数的增长差异思考当x从1变到10,函数y=2x,y=x2和y=lg x的纵坐标增长了多少?梳理一般地,在区间(0,+∞)上,尽管指数函数y=a x(a>1)、幂函数y=x n(n〉0)与对数函数y=log a x(a〉1)都是增函数,但它们的增长速度不同,而且不在同一个档次上.随着x的增大,y=a x(a>1)的增长速度越来越快,会远远超过幂函数y=x n(n〉0)的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢,因此总会存在一个x0,当x>x0时,就有________________________(a>1,n>0).类型一根据图像判断函数的增长速度例1函数f(x)=2x和g(x)=x3的图像如图所示.设两函数的图像交于点A(x1,y1),B(x2,y2),且x1〈x2。
(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图像,判断f(6),g(6),f(2 013),g(2 013)的大小.反思与感悟判断函数的增长速度,一个是从x增加相同量时,函数值的增长量的变化;另一方面,也可从函数图像的变化,图像越陡,增长越快.跟踪训练1函数f(x)=lg x,g(x)=0。
3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)以两图像交点为分界点,对f(x),g(x)的大小进行比较.类型二函数增长模型的应用例2假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0。
函数奇偶性知识梳理1.函数奇偶性的定义2.判断函数奇偶性的方法3.奇函数和偶函数的图象特征例题1.判断下列函数的奇偶性⑴x x y +=3 ⑵32x x y += ⑶x x y 22-= ⑷x xy +=1 ⑸21)(x x x f +=; ⑹x x x f 1)(+=. ⑺⎩⎨⎧>+<-=0),1(0),1()(x x x x x x x f 2.函数R x x f ∈),(,若对于任意实数b a ,都有)()()(b f a f b a f +=+,求证:)(x f 为奇函数。
3.若b x bx ax x f +++=3)(2是偶函数,其定义域为]2,3[a a -,则=a ______,=b _____。
4.定义在R 上的偶函数)(x f ,在上是增函数,则()()()3,4,f f f --π的大小关系为5.已知函数8)(35-++=bx ax x x f ,且10)2(=-f ,则=)2(f __________。
6.若函数)(x f 是奇函数,当0>x 时,2)(x x x f +=,试求函数)(x f 在0<x 时的解析式.7.设函数))((R x x f ∈为奇函数,21)1(=f ,)2()()2(f x f x f +=+,则)5(f 等于 8.已知函数)(x f 是定义域上的偶函数,若函数)(x f 在)2,(--∞单调增,试判断函数)(x f 在),2(+∞上的单调性,并证明之.9.函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则( )A )(x f 是奇函数B )(x f 是偶函数C )2()(+=x f x fD )3(+x f 是奇函数10.已知函数)(x f 是定义在[]4,4-上奇函数,且在[]4,4-单调增.若0)3()1(<-++a f a f ,求实数a 的取值范围.11.设cbx ax x f ++=1)(2是奇函数),,(Z c b a ∈,且2)1(=f ,3)2(<f ,求c b a ,,的值。
高中数学函数教案板书
课题:函数
教学目标:
1. 理解函数的概念,掌握函数的基本性质和特点。
2. 掌握函数的表示方法及其图像的特征。
3. 能够灵活运用函数的性质解决实际问题。
教学重点:
1. 函数的概念和特点
2. 函数的表示方法和图像
教学难点:
1. 函数的图像特征和性质的理解
2. 函数的实际应用
教学准备:
1. 教案、黑板、彩色粉笔
2. 教学PPT
3. 实例题及练习题目
4. 学生练习册
教学过程:
一、引入(5分钟)
教师通过引入实际生活中的例子,引起学生对函数概念的兴趣。
二、讲解函数的概念和特点(15分钟)
1. 引导学生了解函数的定义,函数的自变量、因变量和定义域、值域的概念。
2. 讲解函数的性质,如奇偶性、周期性等。
三、函数的表示方法和图像(15分钟)
1. 介绍函数的表示方法,包括表达式、图像、函数图像的特征。
2. 分析函数的图像在坐标系中的位置和特点。
四、实例分析和练习(15分钟)
1. 给学生展示一些函数的实例,并引导学生分析函数的图像特征。
2. 给学生练习相关的题目,巩固所学知识。
五、课堂小结(5分钟)
教师对本节课的要点进行回顾,并巩固学生对函数概念的理解。
六、作业布置(5分钟)
布置相关练习题目,要求学生认真完成并及时复习所学知识。
教学反思:
通过本节课的教学,学生对函数的概念有了更深的理解,能够灵活运用函数的性质解决实际问题。
希望学生能够加强练习,巩固所学内容,提升数学学习能力。
初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
2.1.2指数函数及其性质学习目标1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)知识梳理教材整理1指数函数的定义阅读教材,完成下列问题.指数函数的定义一般地,函数(a>0,且a≠1)叫做指数函数,其中是自变量,函数的定义域是R.练一练1判断(正确的打“√”,错误的打“×”)(1)函数y=-2x是指数函数.()(2)函数y=2x+1是指数函数.()(3)函数y=(-2)x是指数函数.()教材整理2指数函数的图象和性质阅读教材,完成下列问题.R练一练2判断(正确的打“√”,错误的打“×”)(1)指数函数的图象一定在x轴的上方.()(2)当a>1时,对于任意x∈R,总有a x>1.()(3)函数f(x)=2-x在R上是增函数.()类型一:指数函数的概念例1 (1)下列一定是指数函数的是( ) A .y =a x B .y =x a (a >0且a ≠1) C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3 D .a >0且a ≠1名师指导1.在指数函数定义的表达式中,要牢牢抓住三点: (1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1;2.求指数函数的解析式常用待定系数法.跟踪训练1 (1)若函数f (x )是指数函数,且f (2)=9,则f (x )=________. (2)已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________. 类型二:指数函数的定义域和值域 例2 求下列函数的定义域和值域: (1)y =√1−3x ; (2)y =(23)√−|x|; (3)y =4x +2x +1+2. 名师指导1.函数y =a f (x )的定义域与y =f (x )的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.求与指数函数有关的函数的值域时,要注意与求其它函数(如一次函数、二次函数)值域的方法相结合,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.跟踪训练2 求下列函数的定义域和值域:(1)y=21x−3;(2)y=221()2x x.探究共研型类型三:指数函数的图象探究1指数函数y=a x(a>0且a≠1)的图象过哪一定点?函数f(x)=a x-1+2(a>0且a≠1)的图象又过哪一定点呢?探究2若函数y=a x+b(a>0,且a≠1)的图象不经过第一象限,则a,b满足什么条件?例3(1)在同一坐标系中画出函数y=a x,y=x+a的图象,可能正确的是()(2)函数y =a-|x |(0<a <1)的图象是( )名师指导指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系. (1)在y 轴右侧,图象从上到下相应的底数由大变小. (2)在y 轴左侧,图象从下到上相应的底数由大变小.(3)无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过x 取1时函数值的大小关系去理解,如下图所示的指数函数的底数的大小关系为0<d <c <1<b <a .跟踪训练3 定义一种运算:g ⊙h =⎩⎪⎨⎪⎧gg ≥hhg <h ,已知函数f (x )=2x ⊙1,那么函数y =f (x -1)的大致图象是( )课堂检测1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2x C.⎝⎛⎭⎫12xD.⎝⎛⎭⎫22x2.当x ∈[-2,2)时,y =3-x -1的值域是( ) A.⎝⎛⎦⎤-89,8 B.⎣⎡⎦⎤-89,8 C.⎝⎛⎭⎫19,9D.⎣⎡⎦⎤19,93.已知1>n >m>0,则指数函数①y =m x ,②y =n x 的图象为( )4.已知函数f (x )=a -x (a >0, 且a ≠1),且f (-2)>f (-3),则a 的取值范围是________. 5.设f (x )=3x ,g(x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x ),g(x )的图象;(2)计算f (1)与g(-1),f (π)与g(-π),f (m )与g(-m )的值,从中你能得到什么结论?参考答案知识梳理教材整理1 指数函数的定义 y =a x ; x 练一练1【答案】 (1)× (2)× (3)×【解析】 (1)由指数函数的定义形式可知(1)(2)(3)均错误. 教材整理2 指数函数的图象和性质 (0,+∞) ;(0,1);增函数;减函数;y 轴 练一练2【答案】 (1)√ (2)× (3)×【解析】 (1)因为指数函数的值域是(0,+∞),所以指数函数的图象一定在x 轴的上方. (2)当x ≤0时,a x ≤1.(3)因为f (x )=2-x =⎝⎛⎭⎫12x ,所以函数f (x )=2-x在R 上是减函数. 类型一:指数函数的概念 例1 【答案】 (1)C (2)C【解析】 (1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x 显然是指数函数;D 中只有a -2=1即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1a >0,且a ≠1,所以解得a =3.跟踪训练1 【答案】 (1)3x (2) ⎝⎛⎭⎫12,1∪(1,+∞) 【解析】 (1)由题意设f (x )=a x (a >0,且a ≠1), 则f (2)=a 2=9.又因为a >0,所以a =3. 所以f (x )=3x .(2)由题意可知{ 2a -1>0,2a -1≠1,解得a >12,且a ≠1.所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 类型二:指数函数的定义域和值域例2 解:(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y = √1−3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以√1−3x ∈[0,1),即函数y = √1−3x 的值域为[0,1). (2)要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y = (23)√−|x|的定义域为{x |x =0}.因为x =0,所以y = (23)√−|x| =(23)0=1,即函数y= (23)√−|x|的值域为{y |y =1}.(3)因为对于任意的x ∈R , 函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R . 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2 =(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 跟踪训练2 解:(1)函数的定义域为{x |x ≠3}. 令t =1x−3,则t ≠0,∴y =2t >0且2t ≠1, 故函数的值域为{y |y >0,且y ≠1}. (2)函数的定义域为R ,令t =2x -x 2, 则t =-(x -1)2+1≤1,∴y =(12)t ≥ (12)1=12,故函数的值域为[12,+∞).探究共研型类型三:指数函数的图象探究1 【答案】 指数函数y =a x (a >0且a ≠1)的图象过定点(0,1);在f (x )=a x -1+2中令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图象过定点(1,3). 探究2 【答案】 如图,由图可知0<a <1,b ≤-1.例3【答案】 (1)D (2)A【解析】(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增, 又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减,A 中,从图象上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条;B 中,从图象上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图象上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图象符合以上两条,故选D. (2)y =a-|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.跟踪训练3 【答案】 B【解析】 f (x )=⎩⎪⎨⎪⎧ 2x x ≥01x <0,∴f (x -1)=⎩⎪⎨⎪⎧2x -1x ≥11x <1,∴其图象为B ,故选B.课堂检测 1.【答案】 A【解析】 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 2.【答案】 A【解析】 y =3-x -1,x ∈[-2,2)是减函数, ∴3-2-1<y ≤32-1,即-89<y ≤8.3.【答案】 C【解析】 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C. 4.【答案】 (0,1)【解析】 因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.5. 解:(1)函数f (x ),g(x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3,f (π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π, f (m )=3m ,g(-m )=⎝⎛⎭⎫13-m=3m.。
1.2.1常数函数与幂函数的导数学习目标:(1)能根据导数定义,求几个常用函数的导数,并归纳出幂函数的求导公式.(2)会利用导数的几何意义求曲线的切线方程.学习过程:提出问题已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1x;(5)y =f (x )=x . 问题1:函数y =f (x )=c 的导数是什么?问题2:函数(2)(3)(4)(5)的导数分别是什么?问题3:若(1)(2)中的函数表示路程关于时间的函数,则其导数的意义是什么?问题4:函数(2)(3)(5)均可表示为y =x α(α为正数)的形式,其导数有何规律?例题探究:例1:求曲线y =x 3过点Q (1,12)的切线方程.例2:若质点P的运动方程是s=3t2(s的单位为m,t的单位为s),求质点P在t=8 s时的瞬时速度.例3:设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.求曲线y=f(x)在点(1,f(1))处的切线方程.课堂检测:1.已知函数f(x)=x3的切线斜率等于1,则切线有()A.1条B.2条C.3条D.不确定2.若对任意的x,有f′(x)=4x3,f(1)=-1,则此函数解析式为()A.f(x)=x4B.f(x)=x4-2C.f(x)=x4+1D.f(x)=x4-13.函数y=x2过点(2,1)的切线方程为________.4.已P(-1,1),Q(2,4)是曲线f(x)=x2上的两点,则与直线PQ平行的曲线y=x2的切线方程是________.5.若曲线y=x在点P(a,a)处的切线与两坐标轴围成的三角形的面积为2,则实数a的值是________.6.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P,Q的曲线y=x2的切线方程;(2)求与直线PQ平行的曲线y=x2的切线方程.参考答案学习过程:提出问题问题1:∵Δy Δx =f (x +Δx )-f (x )Δx =c -c Δx=0, ∴y ′=0lim x ∆→Δy Δx=0. 问题2:由导数的定义得(2)(x )′=1,(3)(x 2)′=2x ,(4)⎝⎛⎭⎫1x ′=-1x 2,(5)(x )′=12x. 问题3:y ′=0说明某物体的瞬时速度始终为0,即一直处于静止状态;y ′=1可以解释为某物体做瞬时速度为1的匀速运动.问题4:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1, (5)(x )′=(x 12)′=12x 112-=12x, ∴(x α)′=αx α-1.例题探究:例1:解:∵点(1,12)不在曲线y =x 3上, ∴设切点为P (x 0,y 0),则y 0=x 30,k PQ =y 0-12x 0-1=x 30-12x 0-1. 又y ′=3x 2,则k PQ =f ′(x 0)=3x 20, 则有3x 20=x 30-12x 0-1,化简得2x 30-3x 20+12=0, 解得x 0=12或x 0=1+32或x 0=1-32. ①x 0=12时,k PQ =34,切线为y -12=34(x -1), 即3x -4y -1=0.②x 0=1+32时,k PQ =6+332, 切线为y -12=6+332(x -1), 即(6+33)x -2y -5-33=0.③x 0=1-32时,k PQ =6-332,切线为y -12=6-332(x -1), 即(6-33)x -2y -5+33=0.综上,所求切线的方程为3x -4y -1=0或(6+33)x -2y -5-33=0或(6-33)x -2y -5+33=0. 例2:解:∵s ′=(3t 2)′=(23t )′=2313t -, ∴v =23×138-=23×2-1=13, ∴质点P 在t =8 s 时的瞬时速度为13m/s. 例3:解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,又f ′(1)=2a ,所以3+2a +b =2a ,解得b =-3.令x =2,得f ′(2)=12+4a +b ,又f ′(2)=-b ,所以12+4a +b =-b ,解得a =-32. 则f (x )=x 3-32x 2-3x +1,从而f (1)=-52. 又f ′(1)=2×⎝⎛⎭⎫-32=-3,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝⎛⎭⎫-52 =-3(x -1),即6x +2y -1=0.课堂检测:1.【答案】B【解析】设切点为(x 0,x 30),∵f ′(x )=3x 2, ∴k =f ′(x 0)=3x 20,即3x 20=1, ∴x 0=±33, 即在点⎝⎛⎭⎫33,39和点⎝⎛⎭⎫-33,-39处有斜率为1的切线,故选B. 2.【答案】B【解析】由f ′(x )=4x 3知,f (x )中含有x 4项,然后将x =1代入四个选项中验证,B 正确,故选B.3.【答案】(4+23)x -y -7-43=0或(4-23)x -y -7+43=0【解析】y ′=2x ,设切点P (x 0,y 0),则y 0=x 20. 切线斜率为2x 0=x 20-1x 0-2, ∴x 20-4x 0+1=0,∴x 0=2±3, ∴斜率k =2x 0=4±23,∴切线方程为y -1=(4±23)(x -2).4.【答案】4x -4y -1=0【解析】y =x 2的导数为y ′=2x ,设切点M (x 0,y 0), 则0x x y ='=2x 0. ∵PQ 的斜率k =4-12+1=1,又切线平行于PQ , ∴k =0x x y ='=2x 0=1.∴x 0=12. ∴切点M ⎝⎛⎭⎫12,14.∴切线方程为y -14=x -12,即4x -4y -1=0. 5.【答案】4【解析】y ′=12x ,切线方程为y -a =12a(x -a ), 令x =0得,y =a 2, 令y =0得,x =-a ,由题意知12·a 2·a =2,∴a =4. 6.解:(1)因为y ′=2x .P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=-2,过Q 点的切线的斜率k 2=4,过P 点的切线方程为y -1=-2(x +1), 即2x +y +1=0.过Q 点的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1, 切线的斜率k =2x 0=1, 所以x 0=12,所以切点M ⎝⎛⎭⎫12,14, 与PQ 平行的切线方程为y -14=x -12, 即4x -4y -1=0.。
初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
基本初等函数知识梳理1.指数运算 (1).n 次方根的定义注意:当n 为奇数时,=n n a ;当n 为偶数时,=nn a (2).正分数指数幂=nma =-nm a(3).运算性质:=⋅n m a a =÷n m a a =n m a )( =m ab )( ),;0,(Q n m b a ∈>2.对数运算(1)对数定义: 注意:①常用对数 ,自然对数 ②=1log a ,=a a log ,=b a a log 1)a 0,a (≠>(2)运算法则:()=MN a log =NMalog =n a M log 0)N M,1,a 0,a (>≠>(3)换底公式;=N a log 0)N 1,a 0,a (>≠>拓展 ①=n a b n log ;②=m a b n log ③=⋅a b b a log log3.指对函数的图像和性质例题和练习1.化简(1)()n12n 21n 422÷⋅--+ (2)()0212311297271027.0--⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛----2.已知32121=+-aa ,求下列各式的值(1)1-+a a ;(2)22-+a a ;(3)21212323----aa a a .3.求值(1)25.0log 10log 255+ (2)3log 9log 284.设151121)31(log )31(log --+=x ,则x 属于区间( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)5.解方程: (1)32x +5=5·3x +2+2(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1) (3)2)352(log 2)1(=---x x x6 .已知函数[]3,2-1,2141∈+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=x y xx ,求y 的最大值或最小值。
函数的极限学案--优质课竞赛一等奖
简介
这是一份优质课竞赛一等奖的文档,主题为函数的极限学案。
本文档将介绍函数极限的概念、性质和计算方法,旨在培养学生对函数极限的理解和运用能力。
第一部分:概念解释
函数极限是函数在某一点或无穷远处的趋势或行为。
它是研究函数性质和行为的重要工具。
学生们需要理解函数极限的定义以及与函数连续性、导数等概念的关系。
第二部分:极限的性质
函数极限具有一些重要的性质,如极限的唯一性、四则运算法则、复合函数的极限等。
通过讲解这些性质,学生们能够更好地理解和运用函数的极限。
第三部分:计算方法
计算函数极限是研究函数极限的关键。
我们将介绍一些常用的计算方法,包括代入法、夹逼准则、洛必达法则等。
通过练和应用
这些计算方法,学生们可以提升他们的计算能力,并解决更复杂的极限问题。
第四部分:应用举例
为了帮助学生更好地理解和应用函数的极限,我们将提供一些实际应用的举例,如在物理、经济学等领域中的应用。
通过这些实际例子,学生们可以将极限理论与实际问题相结合,培养他们的问题解决能力。
结语
函数极限是高等数学研究中的重要概念,掌握函数极限的理论和运用对学生们的数学素养和发展至关重要。
希望本文档能够为教师们提供一些教学思路和资源,同时也能够激发学生们对函数极限的兴趣和研究动力。
以上是函数的极限学案--优质课竞赛一等奖的文档内容,谢谢阅读!。
《6.1函数学案》
学习目标
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
重点:1、掌握函数概念。
2、判断两个变量之间的关系是否可看作函数。
3、能把实际问题抽象概括为函数问题。
难点:1、理解函数的概念。
2、能把实际问题抽象概括为函数问题。
学习过程
(第一步)自主学习,探究新知(自学课本P144-145页并完成下面三个任务。
)
1、当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?
请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。
大家从图上可以看出,每过6分钟摩天轮就转一圈。
高度h完整地变化一次。
而且从图中大致可以判断给定的时间所对应的高度h。
下面根据图5-1进行填
t/分0 1 2 3 4 5 ……
h/米
2、瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物
层数n 1 2 3 4 5 …
物体总数y …
3、一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273, T≥0.
(1)当分别等于-43,-27,0,18时,相应的热力学温度T是多少?
(2)给定一个大于-273℃的t值,你能求出相应的T值吗
(第三步) 对组群学展示点拨
函数的概念:
函数的表示方法:
(第四步) 学以致用反馈矫正
下面各题中分别有几个变量?你能将其中某个变量看成是另一个变量的函数吗?
(1)每一个同学购一本代数书,书的单价为2元,则x个同学共付y元. (2)计划购买50元的乒乓球,则所购的总数y (个)与单价x (元)的关系. (3)一个铜球在0 ℃的体积为1000cm3,加热后温度每增加1℃,体积增加0.051cm3,t℃时球的体积为Vcm3 .
(4)菱形ABCD的对角线AC的长为4,BD的长x在变化,菱形的面积为y .
(第五步) 知识梳理整体构建
通过这节课,你学到了什么?
(第六步) 分层堂检实时达标
必做题:随堂练习1 2 选做题:随堂练习 3
(第七步) 分层作业深化新知
必做题:习题6.1 1 2 选做题:习题6.1 3 4。