等差数列的前n项和公式推导与例题解析
- 格式:doc
- 大小:82.50 KB
- 文档页数:14
等差数列前n项和的推导公式等差数列前n项和的推导公式,听起来是不是有点复杂?这个东西就像我们生活中的许多事情,简单却又充满了乐趣。
想象一下,咱们去超市买东西,每次都能找到一些折扣。
假如你要买一堆苹果,第一天买了一个,第二天又买了一个,再加上还有其他的。
嘿,等差数列就这么来了!说白了,它就是每次加上一个固定的数字,像是你每天都要喝的那杯咖啡,始终是那么多。
前n项和又是什么呢?简单来说,就是把这些数字加起来,比如说,你第一天买了一个苹果,第二天又加了一个,第三天又来了一个……你知道的,时间长了,苹果就越来越多。
数数看,你每天加的这一个,算下来就成了一个小山堆。
我们想要知道这些苹果加起来到底有多少,这时候,前n项和就派上用场了。
我们先来看看公式。
等差数列的前n项和,通常是用S_n来表示。
你可能会问,这个S_n到底是什么呢?它的公式是这样的:S_n = n/2 × (a_1 + a_n)。
这里的n是你加了多少天,a_1是第一天的苹果数量,而a_n就是第n天的苹果数量。
咋样?听起来是不是不那么复杂?举个例子,假如第一天你买了1个苹果,第二天买了2个,第三天买了3个……一直往下加。
那你就会发现,你买的苹果越来越多,像是人气不断飙升的网红一样。
每一天都在增加,真的是“天天向上”。
现在,我们来算算前n项和吧。
假设你想知道前5天的苹果总数。
第一天是1个,第二天是2个,第三天是3个,第四天是4个,第五天是5个。
把它们加起来,1 + 2 + 3 + 4 + 5,这个和就是15。
哦,天哪,真的是一大堆苹果!你看,这个过程就是等差数列的魅力所在。
再回到公式,S_n = n/2 × (a_1 + a_n)。
把数据代进去,n是5,a_1是1,a_n是5。
所以你就可以算出S_5 = 5/2 × (1 + 5),结果出来是15。
是不是特别简单?等差数列的魅力还不止于此,想想看,生活中我们总是喜欢把事情做得简单明了。
等差数列及其前n项和【考纲说明】1、理解等差数列的概念,学习等差数列的基本性质.2、探索并掌握等差数列的通项公式与前n项和公式.3、体会等差数列与一次函数的关系.4、本部分在高考中占5-10分左右.【趣味链接】高斯7岁那年,父亲送他进了耶卡捷林宁国民小学,读书不久,高斯在数学上就显露出了常人难以比较的天赋,最能证明这一点的是高斯十岁那年,教师彪特耐尔布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,高斯即刻把写着答案的小石板交了上去。
彪特耐尔起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊。
而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。
这种算法是教师未曾教过的计算等级数的方法,高斯的才华使彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教高斯的了。
【知识梳理】一、等差数列的相关概念1、等差数列的概念如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.通常用字母d表示。
2、等差中项如果a , A, b成等差数列,那么A叫做a与b的等差中项.即:或2A=a,b2推广:2耳=a n-1 ' a n 1(n - 2)= 2a n 1 =久'a n 23、等差数列通项公式若等差数列、a n』的首项是印,公差是d,则a n= ◎■ n -1 d .a — a推广:a n =a m(n - m)d ,从而d n m。
n — m4、等差数列的前n项和公式n3i Qi n n T等差数列的前n 项和的公式:① S n:②S n = nad .2 25、等差数列的通项公式与前 n 项的和的关系s n = 14=(o (数列{a n }的前n 项的和为% =旦+a2+||| +K).5 -乳,n- 2二、等差数列的性质 1、 等差数列与函数的关系当公差d = 0时,(1) 等差数列的通项公式 a n =31 - (n -1)d =dn -印-d 是关于n 的一次函数,斜率为d ; (2) 前n 和s n 二na 1 -卫d n 2 raLgin 是关于n 的二次函数且常数项为 0。
4.2.2 第一课时 等差数列的前n项和公式[A级 基础巩固]1.已知等差数列{a n}的前n项和为S n,若2a6=a8+6,则S7等于( )A.49 B.42C.35 D.28解析:选B 2a6-a8=a4=6,S7=72(a1+a7)=7a4=42.2.已知数列{a n}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为( )A.4 D.1 4C.-4 D.-1 4解析:选A 由S5=5(a1+a5)2=5×2a32=55,解得a3=11.∴P(3,11),Q(4,15),∴k=15-114-3=4.故选A.3.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663解析:选B ∵a1=2,d=7,则2+(n-1)×7<100,∴n<15,∴n=14,S14=14×2+12×14×13×7=665.4.设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于( )A.1 B.-1C.2 D.1 2解析:选A S9S5=92(a1+a9)52(a1+a5)=92·2a552·2a3=9a55a3=95·a5a3=1.5.现有200根相同的钢管,把它们堆成一个正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A.9 B.10C.19 D.29解析:选B 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n=n(n+1)2.当n=19时,S19=190.当n=20时,S20=210>200.∴n=19时,剩余钢管根数最少,为10根.6.已知{a n}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=________.解析:a4+a6=a1+3d+a1+5d=6,①S5=5a1+12×5×(5-1)d=10,②由①②联立解得a1=1,d=1 2 .答案:1 27.已知数列{a n}中,a1=1,a n=a n-1+12(n≥2),则数列{a n}的前9项和等于________.解析:由a1=1,a n=a n-1+12(n≥2),可知数列{a n}是首项为1,公差为12的等差数列,故S9=9a1+9×(9-1)2×12=9+18=27.答案:27n=11.已知命题:“在等差数列{a n}中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )A.15 B.24C.18 D.28解析:选C 设括号内的数为n,则4a2+a10+a(n)=24,即6a1+(n+12)d=24.又因为S11=11a1+55d=11(a1+5d)为定值,所以a1+5d为定值.所以n+126=5,解得n=18.12.(多选)已知等差数列{a n}的前n项和为S n,若S7=a4,则( ) A.a1+a3=0 B.a3+a5=0 C.S3=S4 D.S4=S5解析:选BC 由S7=7(a1+a7)2=7a4=a4,得a4=0,所以a3+a5=2a4=0,S3=S4,故选B、C.13.在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则m=________,a100=________.解析:∵在前m项中偶数项之和为S偶=63,∴奇数项之和为S奇=135-63=72,设等差数列{a n}的公差为d,则S奇-S偶=2a1+(m-1)d2=72-63=9.又∵a m=a1+d(m-1),∴a1+a m2=9,∵a m-a1=14,∴a1=2,a m=16.∵m(a1+a m)2=135,∴m=15,∴d=14m-1=1,∴a100=a1+99d=101.答案:15 10114.设S n是数列{a n}的前n项和且n∈N*,所有项a n>0,且S n=14a2n+12a n-34.(1)证明:{a n}是等差数列;(2)求数列{a n}的通项公式.解:(1)证明:当n=1时,a1=S1=14a21+12a1-34,解得a1=3或a1=-1(舍去).当n≥2时,a n=S n-S n-1=14(a2n+2a n-3)-14(a2n-1+2a n-1-3).所以4a n=a2n-a2n-1+2a n-2a n-1,即(a n+a n-1)(a n-a n-1-2)=0,因为a n+a n-1>0,所以a n-a n-1=2(n≥2).所以数列{a n}是以3为首项,2为公差的等差数列.(2)由(1)知a n=3+2(n-1)=2n+1.[C级 拓展探究]15.求等差数列{4n+1}(1≤n≤200)与{6m-3}(1≤m≤200)的公共项之和.解:由4n+1=6m-3(m,n∈N*且1≤m≤200,1≤n≤200),可得Error!(t∈N*且23≤t≤67).则等差数列{4n+1}(1≤n≤200),{6m-3}(1≤m≤200)的公共项按从小到大的顺序组成的数列是等差数列{4(3t-1)+1}(t∈N*且23≤t≤67),即{12t-3}(t∈N*且23≤t≤67),各项之和为67×9+67×662×12=27 135.。
(完整版)等差数列的前n项和与首项、末
项之间的关系总结
一、定义:
等差数列是指数列中的相邻两项之差为常数的数列。
它的一般
形式可以表示为:a₁, a₁+d, a₁+2d, ...,其中a₁为首项,d为公差。
二、前n项和的计算:
等差数列的前n项和可以通过以下公式求得:
Sn = (n/2)(a₁ + an)
其中,Sn表示前n项和,a₁为首项,an为末项(第n项)。
三、首项、末项与前n项和的关系:
1. 首项和末项的关系:
首项a₁和末项an之间的关系可以表示为:
an = a₁ + (n-1)d
其中,d为公差。
2. 前n项和与首项、末项之间的关系:
根据前n项和的计算公式,可以得出以下关系:
Sn = (n/2)(a₁ + a₁ + (n-1)d)
= (n/2)(2a₁ + (n-1)d)
= (n/2)(2a₁ + nd - d)
= n(a₁ + (n-1)d)/2
四、应用示例:
假设有等差数列{2, 5, 8, 11, ...},其中首项a₁=2,公差d=3。
计算该数列前n项和的步骤如下:
1. 根据首项和公差,确定该数列的末项计算公式:an = 2 + (n-
1)3。
2. 根据前n项和的计算公式,将首项a₁、末项an代入计算:Sn = n(2 + (n-1)3)/2。
以上就是对等差数列的前n项和与首项、末项之间的关系进行总结的内容。
注意:本文档的内容仅供参考,不涉及法律问题。
等差数列前n项和公式的推导方法等差数列,是数学里一个超基础但又特别有趣的概念。
说简单点,它就是每一项跟前一项的差一样的那种数列。
比如说,2、5、8、11、14,这就是一个等差数列,因为每一项之间差的都是3。
今天,我们就来聊聊如何推导出这个等差数列前n项和的公式,弄明白它的背后那些“玄机”。
1. 了解等差数列的基本概念1.1 等差数列的定义等差数列就是每一项和前一项之间有一个固定的差,这个差叫做“公差”。
这就像是你在走路,每一步的长度都是一样的,那你走了10步,走过的总距离就是步长乘以步数。
1.2 举个例子假设你在玩一个有趣的游戏,每次你得到的奖励都比上一次多10元,第一轮你获得10元,第二轮20元,第三轮30元,依此类推。
那么你的奖励就是一个等差数列,公差就是10元。
2. 推导等差数列前n项和的公式2.1 简单的逻辑推导我们要算前n项和,首先得知道每一项的值。
拿前面的例子来说,第n项的值就是第一项加上(n1)乘以公差。
公式就是这样的:( a_n = a_1 + (n1) cdot d )。
如果你跟着这个公式算,结果是一样的。
2.2 推导过程的趣味假如我们要算前n项的和,可以用一种超级简单的办法来搞定。
先假设你有一个等差数列,然后把它从头到尾写出来,像这样:```S_n = a_1 + a_2 + a_3 + ... + a_n。
```然后,把这些数列的项从后往前也写一遍:```S_n = a_n + a_{n1 + a_{n2 + ... + a_1。
```把这两个式子一加,发现每对数加起来都是一样的,就是 (a_1 + a_n),所以总和是:```2S_n = n cdot (a_1 + a_n)。
```于是,前n项的和 (S_n) 就是:```S_n = frac{n cdot (a_1 + a_n){2。
```是不是很有趣?就是这么简单,一看就懂了!3. 公式的应用实例3.1 实际应用你可能在生活中遇到各种各样的情况,比如说你在参加一个比赛,每一轮的分数都比上一轮高一些。
等差数列的前N项和公式等差数列是指数列中任意两个相邻项之差保持不变的数列。
前N项和指的是数列前N项之和。
首先,我们来推导等差数列的通项公式。
设等差数列的第一项为a1,公差为d,第n项为an。
根据等差数列的定义可知,第2项为a2 = a1 + d,第3项为a3 = a1 + 2d,以此类推,第n项为an = a1 + (n-1)d。
我们可以把等差数列展开,得到:a1,a1+d,a1+2d,a1+3d,...,a1+(n-2)d,a1+(n-1)d将这些项相加,得到:S=(a1+a1+d+a1+2d+a1+3d+...+a1+(n-2)d+a1+(n-1)d)我们可以将等差数列中的每一项按照公差d进行分组,得到:S=(a1+a1+(n-1)d)+(a1+d+a1+(n-2)d)+(a1+2d+a1+(n-3)d)+...+(a1+(n-2)d+a1+d)+(a1+(n-1)d+a1)根据等差数列的恒等差性质,每一组中的两项之和都等于2a1+(n-1)d。
因此,上式可以进一步化简为:S=n(2a1+(n-1)d)这就是等差数列的前N项和公式,也被称为等差数列求和公式。
为了更好地理解该公式,我们可以举一个具体的例子。
假设有一个等差数列:2,5,8,11,14,求前四项的和。
首先,确定已知量:a1=2(第一项)d=5-2=3(公差)n=4(前四项)代入前N项和公式,可得:S=4(2+(4-1)3)=4(2+3*3)=4(2+9)=4*11=44因此,2,5,8,11的和为44除了使用前N项和公式,我们还可以利用等差数列的性质进行计算。
等差数列可以通过两种方法计算前N项的和:方法一:逐项相加。
通过将每一项相加,可以得到等差数列的前N项和。
在大多数情况下,这种方法适用于较小的N。
方法二:首项加末项乘N除以2、由于等差数列的第一项和最后一项之和等于N,将这两项相加,并乘以N除以2,即可得到前N项和。
这个方法适用于所有的等差数列。
§2.3 等差数列的前n 项和第1课时 等差数列前n 项和公式的推导及简单应用学习目标 1.掌握等差数列前n 项和公式及其获取思路.2.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个.3.能用a n 与S n 的关系求a n .知识点一 等差数列前n 项和公式思考 高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.但如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办? 答案 不知道共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题: 设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1), ∴S n =n (n +1)2.梳理 等差数列的前n 项和公式知识点二 a 1,d ,n ,a n ,S n 知三求二思考 在等差数列{a n }中,若已知d ,n ,a n ,如何求a 1和S n?答案 利用a n =a 1+(n -1)d 代入d ,n ,a n ,可求a 1,利用S n =n (a 1+a n )2或S n =na 1+n (n -1)2d可求S n .梳理 (1)两个公式共涉及a 1,d ,n ,a n 及S n 五个基本量,它们分别表示等差数列的首项,公差,项数,项和前n 项和.(2)依据方程的思想,在等差数列前n 项和公式中已知其中三个量可求另外两个量,即“知三求二”.知识点三 数列中a n 与S n 的关系思考 已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n ? 答案 a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又当n =1时也适合上式,所以a n =2n -1,n ∈N *. 梳理 对于一般数列{a n },设其前n 项和为S n ,则有a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.特别提醒:(1)这一关系对任何数列都适用.(2)若由a n =S n -S n -1(n ≥2)中令n =2求得a 1与利用a 1=S 1求得的a 1相同,则说明a n =S n -S n -1(n ≥2)也适合n =1的情况,数列的通项公式用a n =S n -S n -1表示.若由a n =S n -S n -1(n ≥2)中令n =2求得的a 1与利用a 1=S 1求得的a 1不相同,则说明a n =S n -S n -1(n ≥2)不适合n =1的情况,数列的通项公式采用分段形式.1.若数列{a n }的前n 项和为S n ,则a n =S n -S n -1,n ∈N *.(×)2.等差数列的前n 项和,等于其首项、第n 项的等差中项的n 倍.(√)类型一 等差数列前n 项和公式的应用 命题角度1 等差数列基本量的计算例1 已知一个等差数列{a n }的前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n 项和的公式吗? 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 方法一 由题意知S 10=310,S 20=1 220,将它们代入公式S n =na 1+n (n -1)2d ,得到⎩⎪⎨⎪⎧ 10a 1+45d =310,20a 1+190d =1 220,解方程组得⎩⎪⎨⎪⎧a 1=4,d =6.∴S n =n ×4+n (n -1)2×6=3n 2+n .方法二 ∵S 10=10(a 1+a 10)2=310,∴a 1+a 10=62,①∵S 20=20(a 1+a 20)2=1 220,∴a 1+a 20=122,②②-①,得a 20-a 10=60, ∴10d =60,∴d =6,a 1=4. ∴S n =na 1+n (n -1)2d =3n 2+n .反思与感悟 (1)在解决与等差数列前n 项和有关的问题时,要注意方程思想和整体思想的运用.(2)构成等差数列前n 项和公式的元素有a 1,d ,n ,a n ,S n ,知其三能求其二. 跟踪训练1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题解由⎩⎨⎧a n=a 1+(n -1)d ,S n=na 1+n (n -1)2d ,得⎩⎨⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎪⎨⎪⎧ n =5,a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.命题角度2 实际应用例2 某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题解 设每次交款数额依次为a 1,a 2,…,a 20, 则a 1=50+1 000×1%=60, a 2=50+(1 000-50)×1%=59.5, …a 10=50+(1 000-9×50)×1%=55.5, 即第10个月应付款55.5元.由于{a n }是以60为首项,以-0.5为公差的等差数列, 所以有S 20=60+(60-19×0.5)2×20=1 105,即全部付清后实际付款1 105+150=1 255.反思与感悟 建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.跟踪训练2 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇? 考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题解 (1)设n 分钟后第1次相遇,由题意,得2n +n (n -1)2+5n =70,整理得n 2+13n -140=0.解得n =7,n =-20(舍去).所以第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,由题意, 得2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0. 解得n =15,n =-28(舍去).所以第2次相遇是在开始运动后15分钟. 类型二 由S n 与a n 的关系求a n例3 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么? 考点 a n 与S n 关系 题点 由S n 公式求a n解 根据S n =a 1+a 2+…+a n -1+a n 可知 S n -1=a 1+a 2+…+a n -1(n >1,n ∈N *), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎡⎦⎤(n -1)2+12(n -1) =2n -12,①当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.∵a n +1-a n =2(n +1)-12-⎝⎛⎭⎫2n -12=2, 故数列{a n }是以32为首项,2为公差的等差数列.引申探究若将本例中前n 项和改为S n =n 2+12n +1,求通项公式.解 当n ≥2时,a n =S n -S n -1 =⎝⎛⎭⎫n 2+12n +1-⎣⎡⎦⎤(n -1)2+12(n -1)+1 =2n -12.①当n =1时,a 1=S 1=12+12+1=52不符合①式.∴a n=⎩⎨⎧52,n =1,2n -12,n ≥2,n ∈N *.反思与感悟 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求得a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示. 跟踪训练3 已知数列{a n }的前n 项和S n =3n ,求a n . 考点 a n 与S n 关系 题点 由S n 公式求a n 解 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1. 当n =1时,代入a n =2·3n -1得a 1=2≠3.∴a n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2,n ∈N *.1.已知等差数列{a n }满足a 1=1,a m =99,d =2,则其前m 项和S m 等于( ) A.2 300 B.2 400 C.2 600 D.2 500 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 D解析 由a m =a 1+(m -1)d ,得99=1+(m -1)×2, 解得m =50,所以S 50=50×1+50×492×2=2 500.2.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A.2 B.3 C.6 D.7 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3.在一个等差数列中,已知a 10=10,则S 19=________. 考点 等差数列前n 项和性质运用 题点 等差数列前n 项和与中间项的关系 答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10 =19×10=190.4.已知数列{a n }满足a 1+2a 2+…+na n =n (n +1)(n +2),则a n =________. 考点 a n 与S n 关系 题点 由S n 公式求a n 答案 3(n +1)解析 由a 1+2a 2+…+na n =n (n +1)(n +2),① 得a 1+2a 2+…+(n -1)a n -1=(n -1)n (n +1),② ①-②,得na n =n (n +1)(n +2)-(n -1)n (n +1) =n (n +1)[(n +2)-(n -1)]=3n (n +1), ∴a n =3(n +1)(n ≥2).又当n =1时,a 1=1×2×3=6也适合上式, ∴a n =3(n +1),n ∈N *. 5.已知等差数列{a n }中:(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 (1)∵S n =n ×32+⎝⎛⎭⎫-12×n (n -1)2=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), a 12=32+(12-1)×⎝⎛⎭⎫-12=-4.∴n =12,a n =a 12=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解得d =-171.1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用: 若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a n +a m =2a p .3.由S n 与a n 的关系求a n 主要使用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.一、选择题1.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2,n ∈N *),则数列{a n }的前9项和等于( )A.27B.632 C.45 D.-9考点 等差数列前n 项和 题点 求等差数列前n 项和 答案 A解析 由已知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.2.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( ) A.10 000 B.8 000 C.9 000D.11 000考点 等差数列前n 项和 题点 求等差数列的前n 项和答案 A解析 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[(a 1+b 1)+(a 100+b 100)]2=50×(25+75+100)=10 000.3.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为( ) A.200 B.100 C.90 D.70 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 B解析 S 10=10×(-20+40)2=100.4.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( ) A.18 B.27 C.36 D.45 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.5.在等差数列{a n }中,若S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4 考点 等差数列前n 项和性质运用 题点 两等差数列和之比与项之比问题 答案 A解析 由题意得10a 1+12×10×9d =4⎝⎛⎭⎫5a 1+12×5×4d , ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.6.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.7.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10等于( )A.-9B.-11C.-13D.-15 考点 等差数列前n 项和 题点 求等差数列的前n 项和 答案 D解析 由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18等于( ) A.36 B.35 C.34 D.33 考点 a n 与S n 关系 题点 由S n 公式求a n 答案 C解析 方法一 a 2=S 2-S 1=(22-2×2)-(12-2×1)=1, a 18=S 18-S 17=182-2×18-(172-2×17)=33. ∴a 2+a 18=34.方法二 a 2+a 18=a 1+a 19,S 19=19(a 1+a 19)2=192-2×19,∴a 1+a 19=34,即a 2+a 18=34.二、填空题9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________.考点 等差数列的前n 项和应用题 题点 等差数列前n 项和应用题 答案 10解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴当n =19时,剩余钢管根数最少,为10根.10.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 答案 15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.11.在等差数列{a n }中,a n =2n +3,前n 项和S n =an 2+bn +c (a ,b ,c 为常数),则a -b +c =________.考点 等差数列前n 项和题点 等差数列前n 项和综合问题答案 -3解析 因为a n =2n +3,所以a 1=5,S n =(5+2n +3)n 2=n 2+4n ,与S n =an 2+bn +c 比较,得a =1,b =4,c =0,所以a -b +c =-3.三、解答题12.已知等差数列{a n }的前三项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 设等差数列{a n }的公差为d , 则由题意得⎩⎨⎧ a +3a =2×4,d =4-a ,ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧ a =2,d =2,k =50,(k =-51舍)∴a =2,k =50.13.已知数列{a n }的所有项均为正数,其前n 项和为S n ,且S n =14a 2n +12a n -34. (1)证明:{a n }是等差数列;(2)求数列{a n }的通项公式.考点 a n 与S n 关系题点 由S n 和a n 递推式求通项(1)证明 当n =1时,a 1=S 1=14a 21+12a 1-34, 解得a 1=3或a 1=-1(舍去).当n ≥2时,a n =S n -S n -1=14(a 2n +2a n -3)-14(a 2n -1+2a n -1-3). 所以4a n =a 2n -a 2n -1+2a n -2a n -1,即(a n +a n -1)(a n -a n -1-2)=0.因为a n +a n -1>0,所以a n -a n -1=2(n ≥2).所以数列{a n }是以3为首项,2为公差的等差数列.(2)解 由(1)知a n =3+2(n -1)=2n +1.四、探究与拓展14.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 200=________.考点 等差数列的前n 项和题点 等差数列前n 项和综合问题答案 100解 因为A ,B ,C 三点共线(该直线不过原点O ),所以a 1+a 200=1,所以S 200=200(a 1+a 200)2=100. 15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 考点 等差数列前n 项和题点 等差数列前n 项和综合问题 解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13. ∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , ∴b n =S nn +c =2n 2-n n +c . ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12(c =0舍去). 经检验,c =-12符合题意,∴c =-12.。
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要注意对公比的讨论。
其他公式:1、)1(211+==∑=n n k S nk n 2、)12)(1(6112++==∑=n n n k S nk n3、213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积 设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ……………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)∴ 1224-+-=n n n S 练习:求:S n =1+5x+9x 2+······+(4n -3)x n-1解:S n =1+5x+9x 2+······+(4n -3)x n-1 ①①两边同乘以x ,得x S n =x+5 x 2+9x 3+······+(4n -3)x n ② ①-②得,(1-x )S n =1+4(x+ x 2+x 3+······+ n x )-(4n-3)x n当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x [ 4x(1-x n) 1-x +1-(4n-3)x n ]3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+--- [例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得3211123nnnn k k k S k k k====++∑∑∑(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++22(1)(1)(21)(1)222n n n n n n n ++++=++ (分组求和)=2)2()1(2++n n n练习:求数列•••+•••),21(,,813,412,211nn 的前n 项和。
4.2.2 等差数列的前n 项和公式第1课时 等差数列前n 项和公式的推导及简单应用学习目标 1.了解等差数列前n 项和公式的推导过程.2.掌握等差数列前n 项和公式.3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个.知识点 等差数列的前n 项和公式已知量 首项,末项与项数 首项,公差与项数 求和公式S n =n (a 1+a n )2S n =na 1+n (n -1)2d1.等差数列前n 项和公式的推导方法是倒序相加.( √ ) 2.若数列{a n }的前n 项和S n =kn (k ∈R ),则{a n }为常数列.( √ ) 3.等差数列的前n 项和,等于其首项、第n 项的等差中项的n 倍.( √ ) 4.1+2+3+…+100=100×(1+100)2.( √ )一、等差数列前n 项和的有关计算 例1 在等差数列{a n }中:(1)已知a 6=10,S 5=5,求a 8和S 10; (2)已知a 1=4,S 8=172,求a 8和d . 解 (1)⎩⎪⎨⎪⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得a 1=-5,d =3.∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39, ∴d =5. ∴a 8=39,d =5.反思感悟 等差数列中的基本计算 (1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n (a 1+a n )2结合使用.跟踪训练1 在等差数列{a n }中: (1)a 1=1,a 4=7,求S 9; (2)a 3+a 15=40,求S 17;(3)a 1=56,a n =-32,S n =-5,求n 和d .解 (1)设等差数列{a n }的公差为d , 则a 4=a 1+3d =1+3d =7, 所以d =2.故S 9=9a 1+9×82d =9+9×82×2=81.(2)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.(3)由题意得,S n =n (a 1+a n )2=n ⎝⎛⎭⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,所以d =-16,所以n =15,d =-16.二、等差数列前n 项和的比值问题例2 有两个等差数列{a n },{b n }满足a 1+a 2+a 3+…+a n b 1+b 2+b 3+…+b n =7n +2n +3,求a 5b 5.解 方法一 设等差数列{a n },{b n }的公差分别为d 1,d 2, 则a 1+a 2+a 3+…+a n b 1+b 2+b 3+…+b n =na 1+n (n -1)2d 1nb 1+n (n -1)2d 2=a 1+n -12d1b 1+n -12d2,则有a 1+n -12d1b 1+n -12d2=7n +2n +3,①又由于a 5b 5=a 1+4d 1b 1+4d 2,②观察①,②,可在①中取n =9,得a 1+4d 1b 1+4d 2=7×9+29+3=6512.故a 5b 5=6512.方法二 设{a n },{b n }的前n 项和分别为A n ,B n , 则有A n B n =7n +2n +3,其中A n =(a 1+a n )n 2,由于a 1+a 9=2a 5.即a 1+a 92=a 5,故A 9=(a 1+a 9)·92=a 5×9.同理B 9=b 5×9.故A 9B 9=a 5×9b 5×9.故a 5b 5=A 9B 9=7×9+29+3=6512. 方法三 设{a n },{b n }的前n 项和分别为A n ,B n , 因为等差数列的前n 项和为S n =an 2+bn =an ⎝⎛⎭⎫n +b a , 根据已知,可令A n =(7n +2)kn ,B n =(n +3)kn (k ≠0). 所以a 5=A 5-A 4=(7×5+2)k ×5-(7×4+2)k ×4=65k , b 5=B 5-B 4=(5+3)k ×5-(4+3)k ×4=12k . 所以a 5b 5=65k 12k =6512.方法四 设{a n },{b n }的前n 项和分别为A n ,B n ,由A 2n -1B 2n -1=a n b n ,有a 5b 5=A 9B 9=7×9+29+3=6512.反思感悟 设{a n },{b n }的前n 项和为S n ,T n ,则a n ∶b n =S 2n -1∶T 2n -1.跟踪训练2 已知等差数列{a n },{b n },其前n 项和分别为S n ,T n ,a n b n =2n +33n -1,则S 11T 11等于( )A.1517B.2532 C .1 D .2 答案 A解析 由等差数列的前n 项和公式以及等差中项的性质得S 11=11(a 1+a 11)2=11a 6,同理可得T 11=11b 6,因此,S 11T 11=11a 611b 6=a 6b 6=2×6+33×6-1=1517.1.已知数列{a n }的通项公式为a n =2-3n ,n ∈N *,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2答案 A解析 ∵a n =2-3n ,∴a 1=2-3=-1, ∴S n =n (-1+2-3n )2=-32n 2+n 2.2.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( ) A .18 B .27 C .36 D .45 答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.3.已知等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 为( ) A .1 B.53 C .2 D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4, 所以a 1=0, 所以d =a 3-a 12=2.4.在等差数列{a n }中,已知a 10=10,则S 19=________. 答案 190解析 S 19=19(a 1+a 19)2=19×2a 102=190.5.已知在等差数列{a n }中,a 1=32,d =-12,S n =-15,则n =________,a 12=________.答案 12 -4解析 ∵S n =n ·32+n (n -1)2·⎝⎛⎭⎫-12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), a 12=32+(12-1)×⎝⎛⎭⎫-12=-4.1.知识清单:(1)等差数列前n 项和及其计算公式. (2)等差数列前n 项和公式的推导过程. (3)由a n 与S n 的关系求a n .(4)等差数列在实际问题中的应用.2.方法归纳:函数与方程思想、倒序相加法、整体思想. 3.常见误区:由S n 求通项公式时忽略对n =1的讨论.1.已知等差数列{a n }的前n 项和为S n ,若2a 6=a 8+6,则S 7等于( ) A .49 B .42 C .35 D .28 答案 B解析 2a 6-a 8=a 4=6,S 7=72(a 1+a 7)=7a 4=42.2.在等差数列{a n }中,已知a 1=10,d =2,S n =580,则n 等于( ) A .10 B .15 C .20 D .30 答案 C解析 因为S n =na 1+12n (n -1)d =10n +12n (n -1)×2=n 2+9n ,所以n 2+9n =580, 解得n =20或n =-29(舍).3.设{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1等于( ) A .18 B .20 C .22 D .24 答案 B解析 由S 10=S 11, 得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d =0+(-10)×(-2)=20.4.(多选)在等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( ) A .-1 B .3 C .5 D .7 答案 AB解析 由题意知a 1+(n -1)×2=11,① S n =na 1+n (n -1)2×2=35,②由①②解得a 1=3或-1.5.在等差数列{a n }中,已知a 1=-12,S 13=0,则使得a n >0的最小正整数n 为( ) A .7 B .8 C .9 D .10答案 B解析 由S 13=13(a 1+a 13)2=0,得a 13=12,则a 1+12d =12,得d =2, ∴数列{a n }的通项公式为 a n =-12+(n -1)×2=2n -14,由2n -14>0,得n >7,即使得a n >0的最小正整数n 为8.6.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其首项a 1=________,公差d =________. 答案 1 12解析 a 4+a 6=a 1+3d +a 1+5d =6,① S 5=5a 1+12×5×(5-1)d =10,②由①②联立解得a 1=1,d =12.7.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =________. 答案 5解析 因为S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d =2×1+(2k +1)×2=4k +4=24,所以k =5.8.在等差数列{a n }中,S 10=4S 5,则a 1d =________.答案 12解析 设数列{a n }的公差为d ,由题意得10a 1+12×10×9d =4⎝⎛⎭⎫5a 1+12×5×4d ,所以10a 1+45d =20a 1+40d , 所以10a 1=5d ,所以a 1d =12.9.在等差数列{a n }中,a 10=30,a 20=50. (1)求数列的通项公式; (2)若S n =242,求n .解 (1)设数列{a n }的首项为a 1,公差为d .则⎩⎪⎨⎪⎧a 10=a 1+9d =30,a 20=a 1+19d =50, 解得⎩⎪⎨⎪⎧a 1=12,d =2,∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242,得方程242=12n +n (n -1)2×2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知{a n }为等差数列,S n 为数列{a n }的前n 项和,且S 7=7,S 15=75,求数列⎩⎨⎧⎭⎬⎫S n n 的前n项和T n .解 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d .∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S nn =a 1+n -12d =-2+n -12,∴S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,且其首项为-2,公差为12.∴T n =14n 2-94n .11.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100, ∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.12.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n ·S n +1,则S n =________. 答案 -1n解析 当n =1时,S 1=a 1=-1, 所以1S 1=-1.因为a n +1=S n +1-S n =S n S n +1, 所以1S n -1S n +1=1,即1S n +1-1S n =-1, 所以⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,所以1S n =(-1)+(n -1)·(-1)=-n ,所以S n =-1n.13.已知两个等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,且a n ∶b n =(2n +1)∶(3n -2),则S 9T 9=________. 答案1113解析 ∵{a n },{b n }均为等差数列, ∴S 9T 9=9(a 1+a 9)29(b 1+b 9)2=a 5b 5=2×5+13×5-2=1113.14.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________. 答案 10解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴当n =19时,剩余钢管根数最少,为10根.15.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *)个点,相应的图案中总的点数记为a n ,则a 2+a 3+a 4+…+a n 等于( )A.3n 22B.n (n +1)2C.3n (n -1)2D.n (n -1)2答案 C解析 由图案的点数可知a 2=3,a 3=6,a 4=9,a 5=12, 所以a n =3n -3,n ≥2,所以a 2+a 3+a 4+…+a n =(n -1)(3+3n -3)2=3n (n -1)2. 16.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解 (1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14, ∴a 2+a 3=14,又a 2a 3=45,公差d >0, ∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4, ∴a n =4n -3,n ∈N *.(2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列, ∴b 1+b 3=2b 2,即2×62+c =11+c +153+c , 解得c =-12(c =0舍去).。
第一课时 等差数列的前n 项和公式及相关性质课标要求素养要求1.探索并掌握等差数列的前n 项和公式.2.理解等差数列的通项公式与前n 项和公式的关系.在探索等差数列的前n 项和公式及相关性质的过程中,发展学生的数学运算和逻辑推理素养.新知探究在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇帝建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环的石板铺成(如图),最高一层的中心是一块天心石,围绕它的第1圈有9块石板,从第2圈开始,每一圈比前一圈多9块,共有9圈.问题 文中所提到的最高一层的石板一共有多少块? 提示 9+2×9+3×9+…+8×9+9×9=405(块).1.等差数列的前n 项和公式求S n 的条件:已知n ,a 1,a n 或n ,a 1,d (1)等差数列的前n 项和公式已知量 首项、末项与项数首项、公差与项数求和公式S n =n (a 1+a n )2S n =na 1+n (n -1)d2(2)两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n =na 1+n (n -1)2d .2.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)若S m ,S 2m ,S 3m 分别为等差数列{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.(4)若等差数列的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n(S 奇≠0).(5)若等差数列的项数为2n +1,则S 2n +1=(2n +1)a n +1(a n +1是数列的中间项),S 偶-S 奇=-a n +1,S 偶S 奇=n n +1(S 奇≠0).拓展深化[微判断]1.设等差数列{a n }的前n 项和为S n ,则S n 与a n 不可能相等.(×) 提示 当a n =0时,S n =a n .2.等差数列{a n }的前n 项和S n 是关于n 的二次函数.(×) 提示 当公差d =0时,S n =na 1不是关于n 的二次函数.3.等差数列{a n }的前n 项和S n =n (a m +a n +1-m )2.(√)[微训练]1.等差数列{a n }中a 1=2,a 2=3,则其前10项的和S 10=________. 解析 由a 1=2,a 2=3得d =1,故S 10=10a 1+12×10×9d =10×2+45=65.答案 652.等差数列{a n }中,若a 1=-1,S 25=30,则公差d =________. 解析 由S 25=-25+12×24×25×d =30,解得d =1160.答案11603.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是________. 解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1. 答案 -1 [微思考]1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办?提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1),∴2S n =n (n +1),∴S n =n (n +1)2.2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢? 提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和,即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下:S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )·n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.根据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .题型一 等差数列前n 项和公式的基本运算 【例1】 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n . 解 (1)法一 由已知条件得⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4.∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210.法二 由已知条件得⎩⎪⎨⎪⎧a 5+a 10=(a 1+a 10)+4d =58,a 4+a 9=(a 1+a 10)+2d =50,∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210.(2)S 7=7(a 1+a 7)2=7a 4=42,∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510.∴n =20.规律方法 等差数列中基本计算的两个技巧 (1)利用基本量求值.(2)利用等差数列的性质解题.【训练1】 (1)设S n 是等差数列{a n }的前n 项和.若a 1=-2 018,S 6-2S 3=18,则S 2 020=( ) A.-2 018 B.2 018 C.2 019D.2 020(2)(多选题)设等差数列{a n }的前n 项和为S n (n ∈N *),当首项a 1和公差d 变化时,若a 1+a 8+a 15是定值,则下列各项中为定值的是( ) A.a 7 B.a 8 C.S 15D.S 16解析 (1)设等差数列{a n }的公差为d .∵a 1=-2 018,S 6-2S 3=18,∴6a 1+6×52·d -6a 1-2×3×22·d =18,整理可得9d =18,解得d =2.则S 2 020=2 020×(-2 018)+2 020×2 0192×2=2 020.故选D.(2)由a 1+a 15=2a 8,故a 1+a 8+a 15是定值可得a 8是定值,S 15=12×15×(a 1+a 15)=15a 8,故S 15为定值,故选BC. 答案 (1)D (2)BC题型二 等差数列前n 项和性质的应用【例2】 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)法一 在等差数列中, ∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列, ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210. 法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列, ∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.(2)a 5b 5=12(a 1+a 9)12(b 1+b 9)=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×9+29+3=6512. 规律方法 等差数列前n 项和运算的几种思维方法 (1)整体思路:利用公式S n =n (a 1+a n )2,设法求出整体a 1+a n ,再代入求解.(2)待定系数法:利用当公差d ≠0时S n 是关于n 的二次函数,设S n =An 2+Bn (A ≠0),列出方程组求出A ,B 即可,或利用S nn 是关于n 的一次函数,设S n n=an +b (a ≠0)进行计算. (3)利用S n ,S 2n -S n ,S 3n -S 2n 成等差数列进行求解.【训练2】 (1)等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18等于( ) A.36 B.18 C.72D.9(2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和S n ′,如果S n S n ′=7n +14n +27(n ∈N *),则a 11b 11的值是( ) A.74B.32C.43D.7871解析 (1)由S 3,S 6-S 3,…,S 18-S 15成等差数列知,S 18=S 3+(S 6-S 3)+(S 9-S 6)+…+(S 18-S 15)=6×(-6+18)2=36.(2)由等差数列前n 项和的性质,得 a 11b 11=2a 112b 11=a 1+a 21b 1+b 21=212(a 1+a 21)212(b 1+b 21)=S 21S 21′=7×21+14×21+27=43. 答案 (1)A (2)C题型三 求数列{|a n |}的前n 项和【例3】 若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . 解 ∵a 1=13,d =-4,∴a n =17-4n . 当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n=2×(13+1)×42-(15n -2n 2)=56+2n 2-15n .∴T n =⎩⎪⎨⎪⎧15n -2n 2,n ≤4,n ∈N *,2n 2-15n +56,n ≥5,n ∈N *. 规律方法 已知{a n }为等差数列,求数列{|a n |}的前n 项和的步骤 第一步,解不等式a n ≥0(或a n ≤0)寻找{a n }的正负项分界点.第二步,求和:①若a n 各项均为正数(或均为负数),则{|a n |}各项的和等于{a n }的各项的和(或其相反数);②若a 1>0,d <0(或a 1<0,d >0),这时数列{a n }只有前面有限项为正数(或负数),可分段求和再相加.【训练3】 已知等差数列{a n }中,S n 为数列{a n }的前n 项和,若S 2=16,S 4=24,求数列{|a n |}的前n 项和T n .解 设等差数列{a n }的首项为a 1,公差为d , 由S 2=16,S 4=24,得⎩⎪⎨⎪⎧2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧2a 1+d =16,2a 1+3d =12, 解得⎩⎪⎨⎪⎧a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *). 由a n ≥0,解得n ≤512,则①当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n . ②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5且n ∈N *,n 2-10n +50,n ≥6且n ∈N *.一、素养落地1.通过学习等差数列前n 项和公式的推导过程及性质,提升逻辑推理和数学运算素养.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),若m +n =2p ,则a n +a m =2a p . 3.求等差数列{a n }前n 项的绝对值之和,关键是找到{a n }的正负项的分界点. 二、素养训练1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A.12 B.24 C.36D.48解析 S 10=10(a 1+a 10)2=5(a 1+a 10)=120,∴a 1+a 10=24. 答案 B2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A.1 B.2 C.4D.8解析 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧2a 1+7d =24,6a 1+15d =48,解得d =4. 答案 C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( )A.1B.-1C.2D.12解析 由于S 2n -1=(2n -1)a n ,则S 9S 5=9a 55a 3=95×59=1.答案 A4.设等差数列{a n }的前n 项和为S n ,且S 4=2,S 8=6,则S 12=________.解析 因为 S 4,S 8-S 4,S 12-S 8成等差数列,故2(S 8-S 4)=S 4+S 12-S 8,即2×4=2+S 12-6,得S 12=12. 答案 125.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)由S n =n ·32+⎝ ⎛⎭⎪⎫-12·n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去). (2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d ,解之得d =-171.基础达标一、选择题1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10=( ) A.138 B.135 C.95D.23解析 由a 2+a 4=2a 3=4得a 3=2,由a 3+a 5=2a 4=10得a 4=5,故公差d =3,所以a 1=-4,则S 10=10×(-4)+12×10×9×3=95.答案 C2.等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则数列{a n }的公差d 等于( ) A.2 B.3 C.6D.7解析 由S 2=a 1+a 2=4及S 4=a 1+a 2+a 3+a 4=20,得a 3+a 4=16,故(a 3+a 4)-(a 1+a 2)=4d ,即4d =12,d =3. 答案 B3.等差数列{a n }满足a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A.160B.180C.200D.220解析 由a 1+a 2+a 3=3a 2=-24得a 2=-8,由a 18+a 19+a 20=3a 19=78得a 19=26,S 20=12×20×(a 1+a 20)=10(a 2+a 19)=10×18=180. 答案 B4.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( ) A.5 B.6 C.7D.8解析 由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,∴4(a 1+a n )=280,∴a 1+a n =70.又S n =n (a 1+a n )2=n2·70=210,∴n =6. 答案 B5.在公差不为零的等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 016,S k =S 2 008,则正整数k 为( ) A.2 017 B.2 018 C.2 019D.2 020解析 因为公差不为零的等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性质及S 2 011=S 2 016,S k =S 2 008,可得2 011+2 0162=2 008+k2,解得k =2 019.答案 C 二、填空题6.已知等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析 设等差数列{a n }的首项为a 1,公差为d ,由6S 5-5S 3=5,得3(a 1+3d )=1,所以a 4=13. 答案 137.《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布(不作近似计算).解析 由题意知,该女每天的织布尺数构成等差数列{a n },其中a 1=5,S 30=390,设其公差为d ,则S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.答案16298.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =2n 3n +1,则a 5b 5=________.解析 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=1828=914.答案914三、解答题9.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.10.已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解 法一 设等差数列{a n }的首项为a 1,公差为d , ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.∴S 110=110a 1+110(110-1)2d=110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110.法二 ∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110. 能力提升11.已知等差数列{a n }的前n 项和为377,项数n 为奇数,且前n 项中,奇数项的和与偶数项的和之比为7∶6,则中间项为________.解析 因为n 为奇数,所以S 奇S 偶=n +1n -1=76,解得n =13,所以S 13=13a 7=377,所以a 7=29.故中间项为29.答案 2912.已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .解 a 1=S 1=-32×12+2052×1=101.当n ≥2时,a n =S n -S n -1=⎝ ⎛⎭⎪⎫-32n 2+2052n -⎣⎢⎡⎦⎥⎤-32(n -1)2+2052(n -1)=-3n +104.∵n =1也适合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *).由a n =-3n +104≥0,得n ≤3423.即当n ≤34时,a n >0;当n ≥35时,a n <0.(1)当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=S n =-32n 2+2052n ;(2)当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n=2⎝ ⎛⎭⎪⎫-32×342+2052×34-⎝ ⎛⎭⎪⎫-32n 2+2052n=32n 2-2052n +3 502.故T n =⎩⎪⎨⎪⎧-32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.创新猜想13.(多选题)已知S n 是等差数列{a n }的前n 项和,下列选项中可能是S n 的图象的是( )解析 因为S n 是等差数列{a n }的前n 项和,所以S n =an 2+bn (a ,b 为常数,n ∈N *),则其对应函数为y =ax 2+bx .当a =0时,该函数的图象是过原点的直线上一些孤立的点,如选项C ;当a ≠0时,该函数的图象是过原点的抛物线上一些孤立的点,如选项A ,B ;选项D 中的曲线不过原点,不符合题意.答案 ABC14.(多空题)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a n =________,a 12+a 23+…+a n n +1=________. 解析 令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1). 与已知式相减,得a n =n 2+3n -(n -1)2-3(n -1)=2n +2.∴a n =4(n +1)2.又∵n =1时,a 1满足上式,∴a n =4(n +1)2(n ∈N *).∴a nn +1=4n +4,∴a 12+a 23+…+a n n +1=n (8+4n +4)2=2n 2+6n . 答案 4(n +1)2 2n 2+6n。
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。