不等式的有关概念
- 格式:doc
- 大小:71.00 KB
- 文档页数:3
高中不等式知识点的归纳总结高中不等式知识点的归纳总结引言:不等式是高中数学中的重要内容,它在数学问题和实际应用中具有广泛的应用。
掌握不等式的基本概念和解题方法对于学生的数学能力发展至关重要。
本篇文章将对高中不等式的各个知识点进行归纳总结,并提供相关的解题技巧和实例,帮助读者在学习和应用不等式时更加深入理解。
一、不等式基本概念1. 不等式符号:大于、小于、大于等于、小于等于符号的含义和表示方法。
2. 不等式的解集:解集表示不等式中使不等式成立的数值范围。
3. 解不等式的方法:加减法、乘除法、绝对值法等常用的解不等式的方法。
二、一元一次不等式1. 一元一次不等式的定义和性质:介绍一元一次不等式形式、性质和解集的概念。
2. 一元一次不等式的解法:从加减法、乘除法到绝对值法的详细解题步骤和注意事项。
3. 实际问题中的应用:将实际问题转化为一元一次不等式,并求解实际问题。
三、一元二次不等式1. 一元二次不等式的定义和性质:介绍一元二次不等式形式、性质和解集的概念。
2. 一元二次不等式的解法:使用图像法、符号法、区间法等方法解一元二次不等式。
3. 实际问题中的应用:将实际问题转化为一元二次不等式,并求解实际问题。
四、多项式不等式1. 多项式不等式的定义和性质:介绍多项式不等式的定义、性质和解集的概念。
2. 多项式不等式的解法:使用图像法、符号法、区间法等方法解多项式不等式。
3. 实际问题中的应用:将实际问题转化为多项式不等式,并求解实际问题。
五、绝对值不等式1. 绝对值不等式的定义和性质:介绍绝对值不等式的定义、性质和解集的概念。
2. 绝对值不等式的解法:使用绝对值定义、分情况讨论、不等式的性质等方法解绝对值不等式。
3. 实际问题中的应用:将实际问题转化为绝对值不等式,并求解实际问题。
结论:高中不等式知识点的归纳总结对于学生的数学学习和应用具有重要的指导意义。
通过本文的介绍,读者可以清晰地了解不等式的基本概念、解题方法和实际应用,并通过解题实例加深对不等式知识点的理解和掌握。
不等式的基本概念和解法不等式是数学中常见的数值比较关系表达方式之一,它描述了数之间大小关系的差异。
在解决实际问题和推导数学定理时,不等式起到了至关重要的作用。
本文将介绍不等式的基本概念和解法,帮助读者加深对不等式的理解和应用。
一、不等式的基本概念不等式是指使用不等号(如大于号、小于号)表示的数值关系,包括严格不等式和非严格不等式两种形式。
严格不等式如“<”表示不等关系,非严格不等式如“≤”表示不等关系。
在不等式中,被比较的两个数一般称为“不等式的两端”,用字母表示。
不等式的解集是使得不等式成立的数的集合。
二、不等式的解法1.代入法代入法是最常见的解不等式的方法之一。
即将候选解代入不等式,验证是否满足不等式。
通过逐个尝试的方式,找到符合不等式的解集。
例如,对于不等式3x - 4 > 5,可以逐个尝试不同的数值,如将x分别取1、2、3等代入,验证不等式是否成立,最终确定解集。
2.消元法消元法是解二元一次不等式常用的方法。
通过将不等式中的变量消去,得到一元一次不等式,进而求解。
例如,对于不等式2x + 3y > 4x - 5y,可以通过将两边的同类项合并后,消去变量y,得到3y + 5x > 2x,然后进一步化简为y > -3x。
3.图像法图像法常用于解关于一个或两个未知数的不等式。
通过将不等式转化为图形形式进行观察和判断,可快速得到不等式的解集。
例如,对于不等式y > 2x - 3,可以将不等式表示为一条直线y = 2x - 3,并通过观察直线和不等式中的“大于”关系,得出解集为直线上方的区域。
4.化简法化简法是解不等式时常用的方法之一。
通过对不等式进行化简,进而将其转化为较为简单的形式,以便求解。
例如,对于复杂的不等式2x^2 + 5x - 3 > 0,可以通过将不等式分解为(2x - 1)(x + 3) > 0,并找出方程两侧使得不等式成立的区间,进而得到解集。
不等式的运算法则及公式一、不等式的基本概念不等式是数学中的一种关系式,用于表示两个数之间的大小关系。
不等式的基本形式为:a < b(表示a小于b)、a > b(表示a大于b)、a ≤ b(表示a小于等于b)、a ≥ b(表示a大于等于b)。
其中,符号“<”称为小于号,符号“>”称为大于号,符号“≤”称为小于等于号,符号“≥”称为大于等于号。
二、不等式的运算法则1. 加减法法则:对于任意实数a、b和c,有以下运算法则:(1) 如果a < b,那么a + c < b + c;(2) 如果a > b,那么a + c > b + c;(3) 如果a ≤ b,那么a + c ≤ b + c;(4) 如果a ≥ b,那么a + c ≥ b + c;(5) 如果a < b,那么a - c < b - c;(6) 如果a > b,那么a - c > b - c;(7) 如果a ≤ b,那么a - c ≤ b - c;(8) 如果a ≥ b,那么a - c ≥ b - c。
2. 乘法法则:对于任意实数a、b和c,有以下运算法则:(1) 如果a < b,且c > 0,那么ac < bc;(2) 如果a < b,且c < 0,那么ac > bc;(3) 如果a > b,且c > 0,那么ac > bc;(4) 如果a > b,且c < 0,那么ac < bc;(5) 如果a ≤ b,且c > 0,那么ac ≤ bc;(6) 如果a ≤ b,且c < 0,那么ac ≥ bc;(7) 如果a ≥ b,且c > 0,那么ac ≥ bc;(8) 如果a ≥ b,且c < 0,那么ac ≤ bc。
3. 除法法则:对于任意实数a、b和c,有以下运算法则(其中c≠0):(1) 如果a < b,且c > 0,那么a/c < b/c;(2) 如果a < b,且c < 0,那么a/c > b/c;(3) 如果a > b,且c > 0,那么a/c > b/c;(4) 如果a > b,且c < 0,那么a/c < b/c;(5) 如果a ≤ b,且c > 0,那么a/c ≤ b/c;(6) 如果a ≤ b,且c < 0,那么a/c ≥ b/c;(7) 如果a ≥ b,且c > 0,那么a/c ≥ b/c;(8) 如果a ≥ b,且c < 0,那么a/c ≤ b/c。
初中数学知识与不等式组概念1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理(1)不等式F(x)<G(x)与不等式G(x)>F(x)同解。
(2)如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)<G(x)与不等式H(x)+F(x)(3)如果不等式F(x)<G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)0,那么不等式F(x)<G(x)与不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性质:(1)如果x>y,那么yy;(对称性)(2)如果x>y,y>z;那么x>z;(传递性)(3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z(6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)(7)如果x>y>0,m>n>0,那么xm>yn(8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
(一)不等式的概念作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.1.不等式用符号>或<联结两个解析式所成的式子,称为不等式.不等号>或<叫做严格不等号,≥或≤叫做非严格不等号(相应的不等式分别叫做严格不等式和非严格不等式).例如b a ≥表示“b a >或b a =有一个成立,”因此1≥0或1≤1都是真的.另外,日常还使用一种只肯定不等关系但不区分孰大孰小的不等号,即“≠”.下面主要讨论严格不等式的性质.常如下定义不等式: 形如),,,(),,,(z y x g z y x f ∨(2-1)的式子,称为关于变数z y x ,,, 的不等式(符号“∨”表示不等号“>”,“<”中的任一个).在(2-1)式中,),,,(),,,(z y x g z y x f 与定义域的交集,叫做不等式(2-1)的定义域.在不等式(2-1)的定义域中,能使不等式成立的数值组,叫做不等式(2-1)的解,不等式(2-1)解的全体组成的集合,叫做不等式(2-1)的解集.求出不等式解集的过程,叫做解不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)成立,那么不等式(2-1)叫做绝对不等式.如果不等式(2-1)的定义域中一切值组都使不等式(2-1)不成立,那么不等式(2-1)叫做矛盾不等式.如果不等式(2-1)的定义域中一些值组使不等式(2-1)成立,而另一些值组使不等式(2-1)不成立,那么不等式(2-1)叫做条件不等式.在不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是代数式,那么就叫它代数不等式;如果),,,(),,,(z y x g z y x f 和中至少有一个为超越式,那么就叫它超越不等式. 在代数不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是有理式,那么就叫它有理不等式;如果),,,(),,,(z y x g z y x f 和至少有一个为无理式,那么就叫它无理不等式.在有理不等式(2-1)中,如果),,,(),,,(z y x g z y x f 和都是整式不等式,那么就叫它整式不等式;如果),,,(),,,(z y x g z y x f 和至少有一个是分式,那么就叫它分式不等式.2.不等式组含有未知数z y x ,,, 的几个不等式所组成的一组不等式⎝⎛∨∨∨),,,(),,,(),,,(),,,(),,,(),,,(2211z y x g z y x f z y x g z y x f z y x g z y x f k k(2-2)称为不等式组.不等式组(2-2)中,),,2,1)(,,,(),,,(k i z y x g z y x f i i =定义域的交集,叫做不等式组(2-2)的定义域.不等式组(2-2)中,各个不等式的解集的交,叫做不等式组(2-2)的解集.求出不等式组的解集的过程,叫做解不等式组.(二)不等式的性质实数的三条运算比较性质: ①0>-⇔>b a b a ②0<-⇔<b a b a ③0=-⇔=b a b a为不等式性质的证明提供了依据.不等式有如下10条性质.(1)对逆性如b a >,则a b <;反之如a b <,则b a >.(2)传递性 若,,c b b a >>则c a >. (3)加法单调性若b a >,则c b c a +>+.(4)乘法单调性若0,>>c b a ,则bc ac >;若0,<>c b a 则bc ac <.(5)相加法则若,,d c b a >>则d b c a +>+.(6)相减法则若d c b a >≥,,则d b c a ->-.(7)相乘法则若0,0>>>>d c b a ,则bd ac >.(8)相除法则若d c b a <<>≥0,0,则db c a >. (9)乘方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.(10)开方法则+∈R b a ,,若b a >,整数1>n ,则n n b a >.注意 性质(1),(3),(4),(9)和(10)是可逆的,因此这些性质可以用于证明不等式,也可用作解不等式.其余各条作为解不等式的依据,可以用于证明不等式(当不需可逆推理时).(三)不等式的证明方法 1.比较法比较法是直接求出所证不等式两边的差或商,然后推演结论的方法.欲证B A >(或B A <),可以直接将差式B A -与0比较大小;或者+∈R B A ,时,直接将商式BA与1比较大小.在什么情况下用比较法较好呢?一般地,当移项后容易分解成因式或配成完全平方时,可考虑用比较法;或当不等式两边都是乘积结构(或可化成乘积结构,成虽为商式结构,但分子、分母都可化为乘积结构)时,可考虑比较法;另外,能化成便于放大或缩小的商式,也可考虑用比较法.例1 设b a ,为不等的实数,求证)(46224224b a ab b b a a +>++证明 因为=++-+=+-++222222224224)2()(4)()(46ab b a ab b a b a ab b b a a=-+222)2(ab b a )(0)(4b a b a ≠>-所以)(46224224b a ab b b a a +>++例2 若0>>>c b a ,求证b a ac c b c b a c b a c b a +++>222证明 考虑用商式.因为=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛>+++c a a c b c c b a b b a b a a c c b cb a ac a c c b c b b a b a c b a c b a 222 1>⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛---ca cb ba c a cb b a所以b a ac c b c b a c b a c b a +++>2222.综合法综合法是“由因导果”,即从已知条件出发,依据不等式的性质、函数性质或熟知的基本不等式,逐步推导出要证明的不等式.常利用不等式的性质或借助于现成的不等式.因此,掌握的不等式越多,应用这种方法就越方便.例3 试证:若0,,>∀c b a ,则有abc b a c a c b c b a 6)()()(222222≥+++++证明方法1 因为0)(2≥-b a ,所以ab b a 2)(22≥+.又0>c ,所以abc b a c 2)(22≥+同理有 abc a c b abc c b a 2)(,2)(2222≥+≥+ 由相同加法则,三式相加即得结论. 方法2 欲证不等式等价于6≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+a b b a c a a c b c c b 因为2,2,2≥+≥+≥+abb ac a a c b c c b ,三式相加,即得结论. 说明 将所要证不等式分成几个同向不等式,然后将各式相加或相乘,这是证明不等式的常用手法.3.分析法分析法是“执因索果”,即从所要证明的结论出发,步步推求使不等式能成立的充分条件(或充分必要条件),直至归结到已知条件或已知成立的结论为止.例4 已知1,≥∈n N n ,求证⎪⎭⎫⎝⎛+++≥⎪⎭⎫ ⎝⎛-+++++n n n n 21412111215131111 (1)证明 欲证不等式(1),只需证⎪⎭⎫ ⎝⎛++++≥⎪⎭⎫ ⎝⎛-++++n n n n 214121)1(12151311(2)(2)式左边即⎪⎭⎫ ⎝⎛-+++++121513122n n n n (3)(2)式右边即=⎪⎭⎫ ⎝⎛+++++++n n n 214121214121 ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++n n n n 21412141212(4)比较(3)与(4)式,显然nn 2161411215131+++≥-+++ . 可知要证(2)式成立,只需证nn 2141212+++≥ (5)当1=n 时,(5)式成立;若k n =时,(5)式成立.则1+=k n 时22121412121221+++++≥+=+k k k k )1(21214121+++++=k k 即(5)式成立,结论得证.应用分析法的基本思路是“要C成立,只要B成立即可;要B成立,只要A成立…”,一直追溯到已知条件或已知的不等式为止.用形式符号表示出来,就是“ ←←←C B A ”.如果分析的每一步都是充分必要的,即“B A ⇔”则更好.应该强调的是,分析的思想和分析的方法是研究一切问题的一个基本方法.无论是数学,自然科学,还是经济学或社会科学,多半是以分析为先导.没有中肯的分析,就不会有正确的综合.所以在数学教育中培养学生分析问题的能力是有意义的.4.数学归纳法数学归纳法是由皮亚诺公理派生出来的一个重要数学方法.它对于等式或不等式的证明同样是有效的.主要用于与自然数n 有关的不等式命题.例5 求证对于任意的自然数n ,有121212654321+<-∙∙n n n 证明方法1 当n =1时,有3121<,不等式成立. 假设n =k 时,不等式为真,那么当n =k +1时,有221222121212212212654321++=++∙+<++∙-∙∙k k k k k k k k k 又)32)(12(3212212++⇔+<++k k k k k2)22()32)(12(22+<++⇔+<k k k k末式成立,故原不等式对1+=k n 成立.结论得证.方法2 构造数列 记122765432,212654321+∙∙=-∙∙=n n b n n a n n 显然),2,1( =<n b a n n1212+=<n b a a n n n所以121+<n a n 即得结论121212654321+<-∙∙n n n 说明 这个不等式的左边有明显的特点,不等式右式成平方根的形式.5.反证法前面几种方法都是直接证法,而反证法是一种间接证法,其中包括归谬法和穷举法. 反证法从否定所要证的结论入手,假设结论的否定为真,那么由此所引出的结论与已知条件或已知公理、定理、定义域性质之一相矛盾,或自相矛盾,因而结论的否定不成立,故原结论是真实的.当给定不等式不便于用直接法证明时,或其自身是一种否定式命题时,可考虑用反证法.例6 设+∈R z y x ,,,且1sin sin sin 222=++z y x ,求证2π>++z y x 证明 假如2π≤++z y x(1)则有220ππ≤-≤+<z y x因为正弦函数在区间⎪⎭⎫⎝⎛2,0π上是增函数,所以 z z y x cos )2sin()sin(=-≤+π(2)(2)式两边均为正数,两边平方,有x y y x x y y x cos sin cos sin 2cos sin cos sin 2222++y x z z 2222sin sin sin 1cos +=-=≤整理得0)cos(sin sin ≤+y x y x(3)但是,由(1)式可知⎪⎭⎫⎝⎛∈+2,0,,πy x y x ,表明(3)式不可能成立. 因此2π>++z y x6.换元法换元法是根据不等式的结构特征,选择适当的变量代换,从而化繁为简,化难为易,化未知为已知,或实现某种转化,达到证明的目的.换元法有时称为变换法.例7 设1=++z y x ,试证31222≥++z y x 证明 当31===z y x 时,不等式中的等号成立.于是引进参数v u ,,作变换: ⎪⎪⎪⎩⎪⎪⎪⎨⎧--=+=+=v u z v y u x 313131实际上这是平面1=++z y x 的一个参数表示形式.代入不等式的右端,得到=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=++222222313131v u v u z y x3131)(222≥++++v u v u 7.放缩法放缩法又称传递法,它是根据不等式的传递性,将所求证的不等式的一边适当地放大或缩小,使不等关系变得明朗化,从而证得不等式成立.这是不等思维的一个显著特征,其依据是实数集R的阿基米德性质.放缩法的具体做法要依据原不等式的结构来确定.例如,对于和式,采用将某些项代之以较大(或较小)的数,以得到一个较大(或较小)的和;或者用舍去一个或几个正项的办法,以得到较小的和.对于分式,则采取缩小(或放大)分母或者放大(或缩小)分子的办法来增值(或减值).总之,放缩法使用的是不等量代换,这与换元法使用等量代换有着明显的区别.例8 设),,2,1(0n i a i =>,求证123212321322121)()()(a a a a a a a a a a a a a n n <++++++++++ 证明左边+++++++<))(()(3212132112a a a a a a a a a a=++++++++-))((3211321n n na a a a a a a a a++⎪⎪⎭⎫ ⎝⎛++-++⎪⎪⎭⎫ ⎝⎛+- 321212111111a a a a a a a a=⎪⎪⎭⎫ ⎝⎛+++-+++-n n a a a a a a 21121111211111a a a a a n <+++- 说明 用放缩法证明不等式时,以下式子很有用: (1))1(111)1(11)1(11112>--=-<<+=+-n nn n n n n n n n (2)1121111-+<<++=-+n n n n n n n)1(1>--=n n n(3))1(212)1(≥+<+<n n n n n (4))(211N n n n n n ∈++<+ 不等式的证明方法还有构造法、判别式法、排序法、调整法、凸函数法以及微积分法等,这里不再一一列举.(四)解不等式1.同解不等式若两个不等式的解集相等,则称这两个不等式为同解不等式. 对于同解不等式,有以下重要结论:(1)不等式)()(x g x f >与不等式)()(x g x f <同解.(2)如果对于不等式)()(x g x f >定义域中的一切值)(x h 都有意义,则不等式)()()()(x h x g x h x f +>+与)()(x g x f >同解.(3)如果对于不等式)()(x g x f >定义域中的一切值都有0)(>x h ,则不等式)()()()(x h x g x h x f >与)()(x g x f >同解;如果0)(<x h ,则不等式)()()()(x h x g x h x f <与)()(x g x f >同解.(4)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则原不等式)()(x g x f >与)()(x g x f n n >在这个子集上同解,其中1,≥∈n n N .(5)不等式)()(x g x f >在其定义域中的某个子集上恒有0)()(>>x g x f ,则不等式n nx g x f )()(>在这个子集上与原不等式)()(x g x f >同解,其中1,≥∈n n N .(6)不等式0)()(>x g x f 与下面两个不等式组同解:⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (7) 不等式0)()(<x g x f 与下面两个不等式组同解:⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (8) 不等式0)()(>x g x f 与下面两个不等式组同解: ⎩⎨⎧<<⎩⎨⎧>>0)(0)(0)(0)(x g x f x g x f (9) 不等式0)()(<x g x f 与下面两个不等式组同解: ⎩⎨⎧><⎩⎨⎧<>0)(0)(0)(0)(x g x f x g x f (10) 不等式)()(x g x f <与不等式组)()()(x g x f x g <<-或⎩⎨⎧-><)()()()(x g x f x g x f同解;不等式)()(x g x f >与不等式组⎩⎨⎧-<>)()()()(x g x f x g x f 同解.2.不等式的解法 (1)一元一次不等式任何一元一次不等式都可以经过恒等变形整理成b ax > (2-3)的形式.不等式(2-3)的解集,视a 而定.若0>a 解集为}{a b x x >;若0<a ,解集为}{abx x <;若0=a ,不等式b ax >变成为b x >0,它不是一元一次不等式.此时如果0>b ,则b x >0无解;如果b x b ><0,0是绝对不等式,解集为),(+∞-∞.(2)一元一次不等式组解不等式组,首先要分别求出组内每个不等式的解集,然后求它们的交集.求交集时,可先在数轴上画出每个不等式的解集,然后根据重合部分找出它们的交集.设一元一次不等式组⎩⎨⎧>>dcx bax (2-4)中每个不等式都有解,则归纳为下列四种情形之一;⎩⎨⎧>>βαx x ⎩⎨⎧<<βαx x ⎩⎨⎧<>βαx x ⎩⎨⎧><βαx x 假设βα<,则以上四组的解集依次是:βααβ<<<>x x x空解(无解)(3)一元二次不等式任何一个一元二次不等式都可经过恒等变形整理成)0(02≠∨++a c bx ax(2-5)的形式,两边同除以非0实数a ,即可归纳成下面两种情形之一:第一种情形:02>++q px x①如果042<-=∆q p ,不等式①的解集为),(+∞-∞;如果042=-=∆q p ,不等式①的解集为}2{p x x ≠; 如果042>-=∆q p ,则02=++q px x 有两个实根21,x x ,设21x x <,那么不等式①的解集为}{21x x x x x ><或.第二种情形:02<++q px x②如果042≤-=∆q p ,不等式②无解;如果042>-=∆q p ,不等式②的解集为}{21x x x x <<,其中21,x x 是02=++q px x 的两个根.(4)一元二次不等式组一元二次不等式组可经过恒等变形整理成⎩⎨⎧∨++∨++0022221121c x b x a c x b x a的形式.其中21a a 和至少有一个不为0.这时可分别求出不等式(2-6)①和(2-6)②的解集.然后求出这两个解集的交集,即为原不等式的解.(5)一元高次不等式一元高次不等式的标准形式是)0(0)(0111≠∨++++=--n n n n n a a x a x a x a x f(2-7)其中),,1,0(n i a i =∈R .当3≥n 时,不等式(2-7)称为一元高次不等式.由高等代数知道,在实数域上多项式f (x )总可以分解成一次因式或既约二次因式的乘积,所以f (x )总可以表成)()()(21x f x f a x f n =.其中)(1x f 是f (x )中所有首项系数为1的一次因式的乘积,)(2x f 是所有首项系数为1的二次既约因式的乘积.由于首项系数为1的二次既约因式恒为正值,所以当0>n a 时,不等式f (x )>0或0)(1>x f 同解;当0<n a 时,不等式0)(>x f 与0)(1<x f 同解.0)(1∨x f 的解法有以下两种情形:第一种情形 当)(1x f 中没有重因式时,按以下步骤求解: 第一步,将)(1x f 表示成0)())(()(211∨---=k x x x x x x x f的形式,其中x i 是)(1x f 的零点,并有k x x x <<< 21.第二步,将)(1x f 的各个零点k x x x ,,,21 在数轴上标出,从而将数轴划分为k +1个子(2-6)① ②区间.从最右一个子区间),(+∞k x 开始,向左在各个子区间上依次相间地标出“+”,“-”标志.第三步,所有“+”的子区间(开区间)的并集,就是0)(1>x f 的解集;所有“-”的子区间(开区间)的并集,就是0)(1<x f 的解集.第二种情形 当)(1x f 中有重因式时,可将奇次重因式改为一次单因式,并将偶次重因式弃去,这样就可以按照没有重因式的情形处理.但是应将所得解集去掉偶次重因式的零点.这种解法叫做“零点分区法”.当用此法求解0)(1≥x f 或0)(1≤x f 时,要将开区间改为闭区间;同时,在弃去偶次重因式后,不必去掉偶次重因式的零点.(6)一元分式不等式一元分式不等式的一般形式为0)()(∨x g x f (2-8)由同解不等式的重要结论(7)可知,解不等式(2-8)只需解不等式0)()(∨x g x f . (7)无理不等式一元无理不等式的一般形式为0)(∨x f(2-9)其中f (x )是x 的无理函数.解无理不等式的基本方法是:利用同解不等式的重要结论(4),将所给无理不等式转化为与它同解的有理不等式组.解无理不等式常按如下步骤进行: 第一步,求出f (x )的定义域.第二步,解无理方程f (x )=0,即求出f (x )的零点[或判断f (x )没有零点].零点由小到大依次为k x x x ,,,21 ,将它们在数轴上标出,从而将定义域划分为k +1个子区间.第三步,在各个子区间内各任取一值α,使得0)(>αf [或0)(<αf ]的α所在的区间就是不等式0)(>x f [或0)(<x f ]解的区间.在解无理不等式的过程中,经常会因为在不等式的两边实施乘方运算而出现增根,所以必须检查所得解是否超出原不等式的定义域.另外,有些不等式的一边允许取负值,忽略这一点可能导致失解.(8)绝对值不等式绝对值号内含有未知元(或变元)的不等式称为含绝对值的不等式,简称绝对值不等式.解绝对值不等式的关键是去掉绝对值符号,使其转化为普通不等式.其主要依据是绝对值的定义和同解不等式的重要结论(10).(9)初等超越不等式指数不等式)1,0()(≠>∨a a ba x f若0≤b ,则不等式b ax f >)(为绝对不等式;不等式b a x f <)(无解.若0>b ,则当1>a 时,b x f a log )(>;当10<<a 时b x f a log )(<.指数不等式的常用解法:先将不等式两边化为同底的幂,然后区分1>a 和10<<a 两种情形,据此比较它们的指数.对数不等式)1,0(log ≠>∨a a bx a对数不等式的常用解法:先将不等式两边化为同底的对数,然后区分1>a 和10<<a 两种情形,据此比较它们的真数.解题时应注意不等式的定义域.三角不等式 含有变元(未知元)的三角函数不等式称为三角不等式. 解三角不等式一般都要归结到最简单三角不等式,形如)(tan ,cos ,sin R ∈∨∨∨a a x a x a x的不等式,叫做最简三角不等式.解最简三角不等式,可先在所给三角函数的一个周期内求出其特解,然后加上该函数的最小周期的整数倍,即为它的一般解.对于可以用初等方法求解的三角不等式,通常使用变量代换、因式分解等方法化繁为简,归结为最简三角不等式。
高一数学不等式知识点梳理在高中数学中,不等式是一个重要的概念和内容,在各个章节中都会涉及到不等式的相关知识和应用。
下面将对高一数学中的不等式知识点进行梳理和总结,以帮助同学们更好地理解和掌握不等式的相关内容。
一、不等式的基本概念1. 不等式的定义:不等式是数之间的大小关系的一种表示方式,用符号“<”、“>”、“≤”、“≥”等表示。
2. 不等式的解集:不等式的解集是使得不等式成立的所有实数的集合。
二、一元一次不等式1. 一元一次不等式的解法:(1) 通过绘制数轴法确定解集;(2) 利用性质将不等式转化为等价的形式求解。
2. 一元一次不等式的性质:(1) 加减性质:若a<b,则a±c<b±c(其中c为常数);(2) 倒置性质:若a<b,则-b<-a;(3) 倍增性质:若a<b,则ac<bc(c>0)或ac>bc(c<0);(4) 倒数性质:若a<b,则1/b<1/a(a>0,b>0)。
三、一元二次不等式1. 一元二次不等式的解法:(1) 使用根的性质来解决一元二次不等式;(2) 利用配方法将一元二次不等式转化成平方完全性质的形式求解。
2. 一元二次不等式的性质:(1) 零点性质:若x1、x2为一元二次不等式的解,则x1+x2=-b/a、x1*x2=c/a;(2) 符号性质:当a>0时,一元二次不等式y=ax²+bx+c的解集随x的增加而递增,当a<0时,解集随x的增加而递减;(3) 洛必达不等式:若0<a<b,则0<ln(a/b)<a/b<1。
四、绝对值不等式1. 绝对值不等式的解法:(1) 利用绝对值的定义进行讨论求解;(2) 利用绝对值的性质化简不等式,并得出解集。
2. 常见的绝对值不等式:(1) |x|<a(a>0)的解集为(-a, a);(2) |x|>a(a>0)的解集为(-∞, -a)∪(a, +∞);(3) |x-a|<b(b>0)的解集为(a-b, a+b);(4) |x-a|>b(b>0)的解集为(-∞, a-b)∪(a+b, +∞)。
数学中的不等式认识数学中的不等式和不等式解法数学中的不等式认识和不等式解法在数学中,不等式是指数、变量以及大于、小于、大于等于、小于等于等数学符号相结合的数学表达式。
不等式在数学中起着重要的作用,不仅出现在初等数学中,也被广泛应用于高等数学、微积分、线性代数等各个领域。
本文将介绍不等式的基本概念和解法。
一、不等式的基本概念在数学中,不等式用于比较两个数之间的大小关系。
常见的不等式符号有以下几种:1. 大于:>, 表示左边的数大于右边的数;2. 小于:<, 表示左边的数小于右边的数;3. 大于等于:≥, 表示左边的数大于或等于右边的数;4. 小于等于:≤, 表示左边的数小于或等于右边的数。
在解不等式的过程中,我们需要确定未知数的取值范围,使得不等式成立。
二、不等式的解法1. 加减法解不等式当不等式中只涉及到加减运算时,我们可以通过加减法来解决不等式。
例如,对于不等式 x + 3 > 7,我们可以将左边的 x + 3 和右边的 7进行逐步的运算,得到 x > 4。
2. 乘除法解不等式当不等式中涉及到乘除运算时,我们可以通过乘除法来解决不等式。
例如,对于不等式 2x < 10,我们可以通过将不等式两边同时除以 2,得到 x < 5。
需要注意的是,当不等式中涉及到乘除法时,若乘以或除以一个负数,则不等号的方向会发生改变。
3. 绝对值不等式的解法绝对值不等式是一类特殊的不等式,解决方法有所不同。
当绝对值不等式形如 |x - a| < b,我们可以将其转化为 -b < x - a < b,并求解不等式。
例如,对于 |x - 3| < 5,我们可以得到 -5 < x - 3 < 5,进而得到 -2 < x < 8。
当绝对值不等式形如 |x - a| > b,我们可以将其分为两个不等式:x -a >b 或 x - a < -b,并分别求解。
高一数学中的不等式知识点不等式是数学中常见的一个概念,也是高一数学中的重要知识点之一。
在学习不等式时,我们需要了解其基本定义和运算性质,掌握解不等式的方法,并能够应用不等式解决实际问题。
本文将从这几个方面进行讨论。
一、不等式的基本定义和运算性质:不等式是数学中表示数量关系的一种符号,常用的不等式符号有大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。
不等式中的变量通常表示某个量的范围,解不等式就是找到使不等式成立的变量的取值范围。
我们知道,不等式具有一些基本的运算性质,例如:1. 对不等式两边同时加(减)一个相同的数,不等式的大小关系不变。
例如:若a > b,则a + c > b + c。
2. 对不等式两边同时乘(除)一个正数,不等式的大小关系不变;对不等式两边同时乘(除)一个负数,不等式的大小关系改变,并且需要将不等号方向颠倒。
例如:若a > b,则ac > bc(c > 0);若a > b,则ac < bc(c < 0)。
二、解不等式的方法:解不等式的方法也需要根据题目的要求和具体情况来选择。
下面介绍几种常见的不等式解法:1. 代入法:将不等式中的变量代入其中的等式,求得等式的解,再根据不等式的性质确定最终的解。
例如,对于不等式2x - 3 > 7,可以将2x - 3代入等式2x - 3 = 7中,求得x = 5,再根据不等式的性质确定最终的解为x > 5。
2. 符号法:根据不等式的性质和运算规则,结合数轴图示,确定解的范围。
例如,对于不等式3x + 2 ≤ 8,可以通过移项和分段讨论的方式确定解的范围为-∞ ≤ x ≤ 2。
3. 区间法:通过对不等式两边进行变形或者使用数轴图示,确定变量所在的区间范围作为解的范围。
例如,对于不等式-2 < 3x -4 ≤ 7,可以通过移项和分段讨论的方式确定解的范围为2 < x ≤ 3。
不等式的有关概念
1、不等式定义:用符号“<”、“≤”、“>”、“≥”、“≠”连接而成的数学式子,叫做不等
式。
这5个用来连接的符号统称不等号。
只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
2、列不等式:步骤如下
(1)根据所给条件中的关系确定不等式两边的代数式;
(2)选择与题意符合的不等号将表示不等关系的两个式子连接起来。
3、用数轴表示不等式
(1)a<x: 表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。
(2)a≥x: 表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内。
(3)b<x<a: 表示大于b 而小于a 的全体实数。
4、不等式的基本性质
(1)基本性质1:若a<b,b<c,则a<c。
(不等式的传递性)
(2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。
①若a>b>c,则a+c>b+c,a-c>b-c ;
②若a<b<c,则a+c<b+c ,a-c<b-c。
(3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立; 若a>b ,且0>c ,则ac>bc.
②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。
若a>b ,且0<c ,则ac<bc .
要点诠释:(1)不等式基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握.
(2)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”.
5、一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式
的基本性质,解一元一次不等式的一般步骤为:【(1)去分母;(2)去括号;(3)移项;
(4)合并同类项;(5)系数化为1.】
(1)求分解,分别解不等式组中的每一个不等式,并求出它们的解;
(2)画公解,将每一个不等式的解集画在同一数轴上,并找出它们的公共部分;
(3)写组解,将(2)步中所确定的公共部分用不等式表示出来,就是原不等式组的解
集。
知识点1:不等式的定义
1.下列各式中不是不等式的为()
A.-2<5
B.x+9≤2
C.5x=8
D.6y+1>0
2.下列属于一元一次不等式的是()
A.10>8 B 2x+1>3y+2 C.2(1+y)>1/2y D.x+3>5
知识点2:列不等式
3.代数式3x+4的值不小于0,则据此可列不等式为()
A.3x+4<0
B.3x+4>0
C.3x+4≤0
D.3x+4≥0
知识点4:不等式的基本性质的应用
4.已知x<y,则-2/3____-2/3 (用不等号填空)。
知识点4:解一元一次不等式
5.不等式-x/3>5的解集是( )
A.x<-5/3 B.x>-5/3 C.x<-15 D.-x>15。