临时边坡稳定性计算
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
xxxxxxxxx公司露天煤矿边坡稳定性验算编制:审核:批准:二〇二〇年五月边坡稳定性验算按照《煤矿安全生产标准化基本要求及评分办法》的相关规定,xxxxx公司采运部技术人员于2020年5月初对露天煤矿进行边坡稳定性验算。
以2020年4月底现状为基础,对露天煤矿工作帮、内排土场、西南排土场、东一排土场、非工作帮的边坡进行验算。
一、露天煤矿边坡现状介绍xxxxx煤矿目前形成的边坡包括工作帮、内排土场、西南排土场、东一排土场、非工作帮。
工作帮:目前工作帮平均长度为 1.8km,工作帮年推进度较大,边坡暴露时间较短。
黄土台阶高度为8m,台阶坡面角为65°;岩石台阶和煤台阶高度为16m,台阶坡面角为70°。
上部台阶主要为第四系黄土、风积沙和第三系钙质红土,下部台阶主要为泥岩、砂质泥岩、粉砂岩和粗砂岩,地质结构简单。
内排土场:内排土场形成标高为1048、1080、1112、1128、1144、1160、1176、1192八个排土台阶,内排土场台阶坡面角为33°,岩性大致为下部岩石上部黄土。
内排土场单台阶平盘较宽,总体边坡角较缓。
西南排土场:西南排土场北侧紧邻罐子沟煤矿工业场地,南侧紧邻采场,边坡稳定至关重要。
西南排土场最高标高为1280m,单台阶高度为20m,台阶坡面角为33°。
影响西南排土场边坡稳定的主要因素为地表水以及渗入排弃土岩中的大气降水。
东一排土场:2015年东一排土场已排土到界,东一排土场北侧紧邻油库、炸药库,西南侧靠近罐子沟河道(黄河重要支流)。
东一排土场最高标高为1235m,单台阶高度为20m,台阶坡面角为33°。
影响东一排土场边坡稳定的主要因素为地表水以及渗入排弃土岩中的大气降水。
非工作帮:非工作帮为首采区拉沟位置处,服务于整个首采区开采期内,边坡暴露时间十几年。
目前使用的罐子沟排洪渠位于非工作帮南侧,非工作帮边坡管理意义重大。
二、露天煤矿剖面选取在首采区工作帮、内排土场、西南排土场及东一排土场布设了20个稳定分析剖面。
基坑放坡稳定性验算根据施工组织安排,10-03地块各楼栋基坑采用分块开挖,临时放坡的施工方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算,验算过程如下:参数信息:条分方法:瑞典条分法;考虑地下水位影响;基坑外侧水位到坑顶的距离(m):1.50;基坑内侧水位到坑顶的距离(m):8.00;放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数1 2.50 3.80 2.00 0.002 3.00 4.50 2.00 0.00计算原理:根据土坡极限平衡稳定进行计算。
自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。
将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。
将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。
计算公式:式子中:--土坡稳定安全系数;Fsc --土层的粘聚力;--第i条土条的圆弧长度;liγ --土层的计算重度;--第i条土到滑动圆弧圆心与竖直方向的夹角;θiφ --土层的内摩擦角;--第i条土的宽度;bi--第i条土的平均高度;hi――第i条土水位以上的高度;h1i――第i条土水位以下的高度;h2iγ' ――第i条土的平均重度的浮重度;q ――第i条土条土上的均布荷载;其中,根据几何关系,求得hi为:式子中:r --土坡滑动圆弧的半径;l--坡角距圆心垂线与坡角地坪线交点长度;α ---土坡与水平面的夹角;h1i的计算公式当h1i ≥ hi时,取h1i= hi;当h1i ≤0时,取h1i= 0;h2i的计算公式:h2i = hi-h1i;hw――土坡外地下水位深度;li的几何关系为:计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.391 45.259 -0.038 8.449 8.449示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.321 52.516 -0.028 18.947 18.947示意图如下:计算结论如下:第 1 步开挖内部整体稳定性安全系数 Fs= 1.391>1.30 满足要求! [标高 -3.60 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.321>1.30 满足要求! [标高 -6.60 m]宝山新城顾村A单元10-03、10-05地块项目部2018年3月8日。
第一章绪论1.1引言边坡是自然或人工形成的斜坡,是人类工程活动中最基本的地质环境之一,也是工程建设中最常见的工程形式。
随着我国基础设施建设的蓬勃发展,在建筑、交通水利、矿山等方面都涉及到很多边坡稳定问题。
边坡的失稳轻则影响工程质量与施工进度,重则造成人员伤亡与国民经济的重大损失。
因此,边坡的勘察监测、边坡的稳定性分析、边坡的治理,是降低降低灾害的有效途径,是地质和岩土工程界重点研究的问题。
随着城市化进程的加速和城市人口的膨胀,越来越多的建筑物需要被建造,城市的用地也越来越珍贵。
特别是对于长沙这样多丘陵的城市来说,建筑边坡成为了不可避免的工程。
1.2边坡破坏类型边坡的破坏类型从运动形式上主要分为崩塌型和滑坡型。
崩塌破坏是指块状岩体与岩坡分离,向前翻滚而下。
一般情况岩质边坡易形成崩塌破坏,且在崩塌过程中岩体无明显滑移面。
崩塌破坏一般发生在既高又陡的岩石边坡前缘地段,破坏时大块岩体由于重力或其他力学作用下与岩坡分离而倾倒向前。
崩塌经常发生在坡顶裂隙发育的地方。
主要原因有:风化等作用减弱了节理面的黏聚力,或者是雨水进入裂隙产生水压力,或者是气温变化、冻融松动岩石,或者是植物根系生长造成膨胀压力,以及地震、雷击等外力作用(图1-1)。
滑坡是指岩土体在重力作用下,沿坡内软弱面产生的整体滑动。
与崩塌相比滑坡通常以深层破坏形式出现,其滑动面往往深入坡体内部,甚至可以延伸到坡脚以下。
其滑动速度虽比崩塌缓慢,但是不同的滑坡滑动速度相差很大,这主要取决于滑动面本身的物理力学性质。
当滑动面通过塑性较强的岩土体时,其滑动速度一般比较缓慢;相反,当滑动面通过脆性岩石,且滑动面本身具有一定的抗剪强度,在构成滑面之前可承受较高的下滑力,那么一旦形成滑面即将下滑时,抗剪强度急剧下降,滑动往往是突发而迅速的。
滑坡根据滑动模式和滑动面的纵断面形态可以分为平面滑动、圆弧滑动、楔形滑动以及复合形。
当滑动面倾向与边坡面倾向基本一致,并且存在走向与边坡垂直或接近垂直的切割面,滑动面的倾角小于坡角且大于其摩擦角时有可能发生平面滑动。
基槽边坡稳定性计算:本工程其坡面的土质基本为砂砾土的亚园砾土,属无粘性土边坡。
在土坡上的分力有土坡下滑趋势的剪切力T、单元土自重G、阻止土体下滑的抗剪力Tf,而阻止土体下滑的抗剪力Tf则为土方单元体自重在坡面法线方向的分力N引起的摩擦力,即Tf=Ntanα=G×cosβ×tanα。
抗滑力和滑动力的比值为安全系数K=Tf/T= G×cosβ×tanα/Gsinβ= tanα/ tanβ,由此可见从理论上讲当坡角小于土方内摩擦角时(β<α)K>1土坡是稳定的,一般性土坡为保证土坡稳定安全系数取值为K>1.3-1.5,所以查中砂园砾内摩擦角为45度,则tan45=1,tanβ=5.2/10=0.52 K= tanα/ tanβ=1/0.52=1.92>1.3-1.5(安全)结论是安全稳定的。
与3#楼相邻基槽边坡稳定性计算:与三号楼边坡高度为5.55m,三号楼基础宽为13.50m,坡角至坡顶水平距离为3m,三号楼压重为(钢筋80Kg/平米、混凝土0.5×2400=1200Kg/平米,1200+80=1280×14层=17920 Kg/平米)17920 Kg/平米=179.2KN/平米,坡面为砂砾土指标为天然自重γ=19 KN,内摩擦角为38度,粘聚力0Kpa。
1、基坑剖面如图所示。
2、取滑动园弧,下端通过坡角A点,上端通过3#楼基础边缘B 点,加入3#楼共14层自重和一层工作面施工荷载7KN=186.2KN 进行验算此土坡的稳定性,取半径R=21m。
3、取土条宽B=1/10R=2.1m4、土条编号:作园心O点的垂线,垂直线处为0条,依次编号为1-9条。
5、计算AB弧长L:设园心∠AOB=α由sinα/2=AB/2/R=0.517,得α=62.26L=αЛR/180=62.26×3.14×21/180=22.816、3#楼压重179.2KN+施工荷载7KN=186.2KN分布在6个土条上,每个土条为31.2KN。
基坑放坡稳定性验算根据施工组织安排, 10-03 地块各楼栋基坑采用分块开挖,临时放坡的施工 方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算, 验算过程如下:参数信息 :条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.50 ; 基坑内侧水位到坑顶的距离 (m):8.00 ; 放坡参数:序号 放坡高度 (m)1 2.503.80 2.00 2 3.004.50 2.00 计算原理: 根据土坡极限平衡稳定进行计算。
通常滑动面接近圆弧, 可将滑裂面近似成圆弧计算。
将土坡的土体沿竖直方向分 成若干个土条, 从土条中任意取出第 i 条,不考虑其侧面上的作用力时, 该土条r F - /■- .、”/•■上存在着: 1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数, 考虑安全 储备的大小,按照《规范》要求,安全系数要满足 >=1.3 的要求。
放坡宽度 (m) 平台宽度 (m) 条分块数 0.00 0.00自然界匀质土坡失去稳定, 滑动面呈曲面,式子中:F s -- 土坡稳定安全系数;c -- 土层的粘聚力;l i --第i 条土条的圆弧长度;丫 -- 土层的计算重度;9 i --第i 条土到滑动圆弧圆心与竖直方向的夹角;© -- 土层的内摩擦角;b i --第i 条土的宽度;h i --第i 条土的平均高度; h ii ――第i 条土水位以上的高度;h 2i ――第i 条土水位以下的高度;丫 ’一一第i 条土的平均重度的浮重度;将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。
计算公式:考虑安全 工*£ + f (?% + r 俎)勺tan (p第i条土条土上的均布荷载;其中,根据几何关系,求得h i为:______________ __________ 2&二一[(f-0・5)xg _厶]—r + 4 -(/-0.5)xZ?Jtana!式子中:r -- 土坡滑动圆弧的半径;丨0 --坡角距圆心垂线与坡角地坪线交点长度;a --- 土坡与水平面的夹角;h ii的计算公式\( h \cos Qi- \r sm(/7 + d)- H几二九一I COSM)当h ii > h i 时,取h ii = h i当h ii < 0 时,取h ii = 0 ;h2i的计算公式:h 2i = h i -h ii ;h w 土坡外地下水位深度;i i的几何关系为:h_ 1 )x ® / i 乂 bj — Iarccos ----- --- ——-一 arccos -- ——-x 2 x 旷 x 兀360二90-碎亦上四4k计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数 Fs : 计算步数 安全系数 滑裂角(度)圆心X(m)圆心丫(m)半径R(m)第 1 步 1.39145.259-0.038 8.449 示意图如下:计算结论如下:8.449第 2 步 1.32152.516 -0.028 示意图如下: 圆心X 18.947圆心Y(m) 半径R(m) 18.947■1daagw •oooml计算步数安全系数 滑裂角(度)第 1 步开挖内部整体稳定性安全系数 Fs= 1.391>1.30 满足要求 ! [ 标 高-3.60 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.321>1.30 高 -6.60 m]2018年3月8日 满足要求 ! [ 标宝山新城顾村A 单元 10-03 10-05 地块项目部。
铁路路基边坡稳定性分析方法及防护措施发表时间:2015-04-16T10:01:26.343Z 来源:《建筑模拟》2015年3月总第99期供稿作者:刘伟楠[导读] 边坡是指具有一定坡度的受地质环境作用自然形成的边坡以及为满足人类生产和生活需求而改造而成的人工边坡的统称。
刘伟楠(哈尔滨铁道职业技术学院黑龙江哈尔滨项目 150080)摘要:在铁路工程建设中,为保证路基的整体稳定性能,路基边坡设计时往往要对边坡稳定性进行分析与计算,从而确定边坡的形状、坡率和坡高,并采取适宜的坡面防护措施。
本文主要从边坡的分类、稳定性分析方法及其常用防护方法等方面进行了阐述,为路基边坡设计与防护提供一定的理论依据。
关键词:路基;边坡;稳定性分析;边坡防护1 边坡的概念及分类边坡是指具有一定坡度的受地质环境作用自然形成的边坡以及为满足人类生产和生活需求而改造而成的人工边坡的统称。
边坡的分类方法及划分标准各不相同,边坡通常包括如下几种分类:(1)按形成原因可分为自然边坡和人工边坡。
(2)按物质构成可分为土质边坡、岩石边坡和二元结构边坡(岩土混合边坡)。
(3)按地层性质可分为粘性土边坡、碎石类土边坡、砂类土边坡和特殊类土边坡(包括黄土类边坡、膨胀土类边坡、冻土类边坡等)。
(4)按所属行业类别可分为道路边坡、水电边坡、采矿边坡和建筑边坡等类型。
(5)按高度可分为一般边坡和高边坡。
(6)按断面形式可分为直线型边坡、折线型边坡和阶梯型边坡。
(7)按使用年限、可分为临时性边坡(工作年限不超过两年)和永久性边坡(工作年限两年以上)。
2 常用边坡稳定性分析方法边坡稳定性分析方法总体上分为定性分析和定量分析两种。
对边坡进行设计时通常采用定量分析方法评定其稳定性。
定量分析法主要包括极限平衡法和数值分析法。
极限平衡法由于其原理与计算模型简单,便于理解,后经过许多学者的改进与修正已趋于成熟,目前在边坡稳定性评定方面仍被广泛应用。
2.1瑞典条分法这种方法适用于分析滑面为圆弧形的边坡稳定性。