实验七 光电倍增管的特性与特性参数测试
- 格式:docx
- 大小:514.62 KB
- 文档页数:8
物电学院综合与设计性实验方案(学生)姓名潘虹吉学号1430140518 2016 年12 月日实验课程名称电子与光电子材料学院专业材料科学与工程实验项目名称光敏二、三极管的光电性能研究和光电倍增管特性实验实验班级2014级1班实验项目类型探究型实验方案编写人潘虹吉项目合作人员罗刚实验地点实训楼实验时间2016.12.指导教师审阅范强老师实验员曹进老师一、目的与要求综述:光敏二、三极管的光电性能研究目的:1.掌握光敏二、三极管的原理和特性2.利用DH-CGOP1光电传感器设计实验仪、万用表等测试光敏二、三极管的伏安特性曲线;3.利用DH-CGOP1光电传感器设计实验仪、万用表等测试光敏二、三极管的光照特性曲线;光电倍增管特性实验目的:1.了解光电倍增管的基本特性,学习光电倍增管基本参数的测量方法。
2.掌握暗电流的测量方法;3.光电倍增管放大倍数的计算;4.掌握光电倍增管光电特性测量;二、主要实验原理、内容与步骤:1.光敏二极管工作原理光敏二极管是将光信号变成电信号的半导体器件。
它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。
光敏二极管是在反向电压作用之下工作的。
没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。
当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。
它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也。
光电倍增管特性及应用光电倍增管(photomultiplier tube,简称PMT)是一种具有高增益和低噪声的光电探测器,广泛应用于光电传感、光谱分析、医学影像等领域。
在本文中,我将详细介绍光电倍增管的特性和应用。
光电倍增管的结构由光阴极、光学系统、电子倍增系统和采样系统组成。
当入射光通过光学系统到达光阴极时,光子会激发光阴极上的电子发射,被光阴极吸收的光子数与发射电子数成正比。
这些发射的电子经过电子倍增系统,通过二次发射和隔离电子逐级倍增,从而形成一个电荷增益的级联过程。
最后,采样系统将输出信号转化为电压脉冲形式。
光电倍增管具有以下特点:1. 高增益:光电倍增管的增益通常在10^6到10^8之间,即每一个入射光子可以产生大量的电子被乘以倍增因子。
2. 宽动态范围:光电倍增管的输出信号可以覆盖从甚微的光到极强的光,可以处理不同亮度范围的信号。
3. 快速响应:光电倍增管的时间响应通常在几纳秒到几十纳秒之间,可以满足对快速变化的光信号的需求。
4. 低噪声:光电倍增管的噪声来自于光电子发射过程和电子倍增过程中的随机性,但其噪声水平较低,可以提供较高的信噪比。
5. 可靠性:光电倍增管具有长寿命、高可靠性和较好的线性输出特性,适用于长时间连续工作。
光电倍增管在许多领域都有广泛应用:1. 光电传感:光电倍增管可以将光信号转换为电信号,用于检测和测量光的强度、波长和时间特性。
例如,在光谱仪、光度计和测光仪中,光电倍增管可以实现对光谱的高灵敏度和高分辨率的测量。
2. 时间测量:光电倍增管的快速响应特性使其在时间测量中得到广泛应用。
例如,在飞行时间质谱仪中,光电倍增管可以测量荷电粒子的到达时间,从而确定其质量和能量,广泛应用于物理、化学和生物学等领域。
3. 放射性测量:光电倍增管可用于检测和测量放射性粒子的能量和强度。
例如,在核物理实验中,光电倍增管可以用于测量射线的能量和位置,从而提供有关粒子的重要信息。
4. 医学影像:光电倍增管广泛应用于医学影像,如正电子发射断层成像(PET)和单光子发射断层成像(SPECT),用于检测和诊断疾病。
物理实验技术如何测量光电测试参数与特性光电测试是物理学中一项关键的技术,它涉及到测量光电子器件的特性和参数。
光电子器件是一种能够将光信号转换为电信号或将电信号转换为光信号的器件,它在许多领域都得到了广泛的应用,如光通信、太阳能电池等。
为了能够准确地评估和改进光电子器件的性能,需要借助物理实验技术来测量和分析其参数和特性。
光电测试的主要目标是测量器件的光电流、响应时间、光谱响应和光电转换效率等参数。
其中,光电流是指光电子器件在受光照射下产生的电流,它与入射光的强度和光子能量之间有着密切的关系。
为了测量光电流,常用的方法是利用光电二极管或光电倍增管来转换光信号为电信号,并通过电流表或示波器来测量。
在实验中,可以调节入射光的强度和光波长来研究其对光电流的影响,从而研究器件的光谱响应和光电转换效率。
除了光电流,响应时间也是光电子器件的重要特性之一。
响应时间是指光电子器件从受光刺激到产生响应信号的时间间隔,它反映了光电子器件对于快速变化光信号的响应速度。
在实验中,可以通过对器件施加快速的光脉冲信号,并观察器件输出信号的变化来测量响应时间。
常用的方法包括光脉冲发生器和示波器等设备,通过调节脉冲信号的频率和幅度,可以实现对光电子器件响应时间的精确测量。
除了光电流和响应时间,光谱响应也是光电子器件的一个重要性能参数。
光谱响应是指光电子器件对不同波长或能量的入射光的响应程度。
不同的光电子器件对不同波长的光具有不同的响应特性,通过测量光电子器件在不同波长光下的输出电流或电压,可以得到器件的光谱响应曲线。
常用的设备包括光源、单色仪和光电流表等。
利用这些设备,可以实现对器件的光谱响应进行准确测量和分析。
最后,光电转换效率是衡量光电子器件性能的重要指标。
光电转换效率是指光电子器件将入射光能转化为输出电信号的效率,它与器件的结构、材料和工艺等因素密切相关。
为了测量光电转换效率,需要准确测量器件的输入光功率和输出电流或电压,并通过计算得到。
光电倍增管的主要特性
(1)倍增系数M
◆倍增系数M 等于各倍增电极的二次电子发射电子 的乘积。
如果n 个倍增电极的 都一样,则M = ,因此,阳极电流I 为:
◆ M 与所加电压有关,一般在 之间。
如果电压有波动,倍增系数也
要波动。
一般阳极和阴极的电压为1000V ~2500V ,两个相邻的倍增电极的电压差为50V ~ 100V 。
(2)阴极灵敏度和总灵敏度
一个光子在阴极上能够打出的平均电子数叫做光电阴极的灵敏度。
一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。
光电倍增管的放大倍数或总灵敏度如图所示。
极间电压越高,灵敏度越高;但极间电压也不能太高,太高反而会使阳极电流不稳。
另外,由于光电倍增管的灵敏度很高,所以不能受强光照 射,否则将会损坏。
光电倍增管的特性曲线
(3)光谱特性
光电倍增管的光谱特性与相同材料光电管的光谱特性很相似。
对各种不同波长区域的光,应选用不同材料的光电阴极。
光谱特性
(4)暗电流及本底电流
◆当管子不受光照,但极间加入电压时在阳极上会收集到电子,这时的电流称为暗电流。
◆如果光电倍增管与闪烁体放在一起,在完全避光情况下,出现的电流称本底电流,其值大于暗电流。
增加的部分是宇宙射线对闪烁体的照射而使其激发,被激发的闪烁体照射在光电倍增管上而造成的。
本底电流具有脉冲形式,因此也成为本底脉冲。
n i I i δ=581010i δn i δi δ。
光电倍增管及其基本特性当入射光很微弱时,普通光电管产生的光电流很小,只有零点几μA,很不容易探测。
这时常用光电倍增管对电流进行放大,下图为其内部结构示意图。
1. 光电倍增管的结构和工作原理由光阴极、次阴极(倍增电极)以及阳极三部分组成。
光阴极是由半导体光电材料锑铯做成;次阴极是在镍或铜-铍的衬底上涂上锑铯材料而形成的,次阴极多的可达30级;阳极是最后用来收集电子的,收集到的电子数是阴极发射电子数的105~106倍。
即光电倍增管的放大倍数可达几万倍到几百万倍。
光电倍增管的灵敏度就比普通光电管高几万倍到几百万倍。
因此在很微弱的光照时,它就能产生很大的光电流。
2. 光电倍增管的主要参数(1)倍增系数M 倍增系数M等于n个倍增电极的二次电子发射系数δ的乘积。
如果n个倍增电极的δ都相同,则M=1因此,阳极电流I 为i —光电阴极的光电流光电倍增管的电流放大倍数β为M与所加电压有关,M在105~108之间,稳定性为1%左右,加速电压稳定性要在%以内。
如果有波动,倍增系数也要波动,因此M具有一定的统计涨落。
一般阳极和阴极之间的电压为1000~2500V,两个相邻的倍增电极的电位差为50~100V。
对所加电压越稳越好,这样可以减小统计涨落,从而减小测量误差。
光电倍增管的特性曲线(2)光电阴极灵敏度和光电倍增管总灵敏度一个光子在阴极上能够打出的平均电子数叫做光电倍增管的阴极灵敏度。
而一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。
光电倍增管的最大灵敏度可达10A/lm,极间电压越高,灵敏度越高;但极间电压也不能太高,太高反而会使阳极电流不稳。
另外,由于光电倍增管的灵敏度很高,所以不能受强光照射,否则将会损坏。
(3)暗电流和本底脉冲一般在使用光电倍增管时,必须把管子放在暗室里避光使用,使其只对入射光起作用;但是由于环境温度、热辐射和其它因素的影响,即使没有光信号输入,加上电压后阳极仍有电流,这种电流称为暗电流,这是热发射所致或场致发射造成的,这种暗电流通常可以用补偿电路消除。
光电倍增管的基本特性外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。
光电倍增管就是根据二次电子倍增现象制造的。
它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如100V)。
当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。
一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。
二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。
通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达108,特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。
光电倍增管的窗口可分为侧窗式和端窗式两种.1) 灵敏度和工作光谱区光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。
当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv2=h(-ф,( h(为光子能量,ф为电子的表面功函数,1/2mv2为电子动能)。
当h(<ф时,不会有表面光电发射,而当h(=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/(称为这种材料表面的阈波长。
随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。
显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。
一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。
光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。
光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为μA/lm。
显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。
. I目录1.概述 (1)2.结构 (1)3.电子倍增系统 (2)4.光谱响应 (2)5.使用材料 (3)5.1光阴极材料 (3)5.2窗材料 (3)6.使用特性 (4)6.1. 辐射灵敏度 (4)6.2.光照灵敏度 (4)6.3.电流放大(增益) (4)6.4.阳极暗电流 (5)6.5 温度特性 (5)6.6.滞后特性 (5)6.7.均匀性 (5)6.8.时间特性 (5)7.应用举例 (5)结束语 (7)参考文献 (7)光电倍增管原理特性及其应用摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。
本文首先介绍光电倍增管的一般原理,对它的工作原理进行较详细的描述,然后介绍其组成结构,使用特性及其应用,并归纳总结了几种常用的光电倍增管光电阴极材料及窗材料,最后介绍了光电倍增管在一些领域的应用,如光电测光等。
关键词:光电倍增管;端窗型;侧窗型;光谱响应;材料;特性,光电测光。
1.概述光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。
当光照射到光阴极时,光阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。
然后把放大后的电子用阳极收集作为信号输出。
因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。
另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。
基于外光电效应和二次电子发射效应的电子真空器件。
它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,能测量微弱的光信号。
光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部分(见图)。
图1 光电倍增管工作原理图阴极室的结构与光阴极K的尺寸和形状有关,它的作用是把阴极在光照下由外光电效应产生的电子聚焦在面积比光阴极小的第一打拿极D1的表面上。
二次发射倍增系统是最复杂的部分。
打拿极主要选择那些能在较小入射电子能量下有较高的灵敏度和二次发射系数的材料制成。
一、实验目的1. 了解光电管的基本结构和工作原理。
2. 研究光电管的伏安特性,分析不同电压对光电流的影响。
3. 探究光电管的截止电压与入射光频率的关系。
4. 验证光电效应方程,并测定普朗克常量。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
光电效应的实验原理如图1所示。
入射光照射到光电管阴极K上,产生的光电子在电场的作用下向阳极A迁移形成光电流。
改变外加电压,测量出光电流I的大小,即可得出光电管的伏安特性曲线。
光电效应的基本实验事实如下:1. 对应于某一频率,光电效应的I-U关系如图2所示。
从图中可见,对一定的频率,有一电压U0,当时,电流为零,这个相对于阴极的负值的阳极电压U0,被称为截止电压。
2. 当U>U0后,I迅速增加,然后趋于饱和,饱和光电流IM的大小与入射光的强度P成正比。
3. 对于不同频率的光,其截止电压的值不同,如图3所示。
4. 截止电压U0与频率v的关系如图4所示,与v成正比。
当入射光频率低于某极限值(随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。
5. 光电效应是瞬时效应。
即使入射光的强度非常微弱,只要频率大于v0,在开始照射后立即有光电子产生,所经过的时间至多为10^-9秒的数量级。
根据爱因斯坦的光量子理论,光子能量E与频率v的关系为E=hv,其中h为普朗克常量。
光电效应方程为E=hf=φ+KEmax,其中φ为金属的逸出功,KEmax为光电子的最大动能。
当光电子的最大动能KEmax为0时,对应的截止电压U0为U0=φ/hv。
三、实验仪器与材料1. 光电管2. 汞灯3. 光栅单色仪4. 电压表5. 微电流计6. 滑线变阻器7. 电阻箱8. 信号发生器9. 数据采集器10. 计算机及实验软件四、实验步骤1. 将光电管接入电路,调节滑线变阻器,使电压表显示为零。
2. 调节汞灯,使光栅单色仪的出射光垂直照射到光电管阴极上。
3. 调节电压表,使电压逐渐增加,同时观察微电流计的读数。
光电倍增管使用特性光电倍增管(Photomultiplier Tube,简称PMT)是一种能将进入光电倍增管的单个光子转化为电流放大的光电转换器件。
它具有非常高的灵敏度和快速的响应速度,广泛应用于光子计数、荧光光谱、核与粒子物理学等领域。
光电倍增管的基本结构包括光阴极、一系列倍增极、收集极和输出电子接口。
当光子穿过光阴极时,会激发光电子的发射,产生初级电子。
初级电子由电场加速并打到第一个倍增极上,经过级联、倍增,最终在收集极上形成电流信号。
光电倍增管利用倍增过程中的二次发射效应和级联极的电场控制,将输入的单个光子转化为一个很大的电子倍增信号。
1.高增益:光电倍增管的增益通常在10^6-10^8量级,即每个进入光电倍增管的光子最终可以得到百万倍到亿倍的增强,这大大提高了信号的可靠性和测量的精确度。
2.宽动态范围:光电倍增管具有很宽的动态范围,可以在光强从几个光子到强光束甚至强电弧光源的程度下工作。
这使得光电倍增管非常适合于不同强度光的测量和检测。
3.快速响应:光电倍增管的响应时间通常在纳秒到微秒的量级,具有很高的时间分辨率。
因此,当需要对信号进行高速度的测量时,光电倍增管是一种非常理想的选择。
4.低噪声:光电倍增管具有很低的内部噪声,这可以保证非常高的信噪比,并提供非常精确的信号测量。
5.宽频率响应:光电倍增管具有宽频率响应范围,能够在直流到高频的频率下工作,这使得光电倍增管可以应用于不同频率下的信号检测和测量。
6.光谱响应范围广:光电倍增管对波长范围的响应通常从可见光到红外光,这使得它在光谱分析和成像等领域具有广泛应用。
除了以上的特性,光电倍增管还有一些应用上的特殊要求。
例如,在一些特定的应用场合中,对光电倍增管的暗噪声、温度稳定性、线性度和阴极的选择等方面有着更高的要求。
总之,光电倍增管是一种具有高增益、快速响应、低噪声和宽频率响应等优点的光电转换器件。
它在光子计数、荧光光谱、核与粒子物理学等领域发挥着重要的作用,为科学研究和工程应用提供了可靠的光探测技术。
欧阳索引创编 2021.02.02 欧阳索引创编 2021.02.02光电倍增管简介及使用特性我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。
介绍欧阳家百(2021.03.07)今天我们使用的光电器件中,光电倍增管(PMT )是一种具有极高灵敏度和超快时间响应的光探测器件。
典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。
当光照射光阴极,光阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。
放大后的电子被阳极收集作为信号输出。
因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。
光电倍增管还有快速响应、低本底、大面积阴极等特点。
欧阳索引创编2021.02.02下面将讲解光电倍增管结构的主要特点和基本使用特性。
结构一般,端窗型(Head-on )和侧窗型(Side-on )结构的光电倍增管都有一个光阴极。
侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。
通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。
大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。
端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。
端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。
端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。
欧阳索引创编2021.02.02电子倍增系统光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得到倍增。
实验七 光电倍增管的特性与特性参数测试 1. 实验目的: 光电倍增管是最灵敏的光电器件。它的暗电流、噪声、灵敏度大范围可调和时间响应等特性都具有独特的特点,因此,光电倍增管是非常优秀的光电器件。掌握光电倍增管的主要特性参数,及其它的供电电路对于正确应用光电倍增管解决微弱辐射的测量技术是非常重要的。
2. 实验仪器: 1) GDS-Ⅱ型光电综合实验平台主机; 1) GDBS-Ⅰ型光电倍增管实验装置;
3. 实验内容: 1、 光电倍增管阳极暗电流ID的测量;
2、 光电倍增管阳极光照灵敏度Sa的测量;光电倍增管的灵敏度Sa与电源电压Ubb
的关系;
3、 测量光电倍增管的增益G;
4. 实验原理
1)光电倍增管工作原理 光电倍增管是真空光电器件,它主要由光入射窗、光电阴极面、电子聚焦系统、倍增电极和阳极等5部分构成。其工作原理如“光电技术”教材第4章所讲述,分下面5部分: (1) 光子透过入射窗口玻璃入射到玻璃内层光电阴极上,窗口玻璃的透过率满足光电倍增管的光谱响应特性; (2) 进入到光电阴极上的光子使光电阴极材料产生外光电效应,激发出电子,并飞离表面到真空中,称其为光电子; (3) 光电子通过电场加速,并在电子聚焦系统的作用下射入到第一倍增极D1上,倍增极D1将发射出比入射光电子数目增多δ倍,这些二次电子又在电场作用下射入到下一增极; (4) 入射电子经N级倍增后,电子数就被放大δN倍; (5)经过电子倍增后的二次电子由阳极收集起来,形成阳极电流,在负载上产生压降,输出电压信号Uo。
2)光电倍增管的基本特性参数 光电倍增管的特性参数包括光电灵敏度、电流增益、光电特性、阳极特性、暗电流特性与时间响应等特性。 ① 光电灵敏度 光电灵敏度是光电倍增管探测光信号能力的一个重要标致,光电灵敏度通常分为阴极灵敏度Sk与阳极灵敏度Sa,同时,它们又可分为光谱灵敏度与积分灵敏度。关于灵敏度的定
义问题请参考“光电技术”教材的第4章光电倍增管的论述。光电倍增管的阳极光谱灵敏度常用Sa,λ表示,阳极积分灵敏度常用Sa表示,其量纲为A/lm。
② 阴极光谱灵敏度Sk,λ
光电倍增管的阴极光谱灵敏度常用Sk,λ
表示,它为阴极电流与入射光谱光通量之比,即
λλ,kΦ
ISK(μA/lm) (7-1)
③ 阴极积分灵敏度Sk
阴极积分灵敏度常用Sk表示,它为阴极电流与入射光通量(积分)之比,即
ΦISKλ,k(μA/lm) (7-2)
④ 阴极灵敏度的测量 光电倍增管阴极灵敏度的测量原理如图7-1所示。入射到阴极K的光照度为Ev,光电
阴极的面积为A,则光电倍增管接受到的光通量φv为
AEvv
(7-3) 将式(7-3)代入式(7-2)便可通过测量入射到PMT光敏面上的照度测量入射光通量,如果入射光为单色,则所测量出来的阴极灵敏度为光谱灵敏度,而入射光为白色,则所测量出来的阴极灵敏度为积分灵敏度。 入射到光电阴极的光通量由LED发光二极管提供,用LED发光二极管很容易提供各种
颜色的单色光,可以近似地将其看作光谱辐射量,可以在实验前先将LED光源用照度计标定;测量时,用数字电流表测出流过LED的电流ILED(ILED已被标定),它与照度相对应,
当测出LED光源出光口的面积时,便很容易计算出它发出的光通量。实验中常用的光通量为10-5~10-2lm范围。 ⑤ 阳极光照灵敏度Sa
阳极光照灵敏度Sa的定义为光电倍增管在一定的工作电压下阳级输出电流Ia与入射到
光电阴极上光通量φ之比,即
ΦISaa(A/lm)
(7-4) ⑥ 电流放大倍数(增益)G 光电倍增管的电流放大倍数(增益)G的定义为在一定的入射光通量和阳极电压下,阳极电流Ia与阴极电流Ik之比,即
kaI
IG (7-5)
由于阳级灵敏度为PMT增益与阴极电流之积,因此,增益又可表示为
kaS
SG
(7-6) 增益G描述了光电倍增管系统的倍增能力,它是工作电压的函数。
⑦ 暗电流Id
当光电倍增管处于隔绝辐射的暗室中的阳极输出电流称为暗电流。暗电流与光电倍增管的供电电压Ubb有关,因此必须首先确定它的供电电压Ubb,才能测定它的暗电流Id。引起
暗电流的主要因素如“光电技术”中叙述的有:欧姆漏电、热电子发射、场致发射、玻璃荧光、玻壳放电等。
3)光电倍增管的供电电路 光电倍增管的供电电路常采用如图7-2 所示的电阻链分压结构。它由N+1个电阻串联而成,其中N为光电倍增管的倍增极数。设流过串联电阻的电流为IR,则每个电阻上的压
降为电流IR与电阻Ri的乘积,因此,加在光电倍增管倍增极上的电压为Udi=IRRi+1。
为确保流过电阻链中每个电阻的电流IR都近似相等,应满足关系 IR≥10Iam (7-7) 光电倍增管的输出电流Ia,在负载电阻Ra上产生的压降为输出电压信号Uo,即
Uo=IaRa (7-8) 光电倍增管的供电方式有两种,即负高压接法(阴极接电源负高压,电源正端接地)和正高压接法(阳极接电源正高压、而电源负端接地)。采用正高压接法的特点是可使屏蔽光、磁、电的屏蔽罩直接与光电倍增管的玻璃壳相连,使之成为一体,因而屏蔽效果好,暗电流小,噪声低。但是,这时的阳极处于正高压,使后面的处理电路难于连接。交流输出信号时虽然可以采用高压隔离电容进行隔离,但是会导致寄生电容增大;如果是直流输出,则不仅要求传输电缆能承受高压,而且后级的直流放大器也处于高电位状态工作,会产生一系列的不便,危险性也增大。 负高压接法的优点是阳极电位低,便于与后面的放大器连接,使它即可以如图7-3所示,直接与直流放大器相连,又可以通过电容只输出交流信号。操作安全、方便。 负高压接法的缺点是玻壳的电位与阴极电位接近,为负高压,玻璃壳与屏蔽罩之间的电场很高,为降低它们之间的电场,防止玻壳放电的发生,必须使它们分离1~2cm。
5. 实验步骤 一、测量PMT的暗电流ID
光电倍增管实验装置中所用的光电倍增管为GDB221型圆形鼠笼式8倍增级管,因此,在测量其暗电流时必须将如图7-1所示的电路按下面步骤进行连接与处理。 1) 先将光电倍增管实验装置稳定地安装在光电实验平台上,再将光电倍增管实验装置的电源与实验平台电源连接好; 2) 拧下实验装置后板上的固定螺钉,观看光电倍增管的安装结构与实验光源间的位置关系,然后再将后板用紧固螺丝固紧; 3) 在实验装置面板上找到阴极K、阳极A、第一倍增极D1与地GND等接线端口和高压电源开关、高压电压调整旋钮、实验光源等; 4) 然后,将阴极K与第一倍增极D1相连,在阳极A与地GND之间串入微安电流表(光电平台上安装的毫安表的1档位); 5) 再将高压电源的电压调整旋钮逆时针旋至最低位置; 6) 打开光电实验平台的电源开关与光电倍增管实验装置的电源开关后观察到数字电流表均指示为零值,然后再打开光电倍增管实验装置的高压电源开关; 7) 缓慢调节高压电源的调压旋钮,观测实验装置上高压电压表的示值,当它们分别为200V、400V、600V和800V时记录下电流表的电流值,它既为光电倍增管在不同工作电压下的暗电流ID值;
8) 将所测得的数据填入表7-1; 9) 在图7-4中画出Id~V的关系曲线;
10) 分析曲线的特点,解释影响曲线的主要原因; 11) 关闭高压电源及光电综合实验平台的电源; 表7-1光电倍增管暗电流测量值 倍增管电压Ubb(V) 100 200 300 400 500 600 700 800 暗电流Id(μA)
二、测量PMT的阳极电流灵敏度Sa
完成PMT的暗电流测量实验后,将事先标定好的光电倍增管光源(LED光源)的接线连接好,注意应在发光二极管中串入测量ILED的电流表。然后,按下面的步骤进行实验:
1)先将发光二极管的电流调至最小,检查光电倍增管是否按测暗电流时的接法接好,接好后,可以把高压电源的开关闭合,调整高压电源使其为200V; 测出阳极电流Ia值;
a) 然后缓慢调节发光二极管的电流ILED,测量在光源变化过程中阳极电流的
对应值,将所测得的值填入表7-2,由表7-2可以测出当前电源电压(200V)下的阳极灵敏度。 表7-2光电倍增管阳极灵敏度的测量 电源电压Ubb(V) 测量次数 1 2 3 4 5 6 7 8 200 ILED(mA) 1 2 3 4 5 6 7 8 Ia(mA) 400 ILED(mA) 1 2 3 4 5 6 7 8 Ia(mA) 600 ILED(mA) 0.5 1 1.5 2 2.5 3 3.5 4 Ia(mA) 800 ILED(mA) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Ia(mA)
b) 再分别测出阳极电压为400V、600V、800V时的阳极电流与阳极电流灵敏度Sa,并将其填入表7-3。