2020届高考数学(理)热点猜押练一 热点练15 立体几何中的证明与计算问题(含解析)
- 格式:doc
- 大小:1.52 MB
- 文档页数:11
第59讲 立体几何中的向量方法(一)——证明平行与垂直夯实基础 【p 135】【学习目标】1.会找直线的方向向量和平面的法向量,能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.2.能用向量法证明有关直线和平面关系的一些定理. 【基础检测】1.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( )A .s 1=(1,1,2),s 2=(2,-1,0)B .s 1=(0,1,-1),s 2=(2,0,0)C .s 1=(1,1,1),s 2=(2,2,-2)D .s 1=(1,-1,1),s 2=(-2,2,-2)【解析】两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直. 【答案】B2.设a =(3,-2,-1)是直线l 的方向向量,n =(1,2,-1)是平面α的法向量,则( )A .l ⊥αB .l ∥αC .l ⊂α或l ⊥αD .l ∥α或l ⊂α【解析】因为a·n =3×1+(-2)×2+(-1)×(-1)=0,所以a⊥n ,即l ∥α或l ⊂α.故选D.【答案】D3.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1) D .n 1=(1,2,1),n 2=(0,-2,-2) 【答案】A 4.给出下列命题:①直线l 的方向向量为a =(1,-1,2),直线m 的方向向量为b =⎝ ⎛⎭⎪⎫2,1,-12,则l与m 平行;②直线l 的方向向量a =(0,1,-1),平面α的法向量n =(1,-1,-1),则l ⊥α; ③平面α,β的法向量分别为n 1=(0,1,3),n 2=(1,0,2),则α∥β;④平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量n =(1,u ,t )是平面α的法向量,则u +t =1.其中的真命题是______.(把你认为正确命题的序号都填上)【解析】对于①,∵a =(1,-1,2),b =⎝ ⎛⎭⎪⎫2,1,-12,∴a ·b =1×2-1×1+2×⎝ ⎛⎭⎪⎫-12=0,∴a ⊥b ,∴直线l 与m 垂直,①不正确;对于②,a =(0,1,-1),n =(1,-1,-1),∴a ·n =0×1+1×(-1)+(-1)×(-1)=0,∴a ⊥n ,∴l ∥α或l ⊂α,②错误;对于③,∵n 1=(0,1,3),n 2=(1,0,2),∴n 1与n 2不共线, ∴α∥β不成立,③错误;对于④,∵点A (1,0,-1),B (0,1,0),C (-1,2,0), ∴AB →=(-1,1,1),BC →=(-1,1,0), 向量n =(1,u ,t )是平面α的法向量, ∴⎩⎪⎨⎪⎧n ·AB →=0,n ·BC →=0,即⎩⎪⎨⎪⎧-1+u +t =0,-1+u =0,则u +t =1,④正确. 综上,以上真命题的序号是④. 【答案】④ 【知识要点】1.直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量法证明空间中的平行与垂直关系典例剖析【p136】考点1 利用空间向量证明空间中的平行关系例1如图所示,ABCD为矩形,PA⊥平面ABCD,M,N,Q分别是PC,AB,CD的中点.求证:(1)MN∥PAD;(2)平面QMN∥平面PAD;【解析】(1)如图以A为原点,以AB,AD,AP所在直线为坐标轴建立空间直角坐标系,设B(b,0,0),D(0,d,0),P(0,0,p),则C(b,d,0),因为M,N,Q分别是PC,AB,CD的中点,所以M⎝⎛⎭⎪⎫b2,d2,p2,N⎝⎛⎭⎪⎫b2,0,0,Q⎝⎛⎭⎪⎫b2,d,0,所以MN→=⎝⎛⎭⎪⎫0,-d2,-p2.因为平面PAD的一个法向量为m=(1,0,0),所以MN →·m =0,即MN →⊥m .因为MN 不在平面PAD 内,故MN ∥平面PAD . (2)QN →=(0,-d ,0),QN →⊥m ,又QN 不在平面PAD 内,故QN ∥平面PAD . 又因为MN ∩QN =N ,所以平面MNQ ∥平面PAD .【点评】(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.考点2 利用空间向量证明空间中的垂直关系例2正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点. (1)证明:平面AED⊥平面A 1FD 1; (2)在AE 上求一点M ,使得A 1M ⊥平面DAE.【解析】(1)建立如图所示的空间直角坐标系D -xyz ,不妨设正方体的棱长为2,则A(2,0,0),E(2,2,1),F(0,1,0),A 1(2,0,2),D 1(0,0,2). 设平面AED 的法向量为n 1=(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧n 1·DA →=(x 1,y 1,z 1)·(2,0,0)=0,n 1·DE →=(x 1,y 1,z 1)·(2,2,1)=0, ∴2x 1=0,2x 1+2y 1+z 1=0. 令y 1=1,得n 1=(0,1,-2).同理可得平面A 1FD 1的法向量n 2=(0,2,1). 因为n 1·n 2=0,所以平面AED ⊥平面A 1FD 1.(2)因为点M 在直线AE 上,所以可设AM →=λ·AE →=λ·(0,2,1)=(0,2λ,λ),可得M (2,2λ,λ),于是A 1M →=(0,2λ,λ-2),要使A 1M ⊥平面DAE ,需有A 1M ⊥AE ,所以A 1M →·AE →=(0,2λ,λ-2)·(0,2,1)=5λ-2=0,得λ=25.故当AM =25AE 时,A 1M ⊥平面DAE .例3如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD.【解析】法一:设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a ·c =0,b ·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 法二:如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形, 所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0,⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .【点评】证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可.当然,也可证直线的方向向量与平面法向量平行.方法总结 【p 136】1.利用向量解决几何问题具有快捷、有效的特征.一般方法如下:先将原问题转化为等价的向量问题,即将已知条件的角转化为向量的夹角,线段长度转化为向量的模,并用已知向量表示出未知向量(注意量的集中),然后利用向量运算解决该向量问题,从而原问题得解.2.利用向量坐标解决立体几何问题的关键在于找准位置,建立恰当、正确的空间坐标系,表示出已知点(或向量)的坐标.难点是通过向量的坐标运算,实现几何问题的代数解法.3.向量法证明线面关系时恰当的推理和必要的空间想象是必需的.走进高考 【p 136】1.(2018·天津)如图,AD ∥BC 且AD =2BC ,AD ⊥CD ,EG ∥AD 且EG =AD ,CD ∥FG 且CD =2FG ,DG ⊥平面ABCD ,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ; (2)求二面角E -BC -F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长. 【解析】依题意,可以建立以D 为原点,分别以DA →,DC →,DG →的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M ⎝ ⎛⎭⎪⎫0,32,1,N (1,0,2).(1)依题意DC →=(0,2,0),DE →=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则⎩⎪⎨⎪⎧n 0·DC →=0,n 0·DE →=0,即⎩⎪⎨⎪⎧2y =0,2x +2z =0,不妨令z =-1,可得n 0=(1,0,-1).又MN →=⎝ ⎛⎭⎪⎫1,-32,1,可得MN →·n 0=0,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC →=(-1,0,0),BE →=(1,-2,2),CF →=(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x =0,x -2y +2z =0,不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则⎩⎪⎨⎪⎧m ·BC →=0,m ·CF →=0,即⎩⎪⎨⎪⎧-x =0,-y +2z =0,不妨令z =1,可得m =(0,2,1).因此有cos 〈m ,n 〉=m·n |m||n|=31010,于是sin 〈m ,n 〉=1010.所以,二面角E -BC -F 的正弦值为1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP →=(-1,-2,h ).易知,DC →=(0,2,0)为平面ADGE 的一个法向量,故 ||cos 〈BP →·DC →〉=||BP →·DC →||BP →||DC →=2h 2+5,由题意,可得2h 2+5=sin 60°=32,解得h =33∈[0,2].所以线段DP 的长为33. 考点集训 【p 251】A 组题1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 等于( )A .2B .-4C .4D .-2【解析】∵α∥β,∴两平面法向量平行,∴-21=-42=k-2,∴k =4.【答案】C2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)【解析】逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.【答案】A3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交B .平行C .在平面内D .平行或在平面内【解析】∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面,∴AB 与平面CDE 平行或在平面CDE 内. 【答案】D4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1 C.⎝ ⎛⎭⎪⎫22,22,1 D.⎝⎛⎭⎪⎫24,24,1 【解析】设M 点的坐标为(x ,y ,1), ∵O ⎝⎛⎭⎪⎫22,22,0,又E (0,0,1),A (2,2,0), ∴OE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=(x -2,y -2,1),∵AM ∥平面BDE ,∴OE →∥AM →,∴⎩⎪⎨⎪⎧x -2=-22,y -2=-22,⇒⎩⎪⎨⎪⎧x =22,y =22.【答案】C5.若A ⎝ ⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量为n =(x ,y ,z ),则x ∶y ∶z =__________.【解析】∵AB →=⎝ ⎛⎭⎪⎫1,-3,-74,BC →=(-3,2,0),∴⎩⎪⎨⎪⎧x -3y -74z =0,-3x +2y =0,令x =2,可得n =(2,3,-4), ∴x ∶y ∶z =2∶3∶(-4).【答案】2∶3∶(-4)6.如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.【解析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示.因为AD =AA 1=1,AB =2,P 是C 1D 1的中点,所以B 1(1,2,1),C =(0,2,0),A 1(1,0,1),P (0,1,1), 所以B 1C →=(-1,0,-1),A 1P →=(-1,1,0). 所以B 1C →·A 1P →=1+0+0=1. 设B 1C →与A 1P →所成的角为α, cos α=12×2=12, 所以α=60°. 【答案】1;60°7.如图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到的几何体,截面为ABC .已知A 1B 1=B 1C 1=1,∠A 1B 1C 1=90°,AA 1=4,BB 1=2,CC 1=3.设点O 是AB 的中点,证明:OC ∥平面A 1B 1C 1.【解析】如图,以B 1为原点建立空间直角坐标系B 1-xyz ,则A (0,1,4),B (0,0,2),C (1,0,3),因为O 是AB 的中点,所以O ⎝ ⎛⎭⎪⎫0,12,3,OC →=⎝⎛⎭⎪⎫1,-12,0. 易知n =(0,0,1)是平面A 1B 1C 1的一个法向量.又OC →·n =0,OC 不在平面A 1B 1C 1内,所以OC ∥平面A 1B 1C 1.8.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,∠ABC =60°,PA =AB =BC ,AD =233AB ,E 是PC 的中点.证明:PD ⊥平面ABE .【解析】∵PA ⊥底面ABCD ,AB ⊥AD .∴AB 、AD 、AP 两两垂直,建立如图所示的空间直角坐标系.设PA =AB =BC =1,则P (0,0,1),A (0,0,0),B (1,0,0),D ⎝ ⎛⎭⎪⎫0,233,0.∵∠ABC =60°,∴△ABC 为正三角形. ∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. ∴AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,∴设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x =0,14x +34y +12z =0, 令y =2,有z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n ,∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE .B 组题1.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN→|为( )A.216a B.66a C.156a D.153a 【解析】建立如图所示的空间直角坐标系则N ⎝ ⎛⎭⎪⎫a ,a ,12a ,C 1(0,a ,a ),A (a ,0,0),因为AM →=12MC 1→,所以AM →=13AC 1→,所以DM →=DA →+13AC 1→=(a ,0,0)+13(-a ,a ,a )=⎝ ⎛⎭⎪⎫23a ,13a ,13a ,所以MN →=DN →-DM →=⎝ ⎛⎭⎪⎫13a ,23a ,16a ,所以|MN →|=⎝ ⎛⎭⎪⎫13a 2+⎝ ⎛⎭⎪⎫23a 2+⎝ ⎛⎭⎪⎫16a 2=216a . 【答案】A2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E⊥平面ABF ,则CE 与DF 的长度和的值为________.【解析】以D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.【答案】13.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.【解析】建立如图的空间直角坐标系,设正方体的棱长为2,则P (x ,y ,2),O (1,1,0),∴OP 的中点坐标为⎝⎛⎭⎪⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上, ∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ. 【答案】24.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,问:侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,试说明理由.【解析】(1)连接BD , 设AC ∩BD =O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图.设底面边长为a ,则高SO =62a , 于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0, B ⎝⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎫0,22a ,0, SD →=⎝⎛⎭⎪⎫-22a ,0,-62a , 则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD .(2)棱SC 上存在一点E ,使得BE ∥平面PAC . 理由如下:由已知条件知DS →是平面PAC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS → =⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →. 而BE 不在平面PAC 内,故BE ∥平面PAC .∴存在一点E ,使得BE ∥平面PAC ,此时SE ∶EC =2.。
2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。
此类题的难点就是如何构造辅助线。
构造完辅助线,证明过程只须注意规范的符号语言描述即可。
本题用到的是线线平行推出面面平行。
【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。
【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。
此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。
在此,我们需要借助倒推法进行分析。
首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。
再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。
从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。
如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。
最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。
即先证AD 平行于PN ,最后得到结论。
构造交线的方法我们可总结为如下三个图形。
一一一一一一一一一2.构造面面平行,然后推出线面平行。
此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。
年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。
高考大题专项四高考中的立体几何1.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.2.在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B1D⊥平面ABD;(2)平面EGF∥平面ABD.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得⏜的中点.到的,G是DF⏜上的一点,且AP⊥BE,求∠CBP的大小;(1)设P是CE(2)当AB=3,AD=2时,求二面角E-AG-C的大小.(2018山西晋中调研,18)如图,已知四棱锥P-ABCD,PA⊥平面ABCD,底面ABCD中,BC∥AD,AB⊥AD,且PA=AD=AB=2BC=2,M为AD的中点.(1)求证:平面PCM⊥平面PAD;(2)问在棱PD上是否存在点Q,使PD⊥平面CMQ,若存在,请求出二面角P-CM-Q的余弦值;若不存在,请说明理由.5.(2018河南郑州外国语学校调研,19)如图,在底面为等边三角形的斜三棱柱ABC-A1B1C1中,AA1=√3AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.(1)证明:CD⊥AB;(2)若直线AA1与底面A1B1C1所成的角为60°,求二面角B-A1C-C1的余弦值.6.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.(2018河北衡水中学适应性考试,18)如图,在三棱柱ABC-A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60°,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点. (1)若Q为线段AC的中点,H为BQ中点,延长AH交BC于D,求证:AD∥平面B1PQ;,求点P到平面BQB1的距离.(2)若二面角B1-PQ-C1的平面角的余弦值为√13138.(2018山西大同一模,18)如图,在四棱锥P-ABCD中,AD∥BC,∠ABC=∠PAD=90°,PA=AB=BC=2,AD=1,M是棱PB中点且AM=√2.(1)求证:AM∥平面PCD;(2)设点N是线段CD上一动点,且DN=λDC,当直线MN与平面PAB所成的角最大时,求λ的值.9.(2018山西晋城一模,20)如图,在四棱锥P-ABCD中,PA=PD=AD=2CD=2BC=2,且∠ADC=∠BCD=90°.(1)当PB=2时,证明:平面PAD⊥平面ABCD;,且二面角P-AD-B为钝角时,求直线PA与平面PCD所成角的正弦值.(2)当四棱锥P-ABCD的体积为34高考大题专项四 高考中的立体几何1.证明 (1)∵BD ∥平面AEF ,BD ⊂平面BCD ,平面BCD ∩平面AEF=EF ,∴BD ∥EF.又BD ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD.(2)∵AE ⊥平面BCD ,CD ⊂平面BCD ,∴AE ⊥CD.由(1)可知BD ∥EF ,又BD ⊥CD ,∴EF ⊥CD. 又AE ∩EF=E ,AE ⊂平面AEF ,EF ⊂平面AEF , ∴CD ⊥平面AEF ,又CD ⊂平面ACD , ∴平面AEF ⊥平面ACD.2.证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA=a ,则A (a ,0,0),所以BA ⃗⃗⃗⃗⃗ =(a ,0,0),BD ⃗⃗⃗⃗⃗⃗ =(0,2,2),B 1D ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ =0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD.又BA ∩BD=B ,BA ⊂平面ABD ,BD ⊂平面ABD ,所以B 1D ⊥平面ABD.(2)由(1)知,E (0,0,3),G (a2,1,4),F (0,1,4),则EG ⃗⃗⃗⃗⃗ =(a 2,1,1),EF ⃗⃗⃗⃗⃗ =(0,1,1),B 1D ⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =0+2-2=0,B 1D ⃗⃗⃗⃗⃗⃗⃗ ·EF⃗⃗⃗⃗⃗ =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF. 又EG ∩EF=E ,EG ⊂平面EGF ,EF ⊂平面EGF ,所以B 1D ⊥平面EGF. 结合(1)可知平面EGF ∥平面ABD.3.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP=A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC=120°.因此∠CBP=30°.(2)(方法一)取EC⏜的中点H ,连接EH ,GH ,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13. 取AG 中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG , 所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM=√13-1=2√3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.(方法二)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE ⃗⃗⃗⃗⃗ =0,m ·AG⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG ⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2).所以cos <m ,n >=m ·n |m ||n |=12.因此所求的角为60°.4.解 以A 为原点,射线AB ,AD ,AP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系如图.PA=AD=AB=2BC=2,A (0,0,0),B (2,0,0),C (2,1,0),D (0,2,0),P (0,0,2),AD ⃗⃗⃗⃗⃗ =(0,2,0),AP⃗⃗⃗⃗⃗ =(0,0,2), ∵M 为AD 的中点,∴M (0,1,0),MC⃗⃗⃗⃗⃗⃗ =(2,0,0). (1)∵MC⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,MC ⃗⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =0, ∴CM ⊥PA ,CM ⊥AD.PA ⊂平面PAD ,AD ⊂平面PAD ,且PA ∩AD=A ,∴CM ⊥平面PAD. ∵CM ⊂平面PCM ,∴平面PCM ⊥平面PAD.(2)存在点Q 使PD ⊥平面CMQ ,在△PAD 内,过M 作MQ ⊥PD ,垂足为Q , 由(1)知CM ⊥平面PAD ,PD ⊂平面PAD ,∴CM ⊥PD , MQ ∩CM=M ,∴PD ⊥平面CMQ.设平面PCM 的一个法向量为n =(x ,y ,z ),则n ·MC⃗⃗⃗⃗⃗⃗ =2x=0⇒x=0, n ·PM ⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,1,-2)=y-2z=0⇒y=2z , 取n =(0,2,1).∵PD ⊥平面CMQ ,∴PD⃗⃗⃗⃗⃗ =(0,2,-2)是平面CMQ 的一个法向量. 由图形知二面角P-CM-Q 的平面角θ是锐角,故cos θ=n ·PD⃗⃗⃗⃗⃗⃗ |n |·|PD⃗⃗⃗⃗⃗⃗ |=√5·√8=√1010,所以二面角余弦值为√1010.5.(1)证明 如图,连接AC 1交A 1C 于点E ,连接DE.因为BC 1∥平面A 1CD ,BC 1⊂平面ABC 1,平面ABC 1∩平面A 1CD=DE , 所以BC 1∥DE.又四边形ACC 1A 1为平行四边形,所以E 为AC 1的中点,所以ED 为△AC 1B 的中位线,所以D 为AB 的中点. 又△ABC 为等边三角形,所以CD ⊥AB.(2)解 过A 作AO ⊥平面A 1B 1C 1,垂足为O ,连接A 1O ,设AB=2,则AA 1=2√3.因为直线AA 1与底面A 1B 1C 1所成的角为60°,所以∠AA 1O=60°. 在Rt △AA 1O 中,因为AA 1=2√3, 所以A 1O=√3,AO=3.因为AO ⊥平面A 1B 1C 1,B 1C 1⊂平面A 1B 1C 1,所以AO ⊥B 1C 1, 因为四边形B 1C 1CB 为矩形,所以BB 1⊥B 1C 1, 因为BB 1∥AA 1,所以B 1C 1⊥AA 1.因为AA 1∩AO=A ,AA 1⊂平面AA 1O ,AO ⊂平面AA 1O , 所以B 1C 1⊥平面AA 1O.因为A 1O ⊂平面AA 1O ,所以B 1C 1⊥A 1O.△A 1B 1C 1为等边三角形,边B 1C 1上的高为√3,又A 1O=√3,所以O 为B 1C 1的中点.以O 为坐标原点,分别以OA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图.则A 1(√3,0,0),C 1(0,-1,0),A (0,0,3),B 1(0,1,0).因为AB ⃗⃗⃗⃗⃗ =A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,0),所以B (-√3,1,3),D -√32,12,3,因为AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-√3,-1,0),所以C (-√3,-1,3),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(-2√3,1,3),BC ⃗⃗⃗⃗⃗ =B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-2,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2√3,-1,3).设平面BA 1C 的法向量为n =(x ,y ,z ). 由{A 1B ⃗⃗⃗⃗⃗⃗⃗ ·n =0,BC ⃗⃗⃗⃗⃗ ·n =0,得{-2√3x +y +3z =0,y =0,令x=√3,得z=2,所以平面BA 1C 的一个法向量为n =(√3,0,2). 设平面A 1CC 1的法向量为m =(a ,b ,c ), 由{A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·m =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·m =0, 得{√3a +b =0,2√3a +b -3c =0, 令a=√3,得b=-3,c=1,所以平面A 1CC 1的一个法向量为m =(√3,-3,1). 所以|cos <n ,m >|=|n ·m ||n ||m |=5√9191. 因为所求二面角为钝角,所以二面角B-A 1C-C 1的余弦值为-5√9191. 6.(1)证明 设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点.所以M 为PB 的中点. (2)解 取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD ,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ),则{n ·BD ⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0). 所以cos <n ,p >=n ·p |n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3. (3)解 由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α,则sin α=|cos <n ,MC ⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69. 所以直线MC 与平面BDP 所成角的正弦值为2√69. 7.(1)证明 如图,取BB 1中点E ,连接AE ,EH.∵H 为BQ 中点,∴EH ∥B 1Q.在平行四边形AA 1B 1B 中,P ,E 分别为AA 1,BB 1的中点,∴AE ∥PB 1. 又EH ∩AE=E ,PB 1∩B 1Q=B 1, ∴平面EHA ∥平面B 1QP.∵AD ⊂平面EHA ,∴AD ∥平面B 1PQ.(2)解 连接PC 1,AC 1,∵四边形A 1C 1CA 为菱形, ∴AA 1=AC=A 1C 1=4. 又∠C 1A 1A=60°,∴△AC 1A 1为正三角形.∵P 为AA 1的中点,∴PC 1⊥AA 1.∵平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1,∴PC 1⊥平面ABB 1A 1,在平面ABB 1A 1内过点P 作PR ⊥AA 1交BB 1于点R.建立如图所示的空间直角坐标系P-xyz ,则P (0,0,0),A 1(0,2,0),A (0,-2,0),C 1(0,0,2√3),C (0,-4,2√3),设AQ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ =λ(0,-2,2√3),λ∈[0,1], ∴Q (0,-2(λ+1),2√3λ), ∴PQ⃗⃗⃗⃗⃗ =(0,-2(λ+1),2√3λ). ∵A 1B 1=AB=2,∠B 1A 1A=60°, ∴B 1(√3,1,0),∴PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0).设平面PQB 1的法向量为m =(x ,y ,z ),则{m ·PQ ⃗⃗⃗⃗⃗ =0,m ·PB 1⃗⃗⃗⃗⃗⃗⃗ =0,得{-2(λ+1)y +2√3λz =0,√3x +y =0,令x=1,则y=-√3,z=-λ+1λ,∴平面PQB 1的一个法向量为m =1,-√3,-λ+1λ,设平面AA 1C 1C 的法向量为n =(1,0,0),二面角B 1-PQ-C 1的平面角为θ,则cos θ=m ·n|m ||n |=1√1+3+(-λ+1λ) =√1313.∴λ=12或λ=-14(舍),∴AQ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ ,∴Q (0,-3,√3). 又B (√3,-3,0),∴QB ⃗⃗⃗⃗⃗ =(√3,0,-√3),∴|QB⃗⃗⃗⃗⃗ |=√3+3=√6. 连接BP ,设点P 到平面BQB 1的距离为h ,则13×12×4×√3×√3=13×12×4×√6×h , ∴h=√62,即点P 到平面BQB 1的距离为√62.8.(1)证明 如图,取PC 中点K ,连接MK ,KD ,因为M 为PB 的中点,所以MK ∥BC 且MK=12BC=AD , 所以四边形AMKD 为平行四边形, 所以AM ∥DK ,又DK ⊂平面PDC ,AM ⊄平面PDC , 所以AM ∥平面PCD.(2)解 因为M 为PB 的中点,设PM=MB=x ,在△PAB 中,∠PMA+∠AMB=π,设∠PMA=θ,则∠AMB=π-θ,所以cos ∠PMA+cos ∠AMB=0,由余弦定理得PM 2+AM 2-PA 22PM ·AM +BM 2+AM 2-AB 22BM ·AM =0,即x 2+2-42√2x x 2+2-42√2x=0, 解得x=√2,则PB=2√2,所以PA 2+AB 2=PB 2, 所以PA ⊥AB.又PA ⊥AD ,且AB ∩AD=A ,所以PA ⊥平面ABCD ,且∠BAD=∠ABC=90°.以点A 为坐标原点,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),D (1,0,0),B (0,2,0),C (2,2,0),P (0,0,2),M (0,1,1),因为点N 是线段CD 上一点,可设DN⃗⃗⃗⃗⃗⃗ =λDC ⃗⃗⃗⃗⃗ =λ(1,2,0),故AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =(1,0,0)+λ(1,2,0)=(1+λ,2λ,0), 所以MN ⃗⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ =(1+λ,2λ,0)-(0,1,1)=(1+λ,2λ-1,-1).又面PAB 的法向量为(1,0,0),设MN 与平面PAB 所成角为θ,则sin θ=|√(1+λ)+(2λ-1)+1|=|√5λ-2λ+3|=|√5(1+λ)-12(1+λ)+10|=|√5-121+λ+10(11+λ) |=|1√10(11+λ-35) +75|,所以当11+λ=35时,即λ=23时,sin θ取得最大值.9.(1)证明 取AD 的中点O ,连接PO ,BO ,∵△PAD 为正三角形,∴OP ⊥AD , ∵∠ADC=∠BCD=90°,∴BC ∥AD ,∵BC=12AD=1,∴BC=OD ,∴四边形BCDO 为矩形,∴OB=CD=1,在△POB 中,PO=√3,OB=1,PB=2, ∴∠POB=90°,∴PO ⊥OB ,∵AD ∩OB=O ,∴PO ⊥平面ABCD ,∵PO ⊂平面PAD ,∴平面PAD ⊥平面ABCD. (2)解 ∵AD ⊥PO ,AD ⊥OB ,PO ∩BO=O ,PO ,BO ⊂平面POB ,∴AD ⊥平面POB ,∵AD ⊂平面ABCD ,∴平面POB ⊥平面ABCD ,∴过点P 作PE ⊥平面ABCD ,垂足E 一定落在平面POB 与平面ABCD 的交线BO 上.∵四棱锥P-ABCD 的体积为34,∴V P-ABCD =13×PE ×12×(AD+BC )×CD=13×PE ×12×(2+1)×1=12PE=34,∴PE=32, ∵PO=√3,∴OE=√PO 2-PE 2=√3-94=√32.如图,以O 为坐标原点,以OA ,OB 为x 轴,y 轴.在平面POB 内过点O 作垂直于平面AOB 的直线为z 轴,建立空间直角坐标系O-xyz ,由题意可知A (1,0,0),P 0,-√32,32,D (-1,0,0),C (-1,1,0),DP ⃗⃗⃗⃗⃗ =1,-√32,32,DC ⃗⃗⃗⃗⃗ =(0,1,0),设平面PCD 的一个法向量为n =(x ,y ,z ),则{n ·DP ⃗⃗⃗⃗⃗ =0,n ·DC ⃗⃗⃗⃗⃗ =0,得{x -√32y +32z =0,y =0,令x=1,则z=-23,∴n =1,0,-23,PA ⃗⃗⃗⃗⃗ =1,√32,-32,设直线PA 与平面PCD 所成的角为θ, 则sin θ=|cos <PA ⃗⃗⃗⃗⃗ ,n >|=|PA ⃗⃗⃗⃗⃗ ·n ||PA ⃗⃗⃗⃗⃗||n |=2×√133=3√1313. 则直线PA 与平面PCD 所成角的正弦值为3√1313.。
专题能力训练15 立体几何中的向量方法 专题能力训练第36页 一、能力突破训练1.如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(1)求证:EG ∥平面ADF ;(2)求二面角O-EF-C 的正弦值;(3)设H 为线段AF 上的点,且AH=HF ,求直线BH 和平面CEF 所成角的正弦值.23解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以的方向为x 轴、y 轴、z AD ,BA ,OF 轴的正方向建立空间直角坐标系,依题意可得点O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0), D(1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,知=(2,0,0),=(1,-1,2).AD AF 设n 1=(x ,y ,z )为平面ADF 的法向量,则{n 1·AD =0,n 1·AF =0,即{2x =0,x -y +2z =0.不妨设z=1,可得n 1=(0,2,1),又=(0,1,-2),可得n 1=0,EG EG ·又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF.(2)易证=(-1,1,0)为平面OEF 的一个法向量.依题意,=(1,1,0),=(-1,1,2).OA EF CF 设n 2=(x ,y ,z )为平面CEF 的法向量,则{n 2·EF =0,n 2·CF =0,即{x +y =0,-x +y +2z =0.不妨设x=1,可得n 2=(1,-1,1).因此有cos <,n 2>==-,OA OA n |OA |·|n 2|63于是sin <,n 2>=OA 3.所以,二面角O-EF-C 的正弦值为3.(3)由AH=HF ,得AH=AF.2325因为=(1,-1,2),AF 所以,AH =25AF =(25,-25,45)进而有H ,从而,(-35,35,45)BH =(25,85,45)因此cos <,n 2>==-BH BH n |BH |·|n 2|721.所以,直线BH 和平面CEF所成角的正弦值为7.2.如图,在三棱柱ABC-A 1B 1C 1中,AA 1⊥底面ABC ,△ABC 是边长为2的正三角形,AA 1=3,D ,E 分别为AB ,BC 的中点.(1)求证:CD ⊥平面AA 1B 1B ;(2)求二面角B-AE-B 1的余弦值;(3)在线段B 1C 1上是否存在一点M ,使BM ⊥平面AB 1E ?说明理由.答案:(1)证明在三棱柱ABC-A 1B 1C 1中,∵AA 1⊥底面ABC ,CD ⊂平面ABC ,∴AA 1⊥CD.又△ABC 为等边三角形,D 为AB 的中点,∴CD ⊥AB.∵AB ∩AA 1=A ,∴CD ⊥平面AA 1B 1B.(2)解取A 1B 1的中点F ,连接DF.∵D ,F 分别为AB ,A 1B 1的中点,∴DF ⊥AB.由(1)知CD ⊥AB ,CD ⊥DF ,如图,建立空间直角坐标系D-xyz.由题意,得A (1,0,0),B (-1,0,0),C(0,0,),A 1(1,3,0),B 1(-1,3,0),C 1(0,3,),D (0,0,0),E -,0,,331232=(-2,3,0).AE =(-32,0,3),AB 1设平面AB 1E 的法向量n =(x 1,y 1,z 1),则{n ·AE =0,n ·AB 1=0,即{-32x 1+32z 1=0,-2x 1+3y 1=0.令x 1=1,则y 1=,z 1=23 3.即n =(1,23,3).易知平面BAE 的一个法向量=(0,3,0).AA 1n =(0,3,0)=2,||=3,|n |=,∵AA 1··(1,23,3)AA 11+49+3=2103∴cos <,n >=AA 1AA ·n|AA 1||n |=1010.由题意知二面角B-AE-B 1为锐角,∴它的余弦值为10.(3)解在线段B 1C 1上不存在点M ,使BM ⊥平面AB 1E.理由如下:假设在线段B 1C 1上存在点M ,使BM ⊥平面AB 1E ,则∃λ∈[0,1],使得=B 1M λB 1C 1.=(1,0,),=(λ,0,).∵B 1C 13∴B 1M 3λ又=(0,3,0),BB 1=(λ,3,).∴BM =BB 1+B 1M 3λ由(2)可知,平面AB 1E 的一个法向量n =BM ⊥平面AB 1E ,(1,23,3).当且仅当n ,即∃μ∈R ,使得=μn =,BM ∥BM (μ,23μ,3μ)则解得λ=[0,1],这与λ∈[0,1]矛盾.{λ=μ,3=23μ,3λ=3μ,92∉故在线段B 1C 1上不存在点M ,使BM ⊥平面AB 1E.3.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G是的中点.⏜DF(1)设P 是上的一点,且AP ⊥BE ,求∠CBP 的大小;⏜CE (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.解:(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP=A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC=120°.因此∠CBP=30°.(2)(解法一)取的中点H ,连接EH ,GH ,CH.⏜EC 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=32+22=13.取AG 中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM==213-1 3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC 为等边三角3形,故所求的角为60°.(解法二)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得点A (0,0,3),E (2,0,0),G (1,,3),C (-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),33AE AG 3CG 设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由可得{m ·AE =0,m ·AG =0,{2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-,2).3设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由可得{n ·AG =0,n ·CG =0,{x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-,-2).3所以cos <m ,n >=m ·n|m ||n |=12.因此所求的角为60°.4.如图,在长方体ABCD-A1B 1C 1D 1中,AA 1=AD=1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.解:以A 为原点,的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标AB ,AD ,AA 1系(如图).设AB=a ,则点A (0,0,0),D (0,1,0),D 1(0,1,1),E ,B 1(a ,0,1),(a2,1,0)故=(0,1,1),=(a ,0,1),AD 1B 1E =(-a2,1,-1),AB 1AE =(a2,1,0).(1)证明:=-0+1×1+(-1)×1=0,∵AD 1·B 1E a2×∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时=(0,-1,z 0).DP 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ,n ,得⊥AB 1⊥AE {ax +z =0,ax2+y =0.取x=1,得平面B 1AE 的一个法向量n =(1,-a2,-a ).要使DP ∥平面B 1AE ,只要n ,有-az 0=0,⊥DP a2解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP=12.5.如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA=PD=,AB=4.6(1)求证:M 为PB 的中点;(2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.答案:(1)证明设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME.因为ABCD 是正方形,所以E 为BD 的中点.所以M 为PB 的中点.(2)解取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD.因为OE ⊂平面ABCD ,所以OP ⊥OE.因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则点P (0,0,),D (2,0,0),B (-2,4,0),=(4,-4,0),=(2,0,-2BD PD ).2设平面BDP 的法向量为n =(x ,y ,z ),则{n ·BD =0,n ·PD =0,即{4x -4y =0,2x -2z =0.令x=1,则y=1,z= 2.于是n =(1,1,),平面PAD 的法向量为p =(0,1,0).2所以cos <n ,p >=n ·p|n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3.(3)解由题意知M,C (2,4,0),(-1,2,2)MC =(3,2,-2).设直线MC 与平面BDP 所成角为α,则sin α=|cos <n ,>|=MC MC |n ||MC |=269.所以直线MC 与平面BDP所成角的正弦值为26.6.如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O所在的平面,DC ∥EB ,DC=EB ,AB=4,tan ∠EAB=14.(1)证明:平面ADE ⊥平面ACD ;(2)当三棱锥C-ADE 体积最大时,求二面角D-AE-B 的余弦值.答案:(1)证明因为AB 是直径,所以BC ⊥AC.因为CD ⊥平面ABC ,所以CD ⊥BC.因为CD ∩AC=C ,所以BC ⊥平面ACD.因为CD ∥BE ,CD=BE ,所以四边形BCDE 是平行四边形,所以BC ∥DE ,所以DE ⊥平面ACD.因为DE ⊂平面ADE ,所以平面ADE ⊥平面ACD.(2)解依题意,EB=AB ·tan ∠EAB=4=1.×14由(1)知V C-ADE =V E-ACD =S △ACD ×DE13×=AC×CD×DE13×12×=AC×BC(AC 2+BC 2)16×≤112×=AB 2=,112×43当且仅当AC=BC=2时等号成立.2如图,建立空间直角坐标系,则点D (0,0,1),E (0,2,1),A (2,0,0),B (0,2,0),222则=(-2,2,0),=(0,0,1),=(0,2,0),=(2,0,-1).AB 22BE DE 2DA 2设平面DAE 的法向量为n 1=(x ,y ,z ),则取n 1=(1,0,2).{n 1·DE =0,n 1·DA =0,即{22y =0,22x -z =0,2设平 面ABE 的法向量为n 2=(x ,y ,z ),则{n 2·BE =0,n 2·AB =0,即{z =0,-22x +22y =0,取n 2=(1,1,0),所以cos <n 1,n 2>=n 1·n 2|n 1||n 2|=12×9=26.可以判断<n 1,n 2>与二面角D-AE-B 的平面角互补,所以二面角D-AE-B的余弦值为-2.二、思维提升训练7.(2019全国Ⅲ,理19)由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形如图所示,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B-CG-A 的大小.答案:(1)证明由已知得AD ∥BE ,CG ∥BE ,所以AD ∥CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE.(2)解作EH ⊥BC ,垂足为H.因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC.由已知,菱形BCGE 的边长为2,∠EBC=60°,可求得BH=1,EH=3.以H 为坐标原点,的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,HC 则A (-1,1,0),C (1,0,0),G (2,0,),=(1,0,),=(2,-1,0).3CG 3AC 设平面ACGD 的法向量为n =(x ,y ,z ),则{CG ·n =0,AC ·n =0,即{x +3z =0,2x -y =0.所以可取n =(3,6,-).3又平面BCGE 的法向量可取为m =(0,1,0),所以cos <n ,m >=n ·m|n ||m |=32.因此二面角B-CG-A 的大小为30°.8.如图,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,∠PAD=90°,且PA=AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值;(3)在线段CD 上是否存在一点Q ,使得点A 到平面EFQ 的距离为?若存在,求出CQ 的45值;若不存在,请说明理由.解:∵平面PAD ⊥平面ABCD ,且∠PAD=90°,∴PA ⊥平面ABCD ,而四边形ABCD 是正方形,即AB ⊥AD.故可建立如图所示的空间直角坐标系,则点A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),∵PB FE FG 设=s +t ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),解得s=t=2,PB FE FG =2+2∴PB FE FG .又不共线,共面.∵FE 与FG ∴FE 与FG ∵PB ⊄平面EFG ,∴PB ∥平面EFG.(2)=(1,2,-1),=(-2,2,0),∵EG BD =(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.∴EG ·BD 又∵||=,EG 12+22+(-1)2=6||==2,BD (-2)2+22+022∴cos <>=EG ,BD EG ·BD|EG |·|BD |=26×22=36.因此,异面直线EG 与BD所成的角的余弦值为3.(3)假设在线段CD 上存在一点Q 满足题设条件,令CQ=m (0≤m ≤2),则DQ=2-m ,∴点Q 的坐标为(2-m ,2,0),=(2-m ,2,-1).∴EQ 而=(0,1,0),EF 设平面EFQ 的法向量为n =(x ,y ,z ),则{n ·EF =(x ,y ,z )·(0,1,0)=0,n ·EQ =(x ,y ,z )·(2-m ,2,-1)=0,∴{y =0,(2-m )x +2y -z =0,令x=1,则n =(1,0,2-m ),∴点A 到平面EFQ 的距离d=,|AE ·n ||n |=|2-m |1+(2-m )2=45即(2-m )2=,169∴m=或m=(不合题意,舍去),23103故存在点Q ,当CQ=时,点A 到平面EFQ 的距离为2345.。
1专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(1)求证:EG ∥平面ADF ; (2)求二面角O-EF-C 的正弦值;(3)设H 为线段AF 上的点,且AH=HF ,求直线BH 和平面CEF 所成角的正弦值. 解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意, =(2,0,0), =(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量, 则 即- 不妨设z=1,可得n 1=(0,2,1),又=(0,1,-2),可得n1=0,又因为直线EG⊄平面ADF,所以EG∥平面ADF.(2)易证=(-1,1,0)为平面OEF的一个法向量.依题意,=(1,1,0),=(-1,1,2).设n2=(x,y,z)为平面CEF的法向量,则即-不妨设x=1,可得n2=(1,-1,1).因此有cos<,n2>==-,于是sin<,n2>=所以,二面角O-EF-C的正弦值为(3)由AH=HF,得AH=AF.因为=(1,-1,2),所以-,进而有H-,从而,因此cos<,n2>==-所以,直线BH和平面CEF所成角的正弦值为2.(2019北京通州检测,18)如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC是边长为2的正三角形,AA1=3,D,E分别为AB,BC的中点.23(1)求证:CD ⊥平面AA 1B 1B ; (2)求二面角B-AE-B 1的余弦值;(3)在线段B 1C 1上是否存在一点M ,使BM ⊥平面AB 1E ?说明理由. 答案:(1)证明在三棱柱ABC-A 1B 1C 1中,∵AA 1⊥底面ABC ,CD ⊂平面ABC ,∴AA 1⊥CD. 又△ABC 为等边三角形,D 为AB 的中点,∴CD ⊥AB.∵AB ∩AA 1=A , ∴CD ⊥平面AA 1B 1B.(2)解取A 1B 1的中点F ,连接DF.∵D ,F 分别为AB ,A 1B 1的中点,∴DF ⊥AB. 由(1)知CD ⊥AB ,CD ⊥DF ,如图,建立空间直角坐标系D-xyz.由题意,得A (1,0,0),B (-1,0,0),C (0,0,),A 1(1,3,0),B 1(-1,3,0),C 1(0,3, ),D (0,0,0),E -,0,, - =(-2,3,0).设平面AB 1E 的法向量n =(x 1,y 1,z 1),-则即-令x1=1,则y1=,z1=即n=易知平面BAE的一个法向量=(0,3,0).n=(0,3,0)=2,||=3,|n|=,∴cos<,n>=由题意知二面角B-AE-B1为锐角,∴它的余弦值为(3)解在线段B1C1上不存在点M,使BM⊥平面AB1E.理由如下:假设在线段B1C1上存在点M,使BM⊥平面AB1E,则∃λ∈[0,1],使得==(1,0,),=(λ,0,).又=(0,3,0),=(λ,3,).由(2)可知,平面AB1E的一个法向量n=BM⊥平面AB1E,当且仅当n,即∃μ∈R,使得=μn=,则解得λ=[0,1],这与λ∈[0,1]矛盾.故在线段B1C1上不存在点M,使BM⊥平面AB1E.453.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是的中点.(1)设P 是上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.解:(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP=A ,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE ⊥BP , 又∠EBC=120°. 因此∠CBP=30°.(2)(解法一)取的中点H ,连接EH ,GH ,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC= 取AG 中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM= - =2 在△BEC 中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.(解法二)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.-由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>=因此所求的角为60°.4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.67(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.解:以A 为原点, 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).设AB=a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E,B 1(a ,0,1),故 =(0,1,1), -- =(a ,0,1),(1)证明: =-0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0), 使得DP ∥平面B 1AE ,此时 =(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ,n ,得取x=1,得平面B 1AE 的一个法向量n = --要使DP ∥平面B 1AE ,只要n ,有-az 0=0,8解得z 0=又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP=5.如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA=PD= ,AB=4.(1)求证:M 为PB 的中点; (2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 答案:(1)证明设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME , 所以PD ∥ME.因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O ,连接OP ,OE. 因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即--令x=1,则y=1,z=于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>=由题知二面角B-PD-A为锐角,所以它的大小为(3)解由题意知M-,C(2,4,0),-设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|=所以直线MC与平面BDP所成角的正弦值为6.如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=9(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.答案:(1)证明因为AB是直径,所以BC⊥AC.因为CD⊥平面ABC,所以CD⊥BC.因为CD∩AC=C,所以BC⊥平面ACD.因为CD∥BE,CD=BE,所以四边形BCDE是平行四边形,所以BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ADE⊥平面ACD.(2)解依题意,EB=AB·tan∠EAB=4=1.由(1)知V C-ADE=V E-ACD=S△ACD×DE=AC×CD×DE=AC×BC(AC2+BC2)=AB2=,当且仅当AC=BC=2时等号成立.1011如图,建立空间直角坐标系,则D (0,0,1),E (0,2 ,1),A (2 ,0,0),B (0,2 ,0), 则 =(-2 ,2 ,0), =(0,0,1), =(0,2 ,0), =(2 ,0,-1). 设平面DAE 的法向量为n 1=(x ,y ,z ),则 即 - 取n 1=(1,0,2 ).设平 面ABE 的法向量为n 2=(x ,y ,z ), 则即- 取n 2=(1,1,0),所以cos <n 1,n 2>=可以判断<n 1,n 2>与二面角D-AE-B 的平面角互补,所以二面角D-AE-B 的余弦值为-二、思维提升训练7.(2019全国Ⅲ,理19)由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形如图所示,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B-CG-A的大小.答案:(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解作EH⊥BC,垂足为H.因为EH⊂平面BCGE,平面BCGE⊥平面ABC,所以EH⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(-1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),则即-所以可取n=(3,6,-).又平面BCGE的法向量可取为m=(0,1,0),所以cos<n,m>=因此二面角B-CG-A的大小为30°.8.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2;E,F,G分别是线段PA,PD,CD的中点.12131)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值;(3)在线段CD 上是否存在一点Q ,使得点A 到平面EFQ 的距离为?若存在,求出CQ 的值;若不存在,请说明理由.解:∵平面PAD ⊥平面ABCD ,且∠PAD=90°,∴PA ⊥平面ABCD ,而四边形ABCD 是正方形,即AB ⊥AD.故可建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). (1)证明: =(2,0,-2), =(0,-1,0),=(1,1,-1), 设 =s +t ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),解得s=t=2, =2 +2又 与 不共线, 与共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG. (2) =(1,2,-1),=(-2,2,0),=(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.又∵||=-,||=-=2,∴cos<>=因此,异面直线EG与BD所成的角的余弦值为(3)假设在线段CD上存在一点Q满足题设条件,令CQ=m(0≤m≤2),则DQ=2-m,∴点Q的坐标为(2-m,2,0),=(2-m,2,-1).而=(0,1,0),设平面EFQ的法向量为n=(x,y,z),则--令x=1,则n=(1,0,2-m),∴点A到平面EFQ的距离,d=-即(2-m)2=,∴m=或m=(不合题意,舍去),14故存在点Q,当CQ=时,点A到平面EFQ的距离为15。
高考数学理数立体几何大题训练(含答案)1.(2020·新课标Ⅲ·理)在长方体中,点P、Q分别在棱AB、CD上,且AP=CQ.(1)证明:点PQ平分长方体的体对角线;(2)若PQ在平面BCFE内,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M、N分别为BC、B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,底面是内接正三角形ABC,P为上一点,AP为底面直径,DP⊥底面.(1)证明:DP平分∠ADC;(2)求二面角平面APD与平面ABC的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱ABC-A1B1C1中,点P、Q分别在棱AB、A1B1上,且AP=A1Q,平面PQC1为棱BC1的中垂面,M为棱AC的中点.(Ⅰ)求证:PM∥B1Q,且PM=B1Q;(Ⅱ)求二面角平面PQC1与直线PM所成角的正弦值;(Ⅲ)求直线B1Q与平面PQC1所成角的正弦值.6.(2020·江苏)在三棱锥ABCD中,已知CB=CD=1,AC=2,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC上一点,DE⊥平面BCD,DE=1.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F-DE-C的大小为θ,求sinθ的值.7.(2020·北京)如图,正方体ABCD-EFGH中,E为AD的中点,P为BF上一点.(Ⅰ)求证:PE∥CG;(Ⅱ)求直线PE与平面CGH所成角的正弦值.8.(2020·浙江)如图,三棱台DEF-ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,XXX.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在等边三角形ABC的三棱锥ABCD中,D为底面的中点,E为线段AD上一动点,记DE=λAD.(1)当λ=1时,求证:DE与平面ABC垂直;(2)当λ=2时,求直线BE与平面ACD所成角的正弦值.求证:直线AD与平面BCD垂直;2)若平面ABD与平面ACD所成二面角为,求二面角ABC与平面BCD所成二面角的正弦值。
2020年高考理科数学一轮复习大题篇---立体几何【归类解析】题型一平行、垂直关系的证明【解题指导】(1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用. (2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.【例】如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.因为AB⊂平面ABC,所以BB1⊥AB.又因为AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1∥AH ,且EC 1=AH , 所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33.【训练】如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .【证明】 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →, 即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB . (2)由(1)可知,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC . 题型二 立体几何中的计算问题1求线面角【解题指导】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l·n||l||n|.【例】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.方法一(1)证明由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=22,所以A1B21+AB21=AA21,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1= 5.由AB=BC=2,∠ABC=120°,得AC=2 3.由CC1⊥AC,得AC1=13,所以AB21+B1C21=AC21,故AB1⊥B1C1.又因为A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,所以AB1⊥平面A1B1C1.(2)解如图,过点C1作C1D⊥A1B1,交直线A1B1于点D,连接AD.由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos ∠C 1A 1B 1=427,sin ∠C 1A 1B 1=77, 所以C 1D =3,故sin ∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1). 因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1—→=(0,23,-3). 由AB 1→·A 1B 1—→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1—→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 【训练】 在直三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,点D 在棱BC 上,且CD =3BD ,点E ,F 分别为棱AB ,BB 1的中点.(1)证明:A 1C ∥平面DEF ;(2)若A 1C ⊥EF ,求直线A 1C 1与平面DEF 所成的角的正弦值. 【解】 (1)如图,连接AB 1,A 1B 交于点H ,设A 1B 交EF 于点K ,连接DK , 因为四边形ABB 1A 1为矩形, 所以H 为线段A 1B 的中点.因为点E ,F 分别为棱AB ,BB 1的中点, 所以点K 为线段BH 的中点, 所以A 1K =3BK .又CD =3BD ,所以A 1C ∥DK . 又A 1C ⊄平面DEF ,DK ⊂平面DEF , 所以A 1C ∥平面DEF .(2)连接CE ,EH ,由(1)知,EH ∥AA 1, 因为AA 1⊥平面ABC , 所以EH ⊥平面ABC .因为△ABC 为正三角形,且点E 为棱AB 的中点, 所以CE ⊥AB .故以点E 为坐标原点,分别以EA →,EH →,EC →的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系Exyz . 设AB =4,AA 1=t (t >0),则E (0,0,0),A 1(2,t ,0),A (2,0,0),C (0,0,23), F ⎝⎛⎭⎫-2,t 2,0,D ⎝⎛⎭⎫-32,0,32, 所以A 1C →=(-2,-t ,23),EF →=⎝⎛⎭⎫-2,t 2,0. 因为A 1C ⊥EF ,所以A 1C →·EF →=0, 所以(-2)×(-2)-t ×t 2+23×0=0,所以t =22,所以EF →=(-2,2,0),ED →=⎝⎛⎭⎫-32,0,32.设平面DEF 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·n =0,ED →·n =0,所以⎩⎪⎨⎪⎧-2x +2y =0,-32x +32z =0. 取x =1,则n =(1,2,3). 又A 1C 1—→=AC →=(-2,0,23),设直线A 1C 1与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,A 1C 1→〉|=|n ·A 1C 1—→||n ||A 1C 1—→|=46×4=66,所以直线A 1C 1与平面DEF 所成的角的正弦值为66. 2 求二面角【解题指导】 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.【例】如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值. (1)证明 在△ACB 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC , 所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C , 所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32. 在Rt △EFG 中,由勾股定理,得EG =EF 2+FG 2=72, 所以cos ∠EGF =FG EG =217,所以二面角E -AB -C 的余弦值为217. 方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系, 则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧BA →·m =0,BE →·m =0,即⎩⎨⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE →|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角, 所以二面角E -AB -C 的余弦值为217. 【训练】 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B -OB 1-C 的余弦值. (1)证明 ∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,A 1O ,CO ⊂平面A 1CO , ∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D , ∴平面A 1CO ⊥平面BB 1D 1D .(2)解 ∵A 1O ⊥平面ABCD ,CO ⊥BD , ∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB →,OC →,OA 1→的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°,∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6), ∴OB →=(1,0,0),BB 1→=AA 1→=(0,3,6),OB 1→=OB →+BB 1→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB →·n =0,OB 1→·n =0,即⎩⎨⎧x =0,x +3y +6z =0.令y =2,得n =(0,2,-1),是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cos 〈n ,m 〉=n ·m |n |·|m |=13×7=2121.由图可知二面角B -OB 1-C 是锐二面角, ∴二面角B -OB 1-C 的余弦值为2121. 题型三 立体几何中的探索性问题【解题指导】 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【例】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,P A =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M -AC -D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.(1)证明 如图,由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得△ABC 是等腰直角三角形,即AB ⊥AC , 因为P A ⊥平面ABCD ,所以P A ⊥AB , 又P A ∩AC =A ,P A ,AC ⊂平面P AC , 所以AB ⊥平面P AC , 所以AB ⊥PC .(2)解 方法一 (几何法)过点M 作MN ⊥AD 交AD 于点N ,则MN ∥P A ,因为P A ⊥平面ABCD ,所以MN ⊥平面ABCD . 过点M 作MG ⊥AC 交AC 于点G ,连接NG , 则∠MGN 是二面角M -AC -D 的平面角. 若∠MGN =45°,则NG =MN , 又AN =2NG =2MN ,所以MN =1,所以MN =12P A ,MN ∥P A ,所以M 是PD 的中点.在三棱锥M -ABC 中,可得V M -ABC =13S △ABC ·MN ,设点B 到平面MAC 的距离是h , 则V B -MAC =13S △MAC ·h ,所以S △ABC ·MN =S △MAC ·h ,解得h =2 2. 在Rt △BMN 中,可得BM =3 3. 设BM 与平面MAC 所成的角为θ, 则sin θ=h BM =269.方法二 (向量法)以A 为坐标原点,以过点A 平行于CD 的直线为x 轴,AD ,AP 所在直线分别为y 轴、z 轴,建立如图所示的空间直角坐标系,则 A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0). 易知当点M 与P 点或D 点重合时不满足题意, 设PM →=t PD →(0<t <1),则点M 的坐标为(0,22t,2-2t ), 所以AM →=(0,22t,2-2t ).设平面MAC 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AM →=0,得⎩⎨⎧22x +22y =0,22ty +2-2t z =0,则可取n =⎝⎛⎭⎪⎫1,-1,2t 1-t .又m =(0,0,1)是平面ACD 的一个法向量, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=cos 45°=22, 解得t =12,即点M 是线段PD 的中点.此时平面MAC 的一个法向量可取n 0=(1,-1,2), BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ, 则sin θ=|cos 〈n 0,BM →〉|=269.【训练】如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判断棱P A 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?若存在,求出AEAP的值;若不存在,请说明理由.(1)证明 因为四边形ABCD 是平行四边形,AD =22, 所以BC =AD =22, 又AB =AC =2,所以AB 2+AC 2=BC 2,所以AC ⊥AB , 又PB ⊥AC ,AB ∩PB =B ,AB ,PB ⊂平面P AB , 所以AC ⊥平面P AB . 又因为AC ⊂平面P AC , 所以平面P AB ⊥平面P AC .(2)解 由(1)知AC ⊥AB ,AC ⊥平面P AB , 分别以AB ,AC 所在直线为x 轴,y 轴,平面P AB 内过点A 且与直线AB 垂直的直线为z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0), AC →=(0,2,0),BC →=(-2,2,0),由∠PBA =45°,PB =2,可得P (1,0,1), 所以AP →=(1,0,1),BP →=(-1,0,1), 假设棱P A 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为69, 设AEAP=λ(0<λ<1), 则AE →=λAP →=(λ,0,λ),CE →=AE →-AC →=(λ,-2,λ), 设平面PBC 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BP →=0,即⎩⎪⎨⎪⎧-2x +2y =0,-x +z =0,令z =1,可得x =y =1,所以平面PBC 的一个法向量n =(1,1,1), 设直线CE 与平面PBC 所成的角为θ,则 sin θ= |cos 〈n ,CE →〉| =|λ-2+λ|3·λ2+-22+λ2=|2λ-2|3·2λ2+4=69,解得λ=12或λ=74(舍).所以在棱P A 上存在点E ,且AE AP =12, 使得直线CE 与平面PBC 所成角的正弦值为69.专题突破训练1.在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,P A =PD .(1)证明:BC ⊥PB ;(2)若P A ⊥PD ,PB =AB ,求二面角A -PB -C 的余弦值. (1)证明 取AD 中点为E ,连接PE ,BE ,BD ,∵P A =PD ,∴PE ⊥AD , ∵底面ABCD 为菱形, 且∠BAD =60°,∴△ABD 为等边三角形,∴BE ⊥AD , ∵PE ∩BE =E ,PE ,BE ⊂平面PBE , ∴AD ⊥平面PBE , 又PB ⊂平面PBE , ∴AD ⊥PB ,∵AD ∥BC ,∴BC ⊥PB . (2)解 设AB =2, ∴AD =PB =2,BE =3, ∵P A ⊥PD ,E 为AD 中点, ∴PE =1,∵PE 2+BE 2=PB 2, ∴PE ⊥BE .以E 为坐标原点,分别以EA ,EB ,EP 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),P (0,0,1),C (-2,3,0),∴AB →=(-1,3,0),AP →=(-1,0,1),BP →=(0,-3,1),BC →=(-2,0,0). 设平面P AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AP →=0,即⎩⎨⎧-x +3y =0,-x +z =0,令y =3,则n =(3,3,3).同理可得平面PBC 的一个法向量m =(0,3,3). cos 〈m ,n 〉=m ·n |m ||n |=277.设二面角A -PB -C 的平面角为θ,由图易知θ为钝角, 则cos θ=-cos 〈m ,n 〉=-277.∴二面角A -PB -C 的余弦值为-277.2.如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3), ∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1—→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎨⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos 〈AB →,n 〉=AB →·n |AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64. 3.如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2.(1)求证:平面P AC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO .∵四边形ABCD 是菱形,∴P A =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面P AC ,∴平面P AC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Oxyz .则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎫0,-2,43. ∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎫-4,-2,43. 设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量. 由⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0, 解得⎩⎨⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010,由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图,多面体ABCDEF 中,ABCD 为正方形,AB =2,AE =3,DE =5,二面角E -AD -C 的余弦值为55,且EF ∥BD .(1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值. (1)证明 ∵AB =AD =2,AE =3,DE =5,∴AD 2+DE 2=AE 2, ∴AD ⊥DE ,又正方形ABCD 中,AD ⊥DC ,且DE ∩DC =D ,DE ,DC ⊂平面EDC , ∴AD ⊥平面EDC , 又∵AD ⊂平面ABCD , ∴平面ABCD ⊥平面EDC .(2)解 由(1)知,∠EDC 是二面角E -AD -C 的平面角, 作OE ⊥CD 于O ,则OD =DE ·cos ∠EDC =1,OE =2,又∵平面ABCD ⊥平面EDC ,平面ABCD ∩平面EDC =CD ,OE ⊂平面EDC , ∴OE ⊥平面ABCD .取AB 中点M ,连接OM ,则OM ⊥CD ,如图,以O 为原点,分别以OM ,OC ,OE 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,-1,0),B (2,1,0), D (0,-1,0),E (0,0,2), ∴AE →=(-2,1,2), BD →=(-2,-2,0),又EF ∥BD ,知EF 的一个方向向量为(2,2,0), 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=-2x +y +2z =0,n ·DB →=2x +2y =0,取x =-2,得n =(-2,2,-3), 又平面EDC 的一个法向量为m =(1,0,0), ∴cos 〈n ,m 〉=n ·m |n |·|m |=-21717,设平面AEF 与平面EDC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=21717. 5.等边三角形ABC 的边长为3,点D ,E 分别是边AB ,AC 上的点,且满足AD DB =CE EA =12,如图1.将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1—DE —B 为直二面角,连接A 1B ,A 1C ,如图2.(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线P A 1与平面A 1BD 所成的角为60°?若存在,求出PB 的长;若不存在,请说明理由.(1)证明 因为等边三角形ABC 的边长为3, 且AD DB =CE EA =12,所以AD =1,AE =2. 在△ADE 中,∠DAE =60°,由余弦定理得 DE =12+22-2×1×2×cos 60°= 3. 从而AD 2+DE 2=AE 2,所以AD ⊥DE .折起后有A 1D ⊥DE ,因为二面角A 1—DE —B 是直二面角, 所以平面A 1DE ⊥平面BCED ,又平面A 1DE ∩平面BCED =DE ,A 1D ⊥DE ,A 1D ⊂平面A 1DE , 所以A 1D ⊥平面BCED .(2)解 存在.理由:由(1)可知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,分别以DB ,DE ,DA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .设PB =2a (0≤2a ≤3),作PH ⊥BD 于点H , 连接A 1H ,A 1P ,则BH =a ,PH =3a ,DH =2-a .所以A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0). 所以P A 1→=(a -2,-3a ,1). 因为ED ⊥平面A 1BD ,所以平面A 1BD 的一个法向量为DE →=(0,3,0). 要使直线P A 1与平面A 1BD 所成的角为60°,则sin 60°=|P A 1→·DE →||P A 1→||DE →|=3a 4a 2-4a +5×3=32, 解得a =54.此时2a =52,满足0≤2a ≤3,符合题意.所以在线段BC 上存在点P ,使直线P A 1与平面A 1BD 所成的角为60°,此时PB =52.6.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO ,∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt △ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32, 易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°,即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O ,∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM ,则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°,∴△ABD 为正三角形,∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC ,∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫0,32,0,E ⎝⎛⎭⎫0,0,32, M ⎝⎛⎭⎫34,0,34,D ⎝⎛⎭⎫0,-32,0,N ⎝⎛⎭⎫34,34,0, ∴AB →=⎝⎛⎭⎫-32,32,0,AE →=⎝⎛⎭⎫-32,0,32, DM →=⎝⎛⎭⎫34,32,34,MN →=⎝⎛⎭⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ AB →·n =0,AE →·n =0,即⎩⎨⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝⎛⎭⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427. 故直线DP 与平面ABE 所成角的正弦值的最大值为427.。
2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD 中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E 的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF 和一个正四棱锥P ABCD 组合而成,AF AD ⊥,2AEAD .(1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD 的高h ,使得二面角C AF P 的余弦值是223.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DABCEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA ⊥面ABC ,AB BC ⊥,22AB PA BC ===,M 为PB 的中点. (Ⅰ)求证:AM ⊥平面PBC . (Ⅱ)求二面角A PC B --的余弦值. (Ⅲ)在线段PC 上是否存在点D ,使得BD AC ⊥,若存在,求出PDPC的值,若不存在,说明理由.16.如图所示,在四棱锥P -ABCD 中,AB ⊥平面,//,PAD AB CD E 是PB 的中点,2,5,3,2AHPD PA AB AD HD===== . (1)证明:PH ⊥平面ABCD ;(2)若F 是CD 上的点,且23FC FD ==,求二面角B EF C --的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz ,则 0,0,0D ,0,2,0A ,2,0,0C,0,0,2P ,1,0,1E ,0,0,1F ,2,1,0G .(1)∵0,2,2PA ,1,0,0EF,则0PA EF ,∴PA EF .(2)易知0,0,1DF,2,11FG, 设平面DFG 的法向量111,,m x y z ,则m DF m FG ,即1111020z x yz ,令11x ,则1,2,0m 是平面DFG 的一个法向量,同理可得0,1,1n 是平面EFG 的一个法向量,∴210cos ,552m n m nm n, 由图可知二面角D FG E 为钝角, ∴二面角D FG E 的余弦值为105.2.(1)证明:直三棱柱ADE BCF 中,AB 平面ADE ,所以:AB AD ,又AD AF ,所以:AD平面ABFE ,AD 平面PAD ,所以:平面PAD 平面ABFE .(2)由(1)AD平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz ,设正四棱锥P ABCD 的高h ,2AE AD ,则0,0,0A ,2,2,0F ,2,0,2C ,1,,1P h . 2,2,0AF,2,0,2AC,1,,1APh .设平面ACF 的一个法向量111,,m x y z ,则:1111220220m AF x y n ACx z ,取11x ,则111y z ,所以:1,1,1m .设平面AFP 的一个法向量222,,n x y z ,则222222200n AF x y n APx hy z ,取21x ,则21y ,21z h ,所以:1,1,1n h ,二面角C AF P 的余弦值是223,所以:211122cos ,3321m n h m n m nh , 解得:1h .3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =, ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥, 又∵EF PB ⊥,EF DE E =,∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-,(1,2)PC =-, ∵0BD PC •=∴BD PC ⊥(2)(1,AC =,(0,0,2)AP =,平面PAC 的法向量为(2,1,0)m =-(0,2)DP =,(1,0,0)AP =,平面DPC 的法向量为(0,2,1)n =--.2cos ,3m n m n m n•==•,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===• 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==.所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO =0,m ·1CD =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥, 又∵PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB , 又∵MFEF F =,MF ⊂平面M EF ,EF ⊂平面M EF ,∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E , 所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--, 易得平面ABCD 的法向量(0,0,1)m =, 设平面PBC 的法向量为(,,z)n x y =,则:n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =, ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等, ∴|cos ,||cos ,|ME m ME n <>=<>,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A 平面AEG AG =,∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=, ∴1EG CA ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--,由已知可得平面1A AG 的法向量(0,1,0)m =, ∴6cos ,6||||n m n m n m ⋅<>==-⋅由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =, 平面APD 的一个法向量为(,,)m a b c =, ∵(3,3,3)PD =-,(0,0,3)BP =,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-,同理可得(0,1,1)m =, ∴1cos ,2||||n m n m n m ⋅<>==-⋅,∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-, ∴(13,3,33)CM CP PD λλλλ=+=-+-,∵(0,3,3)PA =-,∴93(33)0PA CM λλ⋅=+-=,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =,同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥, 又∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥, ∵平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D ,(C -,E ,(DC =-,(2,0,DE =, 设平面CDE 的法向量为(,,)n x y z =,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-, 又平面ADE 的一个法向量为1(0,1,0)n =, 设平面ADE 和平面CDE 所成角(锐角)为θ, 则1113cos |cos ,|3||||nn n n n n θ⋅=<>==⋅,∴平面ADE 和平面CDE. C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =,PA ⊂平面PAE ,PE ⊂平面PAE ,∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =. 又∵(3,1,0)AC =,(0,1,1)AF =. 设平面ACF 的一个法向量(,,)n x y z =,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,3,n =-. ∴21cos ,7||||AP n AP n AP n ⋅==. ∵二面角F AC D --是锐角, ∴二面角F AC D -- (3)G 是线段AB 上的一点,设(01)AG t AB t =≤≤. ∵(3,1,0)AB =-,∴,,0)G t -. 又∵(3,1,2)PC =-,(3,,2)PG t t =--. 设平面PCG 的一个法向量为(,,)n x y z =,则:1100PC n PGn ⎧⋅=⎪⎨⋅=⎪⎩,即1111112020yz ty z-=--=+,∴1()n t t =-+, ∵AF ∥平面PCG ,∴AF n ⊥,0AF n ⋅=1)0t -=, 解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DEBD D =,∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-,(3,0,EF =-, 设平面BEF 的法向量为(,,)n x y z =,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩,即3030y x ⎧-=⎪⎨-=⎪⎩,令z (4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,(3,3,0)CA =-,∴cos ,||||32n CA n CA n CA ⋅==.∵二面角F BE D --为锐角, ∴二面角F BE D -- (3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-.∵AM ∥平面BEF ,∴0AM n ⋅=,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =, ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PBBC B =,∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =,(0,2,1)AC =,(1,1,0)AM =.设平面APC 的法向量为(,,)n x y z =,则:0n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-.由(1)可知(1,1,0)AM =为平面PBC 的一个法向量,∴cos||||5AM nn AMAM n⋅⋅==∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--.由0BD AC⋅=,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=,设平面BEF的法向量(,,)n x y z=,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩,设平面EFC的法向量(,,)m x y z=,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩,故17cos ,21n m n m n m⋅===⋅设二面角B EF C --的平面角为θ ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=sin33AM AC π==11212CDE S ∆=⨯⨯= ∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角∵1//2CD BC ∴2SC CB == ∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴1225QM=即55QM=∴3tan1555AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥, 又平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =,∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =,(3,0,0)GC =,设平面CEG 的一个法向量1(,,)n x y z =,则由10n GE ⋅=,10n GC ⋅=可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-,∵(3,1,0)CD =-BA =,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =-, 故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅.20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴()333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭,()3,0,0AO =,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 13(0,3,0),(,1),(1,3,0)2PA AB AD ==-=-,设平面PAB 的一个法向量为(,,)n x y z =,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令2x =,得(2,0,1)n =-, 同理可求平面ABD 的一个法向量为6(3,3,0)cos ,55n m m n m n m⋅=⇒===⨯,平面ABD 和平面ABC 为同一个平面, 所以二面角P AB C --.22.解:(Ⅰ)证明:因为二面角S AB C --的大小为90°,则SA AD ⊥, 又SA AB ⊥,故SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥; 在直角梯形ABCD 中,90BAD ADC ∠=∠=︒,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,又90DAC BAC ∠+∠=︒, 所以90ABD BAC ∠+∠=︒,即AC BD ⊥; 又ACSA A =,故BD ⊥平面SAC ,因为AF ⊂平面SAC ,故BD AF ⊥.(Ⅱ)设点E 到平面ABCD 的距离为h ,因为B ABC E ABC V V --=,且25E ABC S ABCD V V --=,故511215*********ABCD S ABCD E ABCABC S SAV V S h h --∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h =,做点E 到平面ABCD 的距离为12.23.(1)E 为SD 的中点,01,602AD DC SD SDA SDC ==∠=∠=.ED EC AD DC ∴===设O 为AC 的中点,连接,EO DO 则EO AC ⊥//,AD BC BC CD ⊥ .AD BC ∴⊥又OD OA OC ==EOC EOD ∴∆≅∆ 从而EO OD ⊥AC ABCD = DO ⊂面ABCD 0AC DO =EO ∴⊥面ABCD EO ⊂面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥ FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ 60=PAO ,又23PA =∴,,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为4367-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,E 是BP 的中点,AB EF // 且AB EF 21=,又AB DC AB DC 21,//= ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC 平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。
大题专项:立体几何综合问题一、解答题1.如图,已知四棱台ABCD-A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形.A 1A=6,且A 1A ⊥底面ABCD.点P ,Q 分别在棱DD 1,BC 上.(1)若P 是DD 1的中点,证明:AB 1⊥PQ ;(2)若PQ ∥平面ABB 1A 1,二面角P-QD-A 的余弦值为37,求四面体ADPQ 的体积.解:由题设知,AA 1,AB ,AD 两两垂直,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m=BQ ,0≤m ≤6.(1)证明:若P 是DD 1的中点,则P (0,92,3),PQ ⃗⃗⃗⃗⃗ =(6,m -92,-3).又AB 1⃗⃗⃗⃗⃗⃗⃗ =(3,0,6),于是AB 1⃗⃗⃗⃗⃗⃗⃗ ·PQ ⃗⃗⃗⃗⃗ =18-18=0, 所以AB 1⃗⃗⃗⃗⃗⃗⃗ ⊥PQ ⃗⃗⃗⃗⃗ ,即AB 1⊥PQ.(2)由题设知,DQ ⃗⃗⃗⃗⃗⃗ =(6,m-6,0),DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-3,6)是平面PQD 内的两个不共线向量.设n 1=(x ,y ,z )是平面PQD 的一个法向量,则{n 1·DQ ⃗⃗⃗⃗⃗⃗ =0,n 1·DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x +(m -6)y =0,-3y +6z =0. 取y=6,得n 1=(6-m ,6,3).又平面AQD 的一个法向量是n 2=(0,0,1), 所以cos <n 1,n 2>=n 1·n 2|n 1|·|n 2|=1·√(6-m )+62+32=√(6-m )+45.而二面角P-QD-A 的余弦值为37,因此√(6-m )+45=37,解得m=4或m=8(舍去),此时Q (6,4,0).设DP ⃗⃗⃗⃗⃗ =λDD 1⃗⃗⃗⃗⃗⃗⃗⃗ (0<λ≤1),而DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-3,6),由此得点P (0,6-3λ,6λ),所以PQ ⃗⃗⃗⃗⃗ =(6,3λ-2,-6λ).因为PQ ∥平面ABB 1A 1,且平面ABB 1A 1的一个法向量是n 3=(0,1,0),所以PQ ⃗⃗⃗⃗⃗ ·n 3=0,即3λ-2=0,亦即λ=23,从而P (0,4,4).于是,将四面体ADPQ 视为以△ADQ 为底面的三棱锥P-ADQ ,则其高h=4.故四面体ADPQ 的体积V=13S △ADQ ·h=13×12×6×6×4=24.2.如图,在正三棱柱ABC-A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.解:如图,在正三棱柱ABC-A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以{OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O-xyz.因为AB=AA 1=2,所以A (0,-1,0),B (√3,0,0),C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点, 所以P (√32,-12,2), 从而BP⃗⃗⃗⃗⃗ =(-√32,-12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2), 故|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√5×2√2=3√1020. 因此,异面直线BP 与AC 1所成角的余弦值为3√1020. (2)因为Q 为BC 的中点,所以Q (√32,12,0),因此AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则{AQ ⃗⃗⃗⃗⃗ ·n =0,AC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√32x +32y =0,2y +2z =0.不妨取n =(√3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|CC 1⃗⃗⃗⃗⃗⃗⃗⃗·n ||CC1⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=√5×2=√55, 所以直线CC 1与平面AQC 1所成角的正弦值为√55.3.已知四棱锥S-ABCD 的底面ABCD 是菱形,∠ABC=π3,SA ⊥底面ABCD ,E 是SC 上的任意一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA=AB=2,是否存在点E 使平面BED 与平面SAD 所成的锐二面角的大小为30°?如果存在,求出点E 的位置;如果不存在,请说明理由.答案:(1)证明∵SA ⊥平面ABCD ,BD ⊂平面ABCD ,∴SA ⊥BD. ∵四边形ABCD 是菱形,∴AC ⊥BD. ∵AC ∩AS=A , ∴BD ⊥平面SAC. ∵BD ⊂平面EBD ,∴平面EBD ⊥平面SAC.(2)解设AC 与BD 的交点为O ,以OC ,OD 所在直线分别为x 轴、y 轴, 以过O 垂直平面ABCD 的直线为z 轴建立空间直角坐标系(如图). 则点A (-1,0,0),C (1,0,0),S (-1,0,2),B (0,-√3,0),D (0,√3,0).设点E (x ,0,z ),则SE ⃗⃗⃗⃗⃗ =(x+1,0,z-2),EC⃗⃗⃗⃗⃗ =(1-x ,0,-z ),设SE ⃗⃗⃗⃗⃗ =λEC ⃗⃗⃗⃗⃗ ,∴{x =λ-1λ+1,z =2λ+1.∴E (λ-1λ+1,0,2λ+1). ∴DE ⃗⃗⃗⃗⃗ =(λ-1λ+1,-√3,2λ+1),BD⃗⃗⃗⃗⃗⃗ =(0,2√3,0). 设平面BDE 的法向量n =(x 1,y 1,z 1), 可得{n ⊥DE ⃗⃗⃗⃗⃗ ,n ⊥BD ⃗⃗⃗⃗⃗⃗ .∴{n ·DE ⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0,即{λ-1λ+1x 1-√3y 1+2λ+1z 1=0,2√3y 1=0,令x 1=2,可得z 1=1-λ.故n =(2,0,1-λ)为平面BDE 的一个法向量. 同理可得平面SAD 的一个法向量为m =(√3,-1,0).∵平面BED 与平面SAD 所成的锐二面角的大小为30°,∴cos 30°=|m ·n ||m |·|n |=√3,2√4+(1-λ)=√32,解得λ=1.∴E 为SC 的中点.4.在如图所示的组合体中,ABCD-A 1B 1C 1D 1是一个长方体,P-ABCD 是一个四棱锥.AB=2,BC=3,点P ∈平面CC 1D 1D ,且PD=PC=√2.(1)证明:PD ⊥平面PBC ;(2)求PA 与平面ABCD 所成角的正切值; (3)当AA 1的长为何值时,PC ∥平面AB 1D ? 答案:(1)证明如图,建立空间直角坐标系.设棱长AA 1=a ,则点D (0,0,a ),P (0,1,a+1),B (3,2,a ),C (0,2,a ).于是PD ⃗⃗⃗⃗⃗ =(0,-1,-1),PB ⃗⃗⃗⃗⃗ =(3,1,-1),PC ⃗⃗⃗⃗⃗ =(0,1,-1),所以PD ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,PD ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ =0. 所以PD 垂直于平面PBC 内的两条相交直线PC 和PB ,由线面垂直的判定定理,得PD ⊥平面PBC.(2)解因为点A (3,0,a ),PA⃗⃗⃗⃗⃗ =(3,-1,-1), 而平面ABCD 的一个法向量为n 1=(0,0,1), 所以cos <PA⃗⃗⃗⃗⃗ ,n 1>=√11×1=-√1111.所以PA 与平面ABCD 所成角的正弦值为√1111. 所以PA 与平面ABCD 所成角的正切值为√1010. (3)解因为点D (0,0,a ),B 1(3,2,0),A (3,0,a ), 所以DA ⃗⃗⃗⃗⃗ =(3,0,0),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-a ).设平面AB 1D 的法向量为n 2=(x ,y ,z ),则有{DA ⃗⃗⃗⃗⃗ ·n 2=3x =0,AB 1⃗⃗⃗⃗⃗⃗⃗ ·n 2=2y -az =0,令z=2,可得平面AB 1D 的一个法向量为n 2=(0,a ,2).若要使得PC ∥平面AB 1D ,则要PC ⃗⃗⃗⃗⃗ ⊥n 2, 即PC⃗⃗⃗⃗⃗ ·n 2=a-2=0,解得a=2. 所以当AA 1=2时,PC ∥平面AB 1D.5.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC ⊥AD ;(2)求二面角A-PC-D 的正弦值;(3)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长. 解:如图,以点A 为原点建立空间直角坐标系,依题意得点A (0,0,0),D (2,0,0),C (0,1,0),B (-12,12,0),P (0,0,2).(1)证明:易得PC ⃗⃗⃗⃗⃗ =(0,1,-2),AD ⃗⃗⃗⃗⃗ =(2,0,0).于是PC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,所以PC ⊥AD.(2)PC ⃗⃗⃗⃗⃗ =(0,1,-2),CD ⃗⃗⃗⃗⃗ =(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ). 则{n ·PC⃗⃗⃗⃗⃗ =0,n ·CD ⃗⃗⃗⃗⃗ =0,即{y -2z =0,2x -y =0.不妨令z=1,可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0). 于是cos <m ,n >=m ·n|m |·|n |=√6=√66, 从而sin <m ,n >=√306. 所以二面角A-PC-D 的正弦值为√306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE ⃗⃗⃗⃗⃗ =(12,-12,ℎ).又CD ⃗⃗⃗⃗⃗ =(2,-1,0),故cos <BE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=BE⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ |BE⃗⃗⃗⃗⃗ |·|CD⃗⃗⃗⃗⃗ |=32√12+ℎ2×√5=√10+20ℎ2,所以√10+20ℎ2=cos 30°=√32, 解得h=√1010,即AE=√1010.6.已知四边形ABCD 满足AD ∥BC ,BA=AD=DC=12BC=a ,E 是BC 的中点,将△BAE 沿AE 翻折成△B 1AE ,使平面B 1AE ⊥平面AECD ,F 为B 1D 的中点.(1)求四棱锥B 1-AECD 的体积;(2)证明:B 1E ∥平面ACF ;(3)求平面ADB 1与平面ECB 1所成锐二面角的余弦值.答案:(1)解取AE 的中点M ,连接B 1M.因为BA=AD=DC=12BC=a ,△ABE 为等边三角形,所以B 1M=√32a.又因为平面B 1AE ⊥平面AECD ,所以B 1M ⊥平面AECD ,所以V=13×√32a×a×a×sin π3=a 34.(2)证明连接ED 交AC 于点O ,连接OF ,因为四边形AECD 为菱形,OE=OD ,所以FO ∥B 1E ,所以B 1E ∥平面ACF.(3)解连接MD ,则∠AMD=90°,分别以ME ,MD ,MB 1所在直线为x ,y ,z 轴建立空间直角坐标系,则点E (a2,0,0),C (a ,√32a ,0),A -a2,0,0,D (0,√32a ,0),B 1(0,0,√32a),所以EC⃗⃗⃗⃗⃗ =(a 2,√32a ,0),EB 1⃗⃗⃗⃗⃗⃗⃗ =(-a2,0,√3a2), AD ⃗⃗⃗⃗⃗ =(a 2,√3a 2,0),AB 1⃗⃗⃗⃗⃗⃗⃗ =(a 2,0,√3a2).设平面ECB 1的法向量为u =(x ,y ,z ),则{a2x +√32ay =0,-a2x +√32az =0,令x=1,u =(1,-√33,√33),同理平面ADB 1的法向量为v =(1,-√33,-√33), 所以cos <u ,v >=1+13-13√1+13+13×√1+13+13=35,故平面ADB 1与平面ECB 1所成锐二面角的余弦值为35.。
(四)立体几何中的高考热点问题[命题解读] 1.立体几何是高考的必考内容,几乎每年都考查一个解答题,两个选择或填空题,客观题主要考查空间概念,三视图及简单计算;解答题主要采用“论证与计算”相结合的模式,即利用定义、公理、定理证明空间线线、线面、面面平行或垂直,并与几何体的性质相结合考查几何体的计算.2.重在考查学生的空间想象能力、逻辑推理论证能力及数学运算能力.考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法.以空间几何体为载体,考查空间平行与垂直关系是高考的热点内容,并常与几何体的体积计算交汇命题,考查学生的空间想象能力、计算与数学推理论证能力,同时突出转化与化归思想方法的考查,试题难度中等.【例1】(本小题满分12分)(2019·哈尔滨模拟)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.[信息提取]看到四边形ABCD为菱形,想到对角线垂直;看到三棱锥的体积,想到利用体积列方程求边长.[规范解答](1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE. 2分因为BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED. 4分(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x. 6分由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积V 三棱锥E -ACD =13×12·AC ·GD ·BE =624x 3=63,故x =2.9分从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E -ACD 的侧面积为3+2 5. 12分 [易错与防范] 易错误区:1.在第(1)问中,易忽视条件BD ∩BE =B .AC ⊂平面AEC 等条件,推理不严谨,导致扣分.2.在第(2)问中,需要计算的量较多,易计算失误,或漏算,导致结果错误. 防范措施:1.在书写证明过程中,应严格按照判定定理的条件写,防止扣分.2.在计算过程中,应牢记计算公式,逐步计算,做到不重不漏.[通性通法] 空间几何体体积的求法(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.[解] (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以点N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2=5.由AM ∥BC 得点M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453.求点到平面的距离(几何体的高)求点到平面的距离(几何体的高)涉及到空间几何体的体积和线面垂直关系,是近几年高考考查的一个重要方向,重点考查学生的转化思想和运算求解能力.【例2】 (2019·开封模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,且∠DAB=60°,P A=PD,M为CD的中点,平面P AD⊥平面ABCD.(1)求证:BD⊥PM;(2)若∠APD=90°,P A=2,求点A到平面PBM的距离.[解](1)证明:取AD中点E,连接PE,EM,AC,∵底面ABCD是菱形,∴BD⊥AC,∵E,M分别是AD,DC的中点,∴EM∥AC,∴EM⊥BD.∵P A=PD,∴PE⊥AD,∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,∴PE ⊥平面ABCD ,∴PE ⊥BD ,∵EM ∩PE =E ,∴BD ⊥平面PEM ,∵PM ⊂平面PEM ,∴BD ⊥PM .(2)连接AM ,BE ,∵P A =PD =2,∠APD =90°,∠DAB =60°,∴AD =AB=BD =2,PE =1,EM =12AC =3,∴PM =PB =1+3=2.在等边三角形DBC 中,BM =3,∴S △PBM =394,S △ABM =12×2×3= 3.设三棱锥A -PBM 的高为h ,则由等体积可得13·394h =13×3×1,∴h =41313,∴点A 到平面PBM 的距离为41313.如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求点A到平面PBC的距离.[解](1)证明:设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)三棱锥P-ABD的体积V=16P A·AB·AD=36AB,由V=34,可得AB=32.由题设知BC⊥AB,BC⊥P A,所以BC⊥平面P AB,在平面P AB内作AH⊥PB交PB于点H,则BC⊥AH,故AH⊥平面PBC.又AH=P A·ABPB=P A·ABP A2+AB2=31313.所以点A到平面PBC的距离为313 13.是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.【例3】(2018·秦皇岛模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.[解](1)证明:如图所示,连接AC,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F.又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A.又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC.因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG,EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.(2019·长沙模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,请说明理由.[证明](1)连接BD,设AC交BD于点O,连接SO,由题意得四棱锥S-ABCD 是正四棱锥,所以SO⊥AC.在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD.因为SD⊂平面SBD,所以AC⊥SD.(2)在棱SC上存在一点E,使得BE∥平面P AC.连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO.又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.[大题增分专训]1.(2019·济南模拟)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求三棱锥P-DEF的体积.[解](1)证明:连接BE,BD,BD交CE于点O,连接OF(图略).∵E为线段AD的中点,AD∥BC,BC=12AD=ED,∴BC ED,∴四边形BCDE为平行四边形,∴O为BD的中点,又F是BP的中点,∴OF∥PD.又OF⊂平面CEF,PD⊄平面CEF,∴PD∥平面CEF.(2)由(1)知,BE=CD.∵四边形ABCD为等腰梯形,AB=BC=12AD,∴AB=AE=BE,∴三角形ABE是等边三角形,∴∠DAB=π3,过B作BH⊥AD于点H(图略),则BH= 3.∵PE⊥平面ABCD,PE⊂平面P AD,∴平面P AD⊥平面ABCD,又平面P AD∩平面ABCD=AD,BH⊥AD,BH⊂平面ABCD,∴BH ⊥平面P AD ,∴点B 到平面P AD 的距离为BH = 3.又F 为线段PB 的中点,∴点F 到平面P AD 的距离h 等于点B 到平面P AD的距离的一半,即h =32,又S △PDE =12PE ·DE =2,∴V 三棱锥P -DEF =13S △PDE ×h =13×2×32=33.2.(2019·石家庄模拟)如图,已知四棱锥P -ABCD ,底面ABCD 为正方形,且P A ⊥底面ABCD ,过AB 的平面ABFE 与侧面PCD 的交线为EF ,且满足S △PEF :S 四边形CDEF =1∶3.(1)证明:PB ∥平面ACE ;(2)当P A =2AD =2时,求点F 到平面ACE 的距离.[解] (1)证明:由题知四边形ABCD 为正方形,∴AB ∥CD ,∵CD ⊂平面PCD ,AB ⊄平面PCD ,∴AB ∥平面PCD .又AB⊂平面ABFE,平面ABFE∩平面PCD=EF,∴EF∥AB,∴EF∥CD.由S△PEF∶S四边形CDEF=1∶3知E,F分别为PD,PC的中点.如图,连接BD交AC于点G,则G为BD的中点,连接EG,则EG∥PB.又EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)∵P A=2,AD=AB=1,∴AC=2,AE=12PD=52,∵P A⊥平面ABCD,∴CD⊥P A,又CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∴CD⊥PD.在Rt△CDE中,CE=CD2+DE2=3 2.在△ACE中,由余弦定理知cos∠AEC=AE2+CE2-AC22AE·CE=55,∴sin∠AEC=255,∴S△ACE=12·AE·CE·sin∠AEC=34.设点F 到平面ACE 的距离为h ,连接AF ,则V F -ACE =13×34×h =14h . ∵DG ⊥AC ,DG ⊥P A ,AC ∩P A =A ,∴DG ⊥平面P AC .∵E 为PD 的中点,∴点E 到平面ACF 的距离为12DG =24.又F 为PC 的中点,∴S △ACF =12S △ACP =22,∴V E -ACF =13×22×24=112.由V F -ACE =V E -ACF ,得14h =112,得h =13, ∴点F 到平面ACE 的距离为13.3.已知在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,四边形ABCD 为矩形,E 为线段AD 上靠近点A 的三等分点,O 为AB 的中点,且P A =PB ,AB =23AD .(1)求证:EC ⊥PE .(2)PB 上是否存在一点F ,使得OF ∥平面PEC ?若存在,试确定点F 的位置;若不存在,请说明理由.[解] (1)证明:连接PO ,EO ,CO .∵平面P AB ⊥平面ABCD ,P A =PB ,O 为AB 的中点,∴PO⊥平面ABCD,∵CE⊂平面ABCD,∴PO⊥CE.设AD=3,∵四边形ABCD为矩形,∴CD=AB=2,BC=3,∴AE=13AD=1,∴ED=2,EC=ED2+DC2=22+22=22,OE=AO2+AE2=12+12=2,OC=OB2+BC2=12+32=10,∴OE2+EC2=OC2,∴OE⊥EC.又PO∩OE=O,∴EC⊥平面POE,又PE⊂平面POE,∴EC⊥PE.(2)PB上存在一点F,使得OF∥平面PEC,且F为PB的三等分点(靠近点B).证明如下:取BC的三等分点M(靠近点C),连接AM,易知AE MC,∴四边形AECM 为平行四边形,∴AM∥EC.取BM的中点N,连接ON,∴ON∥AM,∴ON∥EC.∵N为BM的中点,∴N为BC的三等分点(靠近点B).∵F为PB的三等分点(靠近点B),连接OF,NF,∴NF∥PC,又ON∩NF=N,EC∩PC=C,∴平面ONF∥平面PEC,∴OF∥平面PEC.。
2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。
一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥,立体几何中探索性问题且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则122162322326A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
2020年高考——立体几何1.(20全国Ⅰ文19)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC△是底面的内接正三角形,P为DO 上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P−ABC的体积.2.(20全国Ⅰ理18)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC△是底面的内接正三角形,P为DO上一点,66PO DO=.(1)证明:PA⊥平面PBC;(2)求二面角B PC E--的余弦值.3.(20全国Ⅱ文20)(12分)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.4.(20全国Ⅱ理20)(12分)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.5.(20全国Ⅲ文 19)(12分)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.6.(20全国Ⅲ理19)(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.7.(20新高考Ⅰ20)(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.8.(20天津17)(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(20浙江19)(本题满分15分)如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.10.(20江苏15)(本小题满分14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.11.(20江苏22)(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.12.(20北京16)(本小题13分)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.参考答案:1.解:(1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=. 解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.2.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2(0,1,2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.3.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ⋂平面EB 1C 1F = PN , 故AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP = ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B -EB 1C 1F 的体积为1243243⨯⨯=.4.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC .又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1CF .(2)由己知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM =3. 连接NP ,则四边形AONP 为平行四边形,故23231,(,,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(,1,4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AM 的法向量,故1111,π10sin(,)cos ,210||B E B E B E B E -===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.5.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内.6.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.7.解:(1)因为PD ⊥底面ABCD ,所以PD AD ⊥.又底面ABCD 为正方形,所以AD DC ⊥,因此AD ⊥底面PDC . 因为AD BC ∥,AD ⊄平面PBC ,所以AD ∥平面PBC . 由已知得l AD ∥.因此l ⊥平面PDC . (2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-. 由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩ 可取(1,0,)a =-n . 所以2cos ,||||31PB PB PB a⋅-〈〉==⋅+n n n . 设PB 与平面QCD 所成角为θ,则22332sin 1311aa a θ==+++ 2326131a a ++当且仅当1a =时等号成立,所以PB 与平面QCD 所成角的正6.8.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,6CA 〈〉=n . 所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,||||AB AB AB ⋅==n n n . 所以,直线AB 与平面1DB E 39.(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33.10.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .11.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,CB CD ==,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||1||||||5cos AB DE AB DE AB DE +=⋅⋅==<>,.因此,直线AB 与DE . (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0),则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||475|13|||||co |13786s θ+-⋅===⋅⨯n n n n .所以22391cos s n 13i θθ=-=.12.。
2020高考数学总复习——立体几何专项训练(附解析)空间几何体的结构特征、表面积与体积[基础保分练]1.给出下列4个命题:①各侧面都是全等四边形的棱柱一定是正棱柱; ②对角面是全等矩形的六面体一定是长方体;③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥; ④长方体一定是正四棱柱. 其中真命题的个数是( ) A .0B .1C .2D .32.母线长为1的圆锥的侧面展开图的圆心角等于43π,则该圆锥的体积为( )A.2281πB.881πC.4581πD.1081π 3.用平面α截球O 所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6π B .43π C .46πD .63π4.如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.645.给出下列4个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱; ③直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0B .1C .2D .36.设三棱柱ABC-A1B1C1的体积为V,P,Q分别是侧棱AA1,CC1上的点,且PA=QC1,则四棱锥B-APQC的体积为( )A.16V B.14V C.13V D.12V7.在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D.2π8.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为( )A.2B.6C.7D.39.圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.10.已知圆柱M的底面半径与球O的半径相同,且圆柱M与球O的表面积相等,则它们的体积之比V圆柱∶V球=________.[能力提升练]1.圆锥的轴截面是边长为2的正三角形,则圆锥的表面积为( )A.(3+1)πB.4πC.3πD.5π2.已知三棱锥P—ABC的所有顶点都在球O的球面上,△ABC满足AB=22,∠ACB=90°,PA为球O的直径且PA=4,则点P到底面ABC的距离为( )A.2B.22C.3D.2 33.(2019·珠海摸底)如图,圆锥顶点为P,底面圆心为O,过轴PO的截面△PAB,C为PA中点,PA=43,PO=6,则从点C经圆锥侧面到点B的最短距离为( )A.215 B.215-6 2C .6D .215-6 34.(2019·湛江调研)点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( ) A.169π16 B.289π16 C.25π16D .8π 5.已知正四面体P -ABC 的棱长为2,若M ,N 分别是PA ,BC 的中点,则三棱锥P -BMN 的体积为________.6.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在AB ,CC 1上移动,且EF +GH =12,则三棱锥F -HGE 的体积最大值为________.答案精析基础保分练1.A 2.C 3.B 4.A 5.B 6.C 7.C 8.C 9.4 10.34能力提升练1.C [∵圆锥的轴截面是边长为2的正△ABC ,∴圆锥的底面半径r =1, 母线长l =2,表面积S =πr 2+12×2πr ×l =π+2π=3π.]2.B [取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径PA =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为PB =2OO 1=2 2.] 3.A [先作出圆锥的侧面展开图如图所示,由题得圆锥底面圆的半径为32-62=23,所以AA 1=2π·23=43π, 所以∠APA 1=43π43=π,所以∠APB =π2,所以BC =32+32=215.]4.B [根据题意知,△ABC 是一个等边三角形,其面积为334,外接圆的半径为1,小圆的圆心为Q ,由于底面积S △ABC 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为13S △ABC ×DQ =3,∴DQ =4,设球心为O ,半径为R ,则在Rt△AQO 中,OA 2=AQ 2+OQ 2,即R 2=12+(4-R )2,∴R =178,则这个球的表面积为S =4π⎝ ⎛⎭⎪⎫1782=289π16.] 5.26解析 连接AN ,作MD ⊥PN ,交PN 于D ,∵正四面体P -ABC 的棱长为2,M ,N 分别是PA ,BC 的中点, ∴AN ⊥BC ,PN ⊥BC ,MN ⊥AP ,且AN =PN =3, ∵AN ∩PN =N ,AN ,PN ⊂平面PNA , ∴BC ⊥平面PNA ,∵MD ⊂平面PNA ,∴MD ⊥BC , ∵BC ∩PN =N ,BC ,PN ⊂平面PBN , ∴MD ⊥平面PBN ,MN =PN 2-PM 2=2,∵12PN ·MD =12PM ·MN , ∴MD =PM ·MN PN =1×23=63, ∴三棱锥P -BMN 的体积V P -BMN =V M -PBN =13×S △PBN ×MD =13×12×1×3×63=26. 6.148解析 连接CE ,CF ,C 1E ,C 1F ,HE ,HF ,GE ,GF ,设EF =m ,GH =n (m >0,n >0), 则m +n =12.因为S △HGE ∶S △C 1CE =n ∶2, 所以V 三棱锥F -HGE ∶1F C CE V 三棱锥-=n ∶2.又因为1F C CE V 三棱锥-=1C CEF V 三棱锥-=13×2×12×2×m =23m , 所以V 三棱锥F -HGE =13mn .因为m +n =12,所以m ·n ≤m +n24=116, 故V 三棱锥F -HGE ≤148⎝ ⎛⎭⎪⎫当且仅当m =n =14时“=”成立.空间点、线、面的位置关系[基础保分练]1.若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( ) A .一定平行 B .一定相交 C .一定是异面直线D .一定垂直2.已知a ,b ,c 为三条不同的直线,且a ⊂平面α,b ⊂平面β,α∩β=c . ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ; ④若a ⊥b ,a ⊥c ,则必有α⊥β. 其中正确的命题的个数是( ) A .0B .1C .2D .33.已知E ,F ,G ,H 是空间内四个点,条件p :E ,F ,G ,H 四点不共面,条件q :直线EF 和GH 不相交.则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.如图,ABCD -A 1B 1C 1D 1是长方体,O 是BD 的中点,直线AC 1与平面A 1BD 相交于点M ,则下列结论正确的是( )A .A 1,M ,O 三点共线B .A ,O ,M ,A 1不共面C .A 1,M ,C 1,O 不共面D .B 1,B ,O ,M 共面5.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是( )A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上6.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A.23B.33C.23D.137.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,QM∥BD,则下列命题中,错误的是( )A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°8.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C19.平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.10.给出下列四个说法:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④若两个平面有三个公共点,则这两个平面重合.其中正确说法的是________.(填序号)[能力提升练]1.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条2.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么过P,Q,R的平面被正方体所截得的图形是( )A.三角形B.四边形C.五边形D.六边形3.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a 的取值范围是( )A.(0,2) B.(0,3) C.(1,2) D.(1,3)4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )5.如图所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=________.6.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.答案精析基础保分练1.D 2.C 3.A 4.A 5.D 6.A 7.C8.D 9.5 10.②③能力提升练1.D [如图所示,在EF上任意取一点M,则直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点.] 2.D [如图所示,连接QP并延长与CB的延长线交于M,连接MR交BB1于E,连接PE,则PE,RE为截面的两条边.作RG∥PQ交C1D1于G,同理延长PQ交CD的延长线于N,连接NG交DD1于F,连接QF.故截面为六边形PQFGRE.]3.A [此题相当于一个正方形沿着对角线折成一个四面体,易知a大于0且小于 2.] 4.D [A,B,C中四点一定共面,D中四点不共面.]5.8解析观察知,直线CE与正方体的前后左右四个面所在的平面相交,所以m=4;直线EF与正方体的上下前后四个面所在的平面相交,所以n=4.所以m+n=8.6.7 8解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+22-322×2×22=78.平行的判定与性质[基础保分练]1.若a,b表示直线,α表示平面,且b⊂α,则“a∥b”是“a∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,H,G分别为BC,CD的中点,则( )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.②③C.①④D.②④4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条5.下列说法正确的是( )A.若直线l⊥平面α,直线l⊥平面β,则α∥βB.若直线l∥平面α,直线l∥平面β,则α∥βC.若两直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α6.有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是( )A.1B.2C.3D.47.直线a∥平面α,则a平行于平面α内的( )A.一条确定直线B.所有直线C.无数条平行直线D.任意一条直线8.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内9.如图所示是某长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.第9题图第10题图10.如图是一个正方体的表面展开图,B,N,Q都是所在棱的中点,则在原正方体中有以下命题:①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.其中为真命题的是________.(填序号)[能力提升练]1.下列说法中正确的是( )①如果一条直线和一个平面平行,那么它和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行.A.①②③B.①③C.②③D.①②2.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是( )3.已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的命题是( )A.①④B.②③C.①②③D.②③④4.在四棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( )A.452B.4532C.45D.45 35.α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确条件的序号都填上)6.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=________.答案精析基础保分练1.D 2.B 3.C 4.D 5.A 6.A 7.C 8.B 9.平行四边形 10.①②④⑤ 能力提升练1.D [由线面平行的性质定理知①正确;由直线与平面平行的定义知②正确;③错误,经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面与原直线平行.] 2.C [在A ,B 中,易知AB ∥A 1B 1∥MN ,所以AB ∥平面MNP ;在D 中,易知AB ∥PN ,所以AB ∥平面MNP ,故选C.]3.D [对于①,若存在平面α使得b ⊥α,则有b ⊥a ,而直线a ,b 未必垂直,因此①不正确;对于②,注意到过直线a ,b 外一点M 分别引直线a ,b 的平行线a 1,b 1,显然由直线a 1,b 1可确定平面α,此时平面α与直线a ,b 均平行,因此②正确;对于③,注意到过直线b上的一点B 作直线a 2与直线a 平行,显然由直线b 与a 2可确定平面α,此时平面α与直线a 平行,且b ⊂α,因此③正确;对于④,在直线b 上取一定点N ,过点N 作直线c 与直线a平行,经过直线c 的平面(除由直线a 与c 所确定的平面及直线c 与b 所确定的平面之外)均与直线a 平行,且与直线b 相交于一定点N ,因此④正确.] 4.A [如图所示,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF ∥AC 且HF =12AC ,DE ∥AC 且DE =12AC ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.]5.①③解析 ①中,由b ⊂β,b ⊂γ,得β∩γ=b ,又a ∥γ,a ⊂β,所以a ∥b (线面平行的性质定理).③中,由α∩β=a ,a ⊂γ得β∩γ=a ,又b ∥β,b ⊂γ,所以a ∥b (线面平行的性质定理). 6.24或245解析 设BD =x ,由α∥β可得AB ∥CD ,则△PAB ∽△PCD ,即PB PA =PDPC. ①当点P 在两平面之间时,如图(1)所示,则有x -86=89-6,∴x =24;②当点P 在两平面外侧时,如图(2),则有8-x 6=89+6,∴x =245.垂直的判定与性质[基础保分练]1.已知α,β是两个不同的平面,l ,m ,n 是不同的直线,下列命题不正确的是( ) A .若l ⊥m ,l ⊥n ,m ⊂α,n ⊂α,则l ⊥α B .若l ∥m ,l ⊄α,m ⊂α,则l ∥αC .若α⊥β,α∩β=l ,m ⊂α,m ⊥l ,则m ⊥βD .若α⊥β,m ⊥α,n ⊥β,则m ⊥n 2.已知两个平面垂直,下列命题:①一个平面内的任意一条直线必垂直于另一个平面内的任意一条直线; ②一个平面内的任意一条直线必垂直于另一个平面内的无数条直线; ③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确的个数是( ) A .3B .2C .1D .03.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形个数为( )A.4B.3C.2D.14.“直线l垂直于平面α”的一个必要不充分条件是( )A.直线l与平面α内的任意一条直线垂直B.过直线l的任意一个平面与平面α垂直C.存在平行于直线l的直线与平面α垂直D.经过直线l的某一个平面与平面α垂直5.已知直线l,m和平面α,则下列结论正确的是( )A.若l∥m,m⊂α,则l∥αB.若l⊥α,m⊂α,则l⊥mC.若l⊥m,l⊥α,则m⊥αD.若l∥α,m⊂α,则l∥m6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )①若m⊥α,α⊥β,则m∥β;②若m⊥α,α∥β,n⊂β,则m⊥n;③若m⊂α,n⊂β,m∥n,则α∥β;④若n⊥α,n⊥β,m⊥β,则m⊥α.A.①②B.③④C.①③D.②④7.(2019·沈阳东北育才学校联考)设m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中不正确的是( )A.m⊥α,n⊥β且α⊥β,则m⊥nB.m∥α,n⊥β且α⊥β,则m∥nC.m⊥α,n∥β且α∥β,则m⊥nD.m⊥α,n⊥β且α∥β,则m∥n8.已知在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不正确的是( )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC9.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中真命题的序号是________.10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.[能力提升练]1.已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是( )A.①④B.②④C.②③D.③④2.如图所示,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C13.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( ) A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BDCD.平面ABC⊥平面BDC4.已知矩形ABCD中,AB=1,BC= 2.将△ABD沿矩形的对角线BD所在直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊥α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β. 其中的真命题是________.(填序号)6.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为π4和π6,过A,B分别作两平面交线的垂线,垂足为A′,B′,则AB∶A′B′=________.答案精析基础保分练1.A 2.B 3.A 4.D 5.B 6.D 7.B8.C 9.①②④10.②③④能力提升练1.B 2.D3.C [∵AD⊥BC,AD⊥BD,BC∩BD=B,BC,BD⊂平面BDC,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.]4.B [在矩形ABCD中,作AE⊥BD于E,连接CE.在翻折过程中,AE⊥BD,假设存在某个位置使AC⊥BD,则BD⊥平面AEC,则BD⊥CE,由条件知BD与CE不垂直,故A错误;对于C,在翻折过程中,若AD⊥BC,则AD⊥平面ABC,得AD⊥AC,从而△ACD为直角三角形,得∠CAD =90°,而CD<AD,这种情况是不可能的,故C错误;若AB⊥CD,由BC⊥CD,可得CD⊥平面ACB,则CD⊥AC,则AB=CD=1,BC=AD=2,可得AC=1,那么存在AC=1这样的位置,使得AB⊥CD成立,故B正确,D错误.]5.①④解析若m⊥α,m⊂β,由线面垂直的相关性质可得面面垂直,即α⊥β,①正确;若m⊥α,n⊂α,m∥β,n∥β,由线面垂直与线面平行的相关性质可得α⊥β,②错误;如果m⊂α,n⊄α,m,n是异面直线,也可出现n与α平行,③错误;α∩β=m,n∥m,且n⊄α,n⊄β,由线面平行的相关性质可得n∥α且n∥β,④正确.6.2∶1解析 由已知条件可知∠BAB ′=π4,∠ABA ′=π6,设AB =2a ,则BB ′=2a sin π4=2a ,A ′B =2a cos π6=3a ,∴在Rt△BB ′A ′中,得A ′B ′=a , ∴AB ∶A ′B ′=2∶1.向量求解平行和垂直问题[基础保分练]1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以分别是( ) A .2,12B .-13,12C .-3,2D .2,22.若平面α1,α2垂直,则下列向量可以是这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1) D .n 1=(1,2,1),n 2=(0,-2,-2)3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AM =12MC ,A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,MN →=x a +y b +z c ,则x +y +z 等于( )A.34B.14C.23D.134.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2B.12a 2C.14a 2D.34a 25.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ) A.257B.67C.187D.4076.设A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 的中点,则△AMD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形D .不确定7.已知直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)8.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2B .-143C.145D .29.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC →垂直,则向量a =________.10.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.[能力提升练]1.空间内四点A (2,3,6),B (4,3,2),C (0,0,1),D (2,0,2)的位置关系是( ) A .共线 B .共面 C .不共面D .无法确定2.O 为空间内任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断3.已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( )A .垂直B .不垂直C .平行D .以上都有可能4.设ABCD -A 1B 1C 1D 1是棱长为a 的正方体,则有( ) A.AB →·C 1A —→=a 2 B.AB →·A 1C 1—→=2a 2 C.BC →·A 1D —→=a 2D.AB →·C 1A 1—→=a 25.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是____________________________. 6.平面α的一个法向量为n =(0,1,-1),若直线l ⊥平面α,则直线l 的单位方向向量是________.答案精析基础保分练1.A 2.A 3.D 4.C 5.A 6.C 7.D 8.D 9.(1,1,1)或(-1,-1,-1) 10.-4解析 ∵a ·b =x -2+6=0,∴x =-4. 能力提升练 1.C 2.B3.A [易知AB →=(-1,1,0), AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,AC →·n =-1×1+0×1+1×1=0,则AB →⊥n ,AC →⊥n ,即直线AB ⊥l ,直线AC ⊥l ,又AB 与AC 是平面ABC 内两条相交直线, ∴l ⊥平面ABC .]4.C [AB →·C 1A —→=AB →·(C 1C —→+CB →+BA →)=AB →·BA →=-a 2,AB →·A 1C 1—→=AB →·AC →=AB →·(AB →+BC →)=AB →·AB →=a 2,BC →·A 1D —→=BC →·(A 1A —→+AD →)=BC →·BC →=a 2,AB →·C 1A 1—→=-AB →·A 1C 1—→=-a 2, 故选C.]5.⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23.6.±⎝ ⎛⎭⎪⎫0,22,-22 解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是±⎝ ⎛⎭⎪⎫0,22,-22.向量法求解空间角和距离问题[基础保分练]1.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( ) A .5B .6C .4D .82.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 所成的角的余弦值为( )A.120B.1010C .-1010D .-1203.在空间直角坐标系O -xyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( ) A .4B .2C .3D .14.方向向量为s =(1,1,1)的直线l 经过点A (1,0,0),则坐标原点O (0,0,0)到该直线的距离是( ) A.3B.2C.62D.635.平面α的一个法向量为n =(1,-3,0),则y 轴与平面α所成的角的大小为( ) A.π6B.π3C.π4D.5π66.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则异面直线OA 与BC 的夹角的余弦值为( )A.3-25 B.3+25 C.3-225D.2+257.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上,且AM →=12MC 1—→,N 为B 1B 的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 8.P 是二面角α-AB -β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为( ) A .60°B.70°C.80°D.90°9.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为________. 10.如图所示,已知空间四边形OABC 中OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.[能力提升练]1.已知三棱柱ABC -A 1B 1C 1的侧棱长与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) A.13B.23C.33D.232.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成的角的余弦值为( )A.13B.23C.33D.233.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( ) A.523B.543C.743D.1144.过正方形ABCD 的顶点A ,引PA ⊥平面ABCD .若PA =BA ,则平面ABP 和平面CDP 所成二面角的大小是( )A .30°B.45°C.60°D.90°5.已知∠AOB =90°,过O 点引∠AOB 所在平面的斜线OC ,与OA ,OB 分别成45°,60°角,则以OC 为棱的二面角A -OC -B 的余弦值为________.6.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长(包括底面边长)都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 与侧棱C 1C 所成角的余弦值是________.答案精析基础保分练1.A 2.B 3.B 4.D 5.B 6.C7.A [以D 为坐标原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上,且AM →=12MC 1→,则(x -a ,y ,z )=12(-x ,a -y ,a -z ),得x =23a ,y =a 3,z =a 3,即M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,所以|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32 =216a ,故选A.] 8.D [不妨设PM =a ,PN =b , 作ME ⊥AB 于E ,NF ⊥AB 于F . ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.] 9.62211解析 设三棱锥为P -ABC ,且PA =6,PB =PC =4,以P 为原点建立空间直角坐标系如图,则P (0,0,0),A (6,0,0),B (0,4,0),C (0,0,4),PA →=(6,0,0),AB →=(-6,4,0),AC →=(-6,0,4),设平面ABC 的一个法向量为n =(x ,y ,z ), 则n ⊥AB →,n ⊥AC →,所以⎩⎪⎨⎪⎧-6x +4y =0,-6x +4z =0,即y =z =32x ,所以可选平面ABC 的一个法向量为n =(2,3,3),所以P 到平面ABC 的距离d =|PA →|·|cos〈PA →,n 〉|=|PA →·n ||n |=124+9+9=62211. 10.0解析 设OA →=a ,OB →=b ,OC →=c , 则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a |·|c |cos π3-|a |·|b |cos π3=0,∴OA →⊥BC →,∴cos〈OA →,BC →〉=0. 能力提升练1.B [设A 1在底面ABC 内的射影为O ,过O 作OH ∥BC 交AB 于点H ,以O 为坐标原点,分别以OA →,OH →,OA 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(图略). 设△ABC 的边长为1,则A ⎝⎛⎭⎪⎫33,0,0, B 1⎝ ⎛⎭⎪⎫-32,12,63, ∴AB 1→=⎝ ⎛⎭⎪⎫-536,12,63,平面ABC 的法向量n =(0,0,1), 则AB 1与底面ABC 所成角α的正弦值sin α=|cos 〈AB 1→,n 〉|=637536+14+69=23.]2.C 3.B [|OA →|=a +b2=4|a |2+|b |2+4a ·b =7, 同理|OB →|=7,则cos∠AOB =OA →·OB→|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.]4.B [建立如图所示的空间直角坐标系,设AB =1,易得平面APB 的一个法向量为n 1=(0,1,0),平面PCD 的一个法向量为n 2=(0,1,1), 故平面ABP 与平面CDP 所成二面角的余弦值为|n 1·n 2||n 1||n 2|=22,故所求二面角的大小是45°.] 5.-33 6.255第56练 立体几何中的易错题1.已知直线a ,b ,m ,其中a ,b 在平面α内.则“m ⊥a ,m ⊥b ”是“m ⊥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β3.(2019·湛江调研)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .α∩β=n ,m ⊂α,m ∥β⇒m ∥nB .α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC.m⊥n,m⊂α,n⊂β⇒α⊥βD.m∥α,n⊂α⇒m∥n4.若点P∈平面α,点Q∈平面α,点R∈平面β,α∩β=m,且R∉m,PQ∩m=M,过P,Q,R三点确定一个平面γ,则β∩γ是( )A.直线QR B.直线PRC.直线RM D.以上均不正确5.(2019·唐山模拟)在长方体ABCD-A1B1C1D1中,AB=BC=2AA1,则异面直线A1B与B1C所成角的余弦值为( )A.105B.15C.55D.1556.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面7.在三棱锥S—ABC中,AB⊥AC,AB=AC=SA,SA⊥平面ABC,D为BC的中点,则异面直线AB与SD所成角的余弦值为( )A.55B.66C.306D.以上结论都不对8.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.229.如图,长方体ABCD-A1B1C1D1的底面是边长为a的正方形,若在侧棱AA1上至少存在一点E,使得∠C1EB=90°,则侧棱AA1的长的最小值为( )A.a B.2aC.3a D.4a10.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为( ) A .2πB .6πC .46πD .24π11.已知一所有棱长都是2的三棱锥,则该三棱锥的体积为________.12.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是棱CC 1的中点,则三棱锥A 1-ABM 的体积为________.第12题图 第13题图13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P的平面交平面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.14.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,正确的命题是________.①MB 是定值; ②点M 在圆上运动;③一定存在某个位置,使DE ⊥A 1C ; ④一定存在某个位置,使MB ∥平面A 1DE .15.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.16.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是________.答案精析1.B 2.B 3.A 4.C 5.B 6.B7.B [如图,取AC的中点E,连接DE,SE,因为D,E分别为BC,AC的中点,所以DE∥AB,所以∠SDE就是异面直线AB与SD所成的角,令AB=AC=SA=2,由勾股定理得SE=5,又DE=1,很明显BA⊥平面SAC,所以DE⊥平面SAC,所以DE⊥SE,所以SD= 6.在Rt△SDE中,cos∠SDE=DESD =16=66.故选B.]8.A [设E为△ABC的重心,连接OA,OB,OE.∵三棱锥S-ABC内接于球O,∴OB=OC=OA=1.又△ABC为等边三角形,∴OE⊥平面ABC,∴三棱锥的高h=2OE.∵AB=AC=BC=1,E为△ABC的重心,连接CE,∴CE=33,∴OE=OC2-CE2=63,∴h =263,∴V S -ABC =13S △ABC ·h=13×12×1×32×263=26.] 9.B [设AA 1=h ,AE =x ,A 1E =h -x ,x ∈[0,h ],则BE 2=a 2+x 2,C 1E 2=(2a )2+(h -x )2,BC 21=a 2+h 2. 又∠C 1EB =90°, 所以BE 2+C 1E 2=BC 21,即a 2+x 2+(2a )2+(h -x )2=a 2+h 2, 即关于x 的方程x 2-hx +a 2=0,x ∈[0,h ]有解,当x =0时,a 2=0,不合题意,当x >0时,h =a 2x+x ≥2a ,当且仅当x =a 时取等号. 即侧棱AA 1的最小值为2a .]10.B [设两两垂直的三条侧棱分别为a ,b ,c , 可以得到12ab =22,12bc =32,12ac =62, 解得a =2,b =1,c = 3. 所以2R =a 2+b 2+c 2=6, 所以球的表面积为S =4πR 2=6π.] 11.13 12.16 13.22a 3解析 如图,∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1 =B 1D 1, ∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ . 设PQ ∩AB =M ,∵AB ∥CD , ∴△APM ∽△DPQ , ∴PQ PM =PD AP=2,即PQ =2PM .又△APM ∽△ADB ,∴PM BD =AP AD =13.∴PM =13BD ,PQ =23BD ,又BD =2a ,∴PQ =223a .14.①②④解析 取DC 中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE ,所以平面MNB ∥平面A 1DE ,因为MB ⊂平面MNB ,所以MB ∥平面A 1DE ,④正确;∠A 1DE =∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos∠MNB ,所以MB 是定值,①正确;B 是定点,所以M 是在以B 为圆心,MB 为半径的圆上,②正确;当矩形ABCD 满足AC ⊥DE 时存在,其他情况不存在,③不正确.所以①②④正确. 15.8解析 过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.16.⎣⎢⎡⎦⎥⎤324,52解析 取B 1C 1的中点M ,BB 1的中点N ,连接A 1M ,A 1N ,MN ,可以证明平面A 1MN ∥平面AEF ,所以点P 位于线段MN 上,把△A 1MN 置于平面上,则有A 1M =A 1N =1+⎝ ⎛⎭⎪⎫122=52,MN =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,所以当点P 位于M ,N 时,A 1P 最大,当P 位于线段MN 的中点O 时,A 1P 最小,此时A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,所以A 1O ≤A 1P ≤A 1M ,即324≤A 1P ≤52,所以线段A 1P 长度的取值范围是⎣⎢⎡⎦⎥⎤324,52.第57练 高考大题突破练—立体几何[基础保分练]1.(2019·四川诊断)如图所示,四棱锥S -ABCD 中,SA ⊥底面ABCD ,∠ABC =90°,SA =2,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.2.(2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,。
2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。
立体几何大题训练一、解答题(共18题;共170分)1.(2020·新课标Ⅲ·理)如图,在长方体中,点分别在棱上,且,.(1)证明:点在平面内;(2)若,,,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,P为上一点,.(1)证明:平面;(2)求二面角的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱中,平面,,点分别在棱和棱上,且为棱的中点.(Ⅰ)求证:;(Ⅱ)求二面角的正弦值;(Ⅲ)求直线与平面所成角的正弦值.6.(2020·江苏)在三棱锥A—BCD中,已知CB=CD= ,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E 为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF= BC,设二面角F—DE—C的大小为θ,求sinθ的值.7.(2020·北京)如图,在正方体中,E为的中点.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.8.(2020·浙江)如图,三棱台DEF﹣ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.(1)当时,求异面直线与所成角的余弦值;(2)当与平面所成角的正弦值为时,求的值.10.(2020·济宁模拟)如图1,四边形ABCD为矩形,BC=2AB,E为AD的中点,将ABE、DCE分别沿BE、CE折起得图2,使得平面平面BCE,平面平面BCE.(1)求证:平面平面DCE;(2)若F为线段BC的中点,求直线FA与平面ADE所成角的正弦值.11.(2020高一下·宝坻月考)如图所示,已知平面,M,N分别是,的中点,.(1)求证:平面;(2)求证:平面平面;(3)若,,求直线与平面所成的角.12.(2020·沈阳模拟)如图,在四边形中,,以为折痕把折起,使点A到达点P的位置,且.(1)证明:平面;(2)若M为的中点,二面角等于60°,求直线与平面所成角的正弦值.13.(2020·龙岩模拟)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC= ,AB=4,BC=3,CD= ,AD=2 ,PA=4.(1)证明:CD⊥平面PAD;(2)求二面角B-PC-D的余弦值..14.(2020·德州模拟)如图,已知平面平面,直线平面,且.(1)求证:平面;(2)若,平面,求二面角的余弦值.15.(2020·淄博模拟)在四棱柱中,已知底面为等腰梯形,,,M,N分别是棱,的中点(1)证明:直线平面;(2)若平面,且,求经过点A,M,N的平面与平面所成二面角的正弦值.16.(2020·泰安模拟)在四棱锥中,为等边三角形,四边形为矩形,为的中点,.(1)证明:平面平面.(2)设二面角的大小为,求的取值范围.17.(2020·平邑模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB⊥BC,②FC与平面ABCD所成的角为,③∠ABC .如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中点为F.(1)在线段AB上是否存在一点G,使得AF 平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若,求二面角F﹣AC﹣D的余弦值.18.(2020·江西模拟)如图:在三棱锥中,平面平面ABC,,,且,.(1)若点D为BP上的一动点,求证:;(2)若,求二面角的平面角的余弦值.答案解析部分一、解答题1.【答案】(1)解:在棱上取点G,使得,连接、、、,在长方体中,且,且,,,且,所以,四边形为平行四边形,则且,同理可证四边形为平行四边形,且,且,则四边形为平行四边形,因此,点在平面内(2)解:以点为坐标原点,、、所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系,则、、、,,,,,设平面的法向量为,由,得取,得,则,设平面的法向量为,由,得,取,得,,则,,设二面角的平面角为,则,.因此,二面角的正弦值为【解析】【分析】(1)连接、,证明出四边形为平行四边形,进而可证得点在平面内;(2)以点为坐标原点,、、所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角的正弦值.2.【答案】(1)解:分别为,的中点,又在中,M为中点,则又侧面为矩形,由,平面平面又,且平面,平面,平面又平面,且平面平面又平面平面平面平面平面(2)解:连接平面,平面平面根据三棱柱上下底面平行,其面平面,面平面故:四边形是平行四边形设边长是( )可得:,为的中心,且边长为故:解得:在截取,故且四边形是平行四边形,由(1)平面故为与平面所成角在,根据勾股定理可得:直线与平面所成角的正弦值:.【解析】【分析】(1)由分别为,的中点,,根据条件可得,可证,要证平面平面,只需证明平面即可;(2)连接,先求证四边形是平行四边形,根据几何关系求得,在截取,由(1)平面,可得为与平面所成角,即可求得答案.3.【答案】(1)解:由题设,知为等边三角形,设,则,,所以,又为等边三角形,则,所以,,则,所以,同理,又,所以平面;(2)解:过O作∥BC交AB于点N,因为平面,以O为坐标原点,OA为x轴,ON 为y轴建立如图所示的空间直角坐标系,则,,,,设平面的一个法向量为,由,得,令,得,所以,设平面的一个法向量为由,得,令,得,所以故,设二面角的大小为,则.【解析】【分析】(1)要证明平面,只需证明,即可;(2)以O 为坐标原点,OA为x轴,ON为y轴建立如图所示的空间直角坐标系,分别算出平面的法向量为,平面的法向量为,利用公式计算即可得到答案.4.【答案】(1)解:在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为所以平面;(2)解:如图建立空间直角坐标系,因为,则有,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.【解析】【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.5.【答案】解:依题意,以为原点,分别以、、的方向为x轴、y轴、z轴的正方向建立空间直角坐标系(如图),可得、、、、、、、、.(Ⅰ)依题意,,,从而,所以;(Ⅱ)依题意,是平面的一个法向量,,.设为平面的法向量,则,即,不妨设,可得.,.所以,二面角的正弦值为;(Ⅲ)依题意,.由(Ⅱ)知为平面的一个法向量,于是.所以,直线与平面所成角的正弦值为.【解析】【分析】以为原点,分别以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.(Ⅰ)计算出向量和的坐标,得出,即可证明出;(Ⅱ)可知平面的一个法向量为,计算出平面的一个法向量为,利用空间向量法计算出二面角的余弦值,利用同角三角函数的基本关系可求解结果;(Ⅲ)利用空间向量法可求得直线与平面所成角的正弦值.6.【答案】(1)解:连以为轴建立空间直角坐标系,则从而直线与所成角的余弦值为(2)解:设平面一个法向量为令设平面一个法向量为令因此【解析】【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.7.【答案】解:(Ⅰ)如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;(Ⅱ)以点A为坐标原点,、、所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系,设正方体的棱长为2,则、、、,,,设平面的法向量为,由,得,令,则,,则..因此,直线与平面所成角的正弦值为.【解析】【分析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(Ⅱ)以点为坐标原点,、、所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法可计算出直线与平面所成角的正弦值.8.【答案】解:(Ⅰ)证明:作DH⊥AC,且交AC于点H,∵面ADFC⊥面ABC,DH⊂面ADFC,∴DH⊥BC,∴在Rt△DHC中,CH=CD•cos45°=CD,∵DC=2BC,∴CH=CD=•2BC=•BC,∴=,即△BHC是直角三角形,且∠HBC=90°,∴HB⊥BC,∴BC⊥面DHB,∵BD⊂面DHB,∴BC⊥BD,∵在三棱台DEF﹣ABC中,EF∥BC,∴EF⊥DB.(Ⅱ)设BC=1,则BH=1,HC=,在Rt△DHC中,DH=,DC=2,在Rt△DHB中,DB===,作HG⊥BD于G,∵BC⊥HG,∴HG⊥面BCD,∵GC⊂面BCD,∴HG⊥GC,∴△HGC是直角三角形,且∠HGC=90°,设DF与面DBC所成角为θ,则θ即为CH与面DBC的夹角,且sinθ=sin∠HCG==,∵在Rt△DHB中,DH•HB=BD•HG,∴HG===,∴sinθ===.【解析】【分析】(Ⅰ)题根据已知条件,作DH⊥AC,根据面面垂直,可得DH⊥BC,进一步根据直角三角形的知识可判断出△BHC是直角三角形,且∠HBC=90°,则HB⊥BC,从而可证出BC⊥面DHB,最后根据棱台的定义有EF∥BC,根据平行线的性质可得EF⊥DB;(Ⅱ)题先可设BC=1,根据解直角三角形可得BH=1,HC=,DH=,DC=2,DB=,然后找到CH与面DBC的夹角即为∠HCG,根据棱台的特点可知DF与面DBC所成角与CH与面DBC的夹角相等,通过计算∠HCG的正弦值,即可得到DF与面DBC所成角的正弦值.9.【答案】(1)解:连接CE,以分别为轴,建立如图空间直角坐标系,则,因为F为线段AB上一动点,且,则,所以.当时,,,所以(2)解:,设平面的一个法向量为=由, 得,化简得,取设与平面所成角为,则.解得或(舍去),所以.【解析】【分析】(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果.10.【答案】(1)解:在图1中,BC=2AB,且E为AB的中点,,同理.所以,又平面平面BCE,平面平面,所以平面ABE,又平面,所以平面平面DCE.(2)解:如图,以点E为坐标原点,EB,EC所在的直线分别为x轴,y轴建立空间直角坐标系,设,则.向量,设平面ADE的法向量为由,得,令,得平面ADE的一个法向量为,又,设直线FA与平面ADE所成角为,则所以直线FA与平面ADE所成角的正弦值为.【解析】【分析】(1)证明平面ABE,平面平面DCE即得证;(2)以点E为坐标原点,EB,EC所在的直线分别为轴,轴建立空间直角坐标系,设,利用向量法求直线FA与平面ADE 所成角的正弦值得解.11.【答案】(1)解:因为M,N分别是, 的中点,所以.又平面且平面,所以平面.(2)解:因为平面, 平面,所以.又且,所以平面.又平面,所以平面平面.(3)解:因为平面,所以为直线与平面所成的角.在直角中, , ,所以.所以.故直线与平面所成的角为.【解析】【分析】(1)根据中位线定理,可得,即可由线面平行判定定理证明平面;(2)根据题意可得,而又因为,所以平面,即可由平面与平面垂直的判定定理证明平面平面;(3)由题意可知为直线与平面所成的角,根据线段关系求得,即可求得直线与平面所成的角大小.12.【答案】(1)解:因为,所以平面,又因为平面,所以.又因为,所以平面.(2)解:因为,所以是二面角的平面角,即,在中,,取的中点,连接,因为,所以,由(1)知,平面,为的中位线,所以,即两两垂直,以为原点建立如图所示的坐标系,设,则,,设平面的一个法向量为,则由得令,得,所以,所以直线与平面所成角的正弦值为.【解析】【分析】(1)利用线面垂直的判定定理和性质定理即可证明;(2)由题意知,,取的中点O,连接,易知两两垂直,以O为原点建立如图所示的坐标系,设,平面的一个法向量为,求出向量,则向量所成角的余弦值的绝对值即为所求.13.【答案】(1)解:连接,由∠ABC= ,AB=4,BC=3,则,又因为CD= ,AD=2 ,所以,即,因为PA⊥平面ABCD,平面ABCD,所以,因为,所以CD⊥平面PAD;(2)解:以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为z轴,建立空间直角坐标系,如图:作交与点G,,即,所以,,所以,所以,,,,则,,,设平面的一个法向量为,则,即,令,则,,即,设平面的一个法向量为,则,即,令,则,,即,由,所以二面角B-PC-D的余弦值为.【解析】【分析】(1)连接,证出,利用线面垂直的性质定理可得,再利用线面垂直的判定定理即可证出.(2)以点D为坐标原点,的延长线为x,为y轴,过点D与平行线为轴,建立空间直角坐标系,分别求出平面的一个法向量与平面的一个法向量,利用向量的数量积即可求解.14.【答案】(1)证明:过点E作于点H,因为平面平面,又平面平面,平面,所以平面,又因为平面,所以,因为平面,平面,所以平面;(2)解:因为平面,所以,由可知,,,则,所以点是的中点,连接,则,所以平面,则,,所以四边形是矩形.以为坐标原点,分别以、、所在直线为、、轴建立空间直角坐标系,设,则、、、.设平面的一个法向量为,又,.由,得,取,得.设平面的一个法向量为,因为,.由,得,取,得;设二面角的平面角为,则,由题知二面角是钝角,则二面角的余弦值为.【解析】【分析】(1)过点作于点,推导出平面,利用线面垂直的性质定理可得出,再由线面平行的判定定理可证得平面;(2)推导出四边形为矩形,然后以点为坐标原点,分别以、、所在直线为x、y、z轴建立空间直角坐标系,设,利用空间向量法可求得二面角.15.【答案】(1)证明:取的中点P,连结,,所以,且,所以,且,所以是平行四边形,所以,因为平面,所以直线平面.(2)解:连结,由己知可得,,所以为等边三角形,所以,,所以,即,所以,分别以所在的直线为轴,建立如图所示的空间直角坐标系,则,,,,,,,所以,,可得,,,.设平面的法向量为,所以,即,取,解得,所以,设平面的一个法向量为,,即,取,可得,所以,设平面与平面所成二面角的大小为,所以,则所以平面与平面所成二面角的正弦值为.【解析】【分析】(1)取的中点P,连结,证得,利用线平行的判定定理,即可证得直线平面;(2)以所在的直线为轴,建立如图所示的空间直角坐标系,分别求得平面和平面的一个法向量,利用向量的夹角公式,即可求解.16.【答案】(1)解:连接,因为为等边三角形,为的中点,所以,又因为,,所以平面,.因为四边形为矩形,所以,,所以平面.因为平面,所以平面平面(2)解:以为原点,建立如图所示的空间直角坐标系,设,,则,,,由空间向量的坐标运算可得,,. 设平面的法向量为,则,代入可得令,,,所以.设平面的法向量为,则,代入可得令,,,所以.二面角的大小为,由图可知,二面角为锐二面角,所以,当趋于时,,则,所以.【解析】【分析】(1)连接,根据题意可证出平面,,进而证出平面,即可证出平面平面;(2)建立空间直角坐标系,写出平面的法向量为,平面的法向量为,进而利用公式写出,进而得出结果17.【答案】(1)解:在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示:设PC的中点为H,连结FH,因为,,,,所以所以四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PGC,AF⊄平面PGC,∴AF∥平面PGC.(2)解:选择①AB⊥BC:∵PA⊥平面ABCD,∴PA⊥BC,由题意知AB,AD,AP彼此两两垂直,以AB,AD,AP分别为x,y,z轴,建立空间直角坐标系,∵PA=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴(0,1,1),(﹣2,﹣1,1),设平面FAC的一个法向量为(x,y,z),∴,取y=1,得(﹣1,1,﹣1),平面ACD的一个法向量为(0,0,1),设二面角F﹣AC﹣D的平面角为θ,则cosθ ,∴二面角F﹣AC﹣D的余弦值为.选择②FC与平面ABCD所成的角为:∵PA⊥平面ABCD,取BC中点E,连结AE,取AD的中点M,连结FM,CM,则FM∥PA,且FM=1,∴FM⊥平面ABCD,FC与平面ABCD所成角为∠FCM,∴,在Rt△FCM中,CM ,又CM=AE,∴AE2+BE2=AB2,∴BC⊥AE,∴AE,AD,AP彼此两两垂直,以AE、AD、AP分别为x,y,z轴,建立空间直角坐标系,∵PA=AB=2,∴A(0,0,0),B(,﹣1,0),C(,1,0),D(0,2,0),E(,0,0),F(0,1,1),P(0,0,2),∴(0,1,1),(,0,1),设平面EAC的一个法向量为(x,y,z),则,取x ,得(,﹣3,3),平面ACD的一个法向量为:(0,0,1),设二面角F﹣AC﹣D的平面角为θ,则cosθ .∴二面角F﹣AC﹣D的余弦值为.选择③∠ABC :∵PA⊥平面ABCD,∴PA⊥BC,取BC中点E,连结AE,∵底面ABCD是菱形,∠ABC=60°,∴△ABC是正三角形,∵E是BC的中点,∴BC⊥AE,∴AE,AD,AP彼此两两垂直,以AE、AD、AP分别为x,y,z轴,建立空间直角坐标系,∵PA=AB=2,∴A(0,0,0),B(,﹣1,0),C(,1,0),D(0,2,0),E(,0,0),F(0,1,1),P(0,0,2),∴(0,1,1),(,0,1),设平面EAC的一个法向量为(x,y,z),则,取x ,得(,﹣3,3),平面ACD的法向量(0,0,1),设二面角F﹣AC﹣D的平面角为θ,θ则cosθ .∴二面角F﹣AC﹣D的余弦值为.【解析】【分析】(1)设PC的中点为H,连结FH,由题意得AGHF为平行四边形,则AF∥GH,由此能证明在线段AB上存在中点G,使得AF∥平面PCG.(2)选择①AB⊥BC,推导出AB,AD,AP彼此两两垂直,以AB,AD,AP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣AC﹣D的余弦值.选择②FC与平面ABCD所成的角为,取BC中点E,连结AE,取AD的中点M,连结FM,CM,则FM∥PA,且FM=1,FM⊥平面ABCD,FC与平面ABCD所成角为∠FCM,,推导出AE,AD,AP彼此两两垂直,以AE、AD、AP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣AC﹣D的余弦值.选择③∠ABC ,推导出PA⊥BC,取BC中点E,连结AE,推导出AE,AD,AP彼此两两垂直,以AE、AD、AP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F ﹣AC﹣D的余弦值.18.【答案】(1)解:在中由正弦定理,得,即,∵平面平面ABC,交线为AC,,故平面APC,则,又,∴平面ABP,而平面ABP,所以.(2)解:∵平面平面ABC,在平面PAC中过A点作AC的垂线l,则l垂直平面ABC,以l为轴,AB,AC为x,y轴建立空间直角坐标系.由知,E为PC的三等分点,易得,,,,,设平面EAB的一个法向量为,由得,令,则,,设平面EBC一个法向量为,由,得,令,则,,.则,设二面角的平面角为,则.【解析】【分析】(1)在中,易得,再由平面平面ABC,,利用面面垂直的性质定理得到平面APC,从而有,然后由线面垂直的判定定理证明.(2)根据平面平面ABC,在平面PAC中过A点作AC的垂线l,则l垂直平面ABC,以l为轴,AB,AC为x,y轴建立空间直角坐标系,分别求得平面EAB的一个法向量和平面EBC一个法向量,代入公式求解.。
2020届高考数学(理)热点猜押练一 致胜高考必须掌握的20个热点 热点练15 立体几何中的证明与计算问题
1.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC. (1)证明:A1C⊥平面BED. (2)求二面角A1-DE-B的余弦值.
2.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF, BF=CF. (1)求证:AB⊥CG. (2)若BC=CF,求直线AE与平面BEG所成角的正弦值. 3.如图,在底面为矩形的四棱锥P-ABCD中,PB⊥AB. (1)证明:平面PBC⊥平面PCD. (2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B-PD-C的大小.
4.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=45°,PD=2,M为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB. (1)求证:EF∥平面ABCD. (2)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值. 5.如图,多面体ABC-DB1C1为正三棱柱ABC-A1B1C1沿平面DB1C1切除部分所得,M为CB1的中点,且BC=BB1=2. (1)若D为AA1中点,求证AM∥平面DB1C1. (2)若二面角D-B1C1-B大小为错误!未找到引用源。,求直线DB1与平面ACB1所成角的正弦值.
6.如图所示,等腰梯形ABCD的底角∠BAD=∠ADC=60°,直角梯形ADEF所在的平面垂直于平面ABCD,且∠EDA=90°,ED=AD=2AF=2AB=2. (1)证明:平面ABE⊥平面EBD. (2)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。. 猜押练一 致胜高考必须掌握的20个热点 热点练15 立体几何中的证明与计算问题
1.【解析】以D为坐标原点,射线DA为x轴的正半轴,射线DC为y轴的正半轴,射线DD1为z轴的正半轴,建立空间直角坐标系D-xyz,即可得出B(2,2,0), C(0,2,0),E(0,2,1),A1(2,0,4),=(0,2,1),=(2,2,0),=(-2,2,-4),=(2,0,4). (1)因为·=0,·=0, 所以A1C⊥BD,A1C⊥DE, 因为BD∩DE=D,所以A1C⊥平面BED, (2)设向量n=(x,y,z)是平面DA1E的一个法向量, 则n⊥,n⊥, 故2y+z=0,2x+4z=0.令y=1,则z=-2,x=4,n=(4,1,-2), 等于二面角A1-DE-B的平面角,
cos==错误!未找到引用源。. 2.【解析】(1)取BC的中点为D,连接DF. 由ABC-EFG是三棱台得,平面ABC∥平面EFG,从而BC∥FG. 因为CB=2GF,所以CDGF, 所以四边形CDFG为平行四边形,所以CG∥DF. 因为BF=CF,D为BC的中点, 所以DF⊥BC,所以CG⊥BC. 因为平面ABC⊥平面BCGF,且交线为BC,CG⊂平面BCGF, 所以CG⊥平面ABC,而AB⊂平面ABC, 所以CG⊥AB. (2)连接AD. 由△ABC是正三角形,且D为BC中点,则AD⊥BC. 由(1)知,CG⊥平面ABC,CG∥DF, 所以DF⊥AD,DF⊥BC, 所以DB,DF,DA两两垂直. 以DB,DF,DA分别为x,y,z轴,建立如图所示的空间直角坐标系D-xyz. 设BC=2,则A(0,0,错误!未找到引用源。),E错误!未找到引用源。,B(1,0,0),G(-1,错误!未找到引用源。,0). 所以=错误!未找到引用源。,=(-2,错误!未找到引用源。,0), =错误!未找到引用源。. 设平面BEG的一个法向量为n=(x,y,z),
由可得,错误!未找到引用源。 令x=错误!未找到引用源。,则y=2,z=-1,所以n=(错误!未找到引用源。,2,-1). 设AE与平面BEG所成角为θ,
则sin θ=|cos <,n>|==错误!未找到引用源。. 3.【解析】(1)由已知四边形ABCD为矩形,得AB⊥BC, 因为PB⊥AB,PB∩BC=B,所以AB⊥平面PBC. 又CD∥AB,所以CD⊥平面PBC. 因为CD⊂平面PCD,所以平面PBC⊥平面PCD. (2)以B为坐标原点,建立如图所示的空间直角坐标系B-xyz.
设PB=AB=1,BC=a(a>0),则B(0,0,0),C(0,0,a),P(1,0,0),D(0,1,a), 所以=(-1,0,a),=(0,1,a),
则=cos 60°,即错误!未找到引用源。=错误!未找到引用源。, 解得a=1,a=-1(舍去).
设n=(x1,y1,z1)是平面PBD的一个法向量,则 即错误!未找到引用源。 可取n=(0,1,-1). 设m=(x2,y2,z2)是平面PCD的一个法向量,
则即错误!未找到引用源。 可取m=(1,0,1),所以cos=错误!未找到引用源。=-错误!未找到引用源。. 由图可知二面角B-PD-C为锐角,所以二面角B-PD-C的大小为60°. 4.【解析】(1)(方法一)如图,设DM中点为N,连接EN,NF,BD,则有NE∥AD, 因为NE⊄平面ABCD,AD⊂平面ABCD, 所以NE∥平面ABCD, 又因为错误!未找到引用源。=错误!未找到引用源。=错误!未找到引用源。,所以NF∥DB, 因为NF⊄平面ABCD,BD⊂平面ABCD, 所以NF∥平面ABCD, 又因为NF∩NE=N,所以平面NEF∥平面ABCD, 所以EF∥平面ABCD.
(方法二)如图,设AD中点为R,Q为线段BD上一点,且DQ=3QB. 连接ER、RQ、QF,则有ER∥PD, 因为错误!未找到引用源。=错误!未找到引用源。=错误!未找到引用源。, 所以QF∥PD,所以QF∥ER,且QF=错误!未找到引用源。PD=ER, 即四边形QFER为平行四边形, 所以EF∥QR, 因为EF⊄平面ABCD,RQ⊂平面ABCD, 所以EF∥平面ABCD.
(2)因为平面PDC⊥底面ABCD,且PD⊥DC,所以PD⊥底面ABCD, 如图,以D为坐标原点建立空间直角坐标系D-xyz, 则D(0,0,0),P(0,0,2),A(1,0,0),C错误!未找到引用源。, 所以==(-1,0,0),=错误!未找到引用源。. 设平面PBC的一个法向量为n1=(x,y,z),
则所以错误!未找到引用源。 取y=2错误!未找到引用源。,可得n1=(0,2错误!未找到引用源。,1), 又易知平面PAD的一个法向量n2=(0,1,0), 设平面PAD与平面PBC所成锐二面角为θ, 则cosθ=错误!未找到引用源。=错误!未找到引用源。. 所以平面PAD与平面PBC所成锐二面角的余弦值为错误!未找到引用源。.
5.【解析】(1)取B1C1中点N,连接MN,则MN为△B1C1C的中位线,所以MN错误!未找到引用源。CC1, 因为D为AA1中点,所以AD错误!未找到引用源。CC1, 所以MN∥AD,MN=AD, 所以四边形ADNM为平行四边形, 所以AM∥DN,所以AM∥平面DB1C1. (2)由B1C1⊥DN,B1C1⊥MN可得∠DNM是二面角 D-B1C1-B的平面角, 因为二面角D-B1C1-B大小为错误!未找到引用源。,AD=错误!未找到引用源。BB1, 如图建立空间直角坐标系,则A(0,0,错误!未找到引用源。),C(-1,0,0),B1(1,2,0),D(0,1,错误!未找到引用源。), 所以=(1,1,-错误!未找到引用源。),=(-1,0,-错误!未找到引用源。),=(1,2,-错误!未找到引用源。), 设平面ACB1的法向量为n=(x,y,z),
⇒n=(-错误!未找到引用源。,错误!未找到引用源。,1), 所以|cos|==错误!未找到引用源。. 所以直线DB1与平面ACB1所成角的正弦值为错误!未找到引用源。.
6.【解析】(1)因为平面ABCD⊥平面ADEF, 平面ABCD∩平面ADEF=AD,ED⊥AD, 所以ED⊥平面ABCD,AB⊂平面ABCD, 所以ED⊥AB, 因为AB=1,AD=2,∠BAD=60°, 所以BD=错误!未找到引用源。=错误!未找到引用源。, 所以AB2+BD2=AD2, 所以AB⊥BD, 又因为BD⊂平面BDE, 所以平面ABE⊥平面EBD. (2)以B为坐标原点,分别以BA,BD为x轴,y轴建立如图所示的空间直角坐标系B-xyz, 则A(1,0,0),B(0,0,0),C错误!未找到引用源。,D(0,错误!未找到引用源。,0),E(0,错误!未找到引用源。,2),F(1,0,1),则=错误!未找到引用源。,=(0,0,2), =(1,0,0),=(1,-错误!未找到引用源。,-1), 设=λ=(λ,-错误!未找到引用源。λ,-λ),(0≤λ≤1), 则=+=(λ,错误!未找到引用源。-错误!未找到引用源。λ,2-λ), 设平面CDE的法向量为m=(x1,y1,z1), 平面ABM的法向量为n=(x2,y2,z2),
则
令y1=1,得m=(-错误!未找到引用源。,1,0), 令y2=2-λ,得n=(0,2-λ,错误!未找到引用源。λ-错误!未找到引用源。), 所以|cos θ|=错误!未找到引用源。=错误!未找到引用源。=错误!未找到引用源。, 即λ=错误!未找到引用源。, 即点M为线段EF的中点时,平面MAB与平面ECD所成的锐二面角的余弦值为错误!未找到引用源。.