隧道衬砌计算
- 格式:docx
- 大小:36.74 KB
- 文档页数:8
3 蓁山隧道二衬结构计算3.1 基本参数1.二衬参数表二次衬砌采用现浇模筑混凝土,利用荷载结构法进行衬砌内力计算和验算。
二次衬砌厚度设置见表3.1。
表3.1 二次衬砌参数表2.计算断面参数确定隧道高度h=内轮廓线高度+衬砌厚度+预留变形量隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量各围岩级别计算断面参数见表3.2。
表3.2 计算断面参数(单位:m)3.设计基本资料围岩容重:3/5.20m kN s =γ 二衬材料:C30、C35混凝土 弹性抗力系数:3/250000m kN K = 材料容重:3/25m kN h =γ 弹性模量:kPa E h 7103⨯=二衬厚度:35/40/45/50/55/60/65/70cm 铁路等级:客运专线 行车速度:200km/h隧道建筑限界:双线,按200km/h 及以上的客运专线要求设计 线间距:4.4m曲线半径:1800m ,4000m 牵引种类:电力列车类型:动车组列车运行控制方式:自动控制 运输调度方式:综合调度集中3.2 各级围岩的围岩压力计算按深埋隧道,《规范》公式垂直围岩压力 w q s 1245.0-⨯=γ)]5(1-+=B i w水平围岩压力有垂直围岩压力乘以水平围岩压力系数可得,水平围岩压力系数见表3.3。
各部位垂直围岩压力和水平围岩压力计算结果见表3.4。
表3.3 水平围岩压力系数表3.4 垂直围岩压力及水平围岩压力计算表注:二衬按承担70%的围岩压力进行计算。
3.3 衬砌内力计算衬砌内力计算的原理采用荷载结构法。
该方法用有限元软件MIDAS/GTS实现。
3.3.1 计算简图蓁山隧道衬砌结构为复合式衬砌,二衬结构为带仰拱的三心圆曲墙式衬砌。
典型的计算图式如图3.1所示。
荷载结构模型计算图式如图3.2所示。
围岩用弹簧代替,用弹簧单元模拟,结构用梁单元模拟。
图3.1 三心圆曲墙式衬砌结构图3.2 荷载结构模型计算图式3.3.2 计算过程下面以Ⅱ级围岩为例进行说明。
课程设计计算书课程名称:隧道工程题目:隧道选线及结构计算学院:土木工程学院系:土木工程系课题组:岩土与地下工程专业:土木工程专业岩土与地下工程方向班级:土木工程十一班组员学号:09301126组员姓名: 陈祥起讫日期:2013。
1.7—2013.1。
18指导教师:岳峰目录第一部分设计任务 (1)一、设计依据 (1)二、设计资料 (1)1。
设计等级 (1)2.设计车速 (1)3。
围岩级别 (1)4。
折减系数 (1)5.使用功能 (1)6。
隧道平纵曲线半径和纵坡 (1)7.隧道结构设计标准 (1)8。
1:10000地形图. (1)第二部分隧道方案比选说明 0一、平面位置的确定 0二、纵断面设计 (4)三、横断面设计 (4)第三部分二次衬砌结构计算 (5)一、基本参数 (5)二、荷载确定 (6)三、计算衬砌几何要素 (7)四、位移计算 (7)1.单位位移 (9)2.载位移—主动荷载在基本结构中引起的位移 (9)3.载位移—单位弹性抗力及相应的摩擦力引起的位移 (12)4.墙底(弹性地基梁上的刚性梁)位移 (16)五、解力法方程 (17)六、计算主动荷载和被动荷载分别产生的衬砌内力 (18)七、最大抗力值的求解 (20)八、计算衬砌总内力 (20)九、衬砌截面强度检算 (23)十、内力图 (24)第一部分设计任务一、设计依据本设计根据《公路工程技术标准》(JTG B01—2003),《公路隧道设计规范》(JTG D70-2004)进行设计和计算。
二、设计资料1.设计等级:高速公路;2.设计车速:80km/h;3.围岩级别:V级4.折减系数:50%5.使用功能:道路双向四车道,隧道左、右线单向各两车道;6。
隧道平纵曲线半径和纵坡平纵曲线设计满足规范要求,洞口内外各有不小于3s行车速度行程长度范围内的平纵线形保持一致。
7。
隧道结构设计标准(1).设计使用期:100年;(2).设计安全等级:一级;(3)。
结构防水等级:二级;8。
2021年3月第9章盾构隧道衬砌结构1.基本概念1.1隧道衬砌隧道衬砌,英文为Tunnel Lining 。
盾构隧道的衬砌一般为预制管片,预制管片英文为Segment 。
1.2衬砌结构分类(1)按施工方法分类衬砌分为:预制管片、二次浇筑衬砌即拼装管片的内部,做了现浇的二次衬砌、压注混凝土衬砌(ECL 工法)。
是否需要内部做二次衬砌,取决于隧道的用途及结构计算,例如南水北调工程穿越黄河的盾构隧洞及珠江三角洲水资源配置工程盾构隧洞,就做了内部二衬。
(2)按材料分类,管片可分为:钢筋混凝土管片(RC )(如图9.1所示)、铸铁管片、钢管片、钢纤维混凝土管片、合成材料。
图9.1盾构管片试拼装(佛山地铁)(错缝拼装,5+1块)1.3管片外形与尺寸管片外形可分为四边形的,六角蜂窝形的。
四边形的,例如:深圳地铁快线长隧道,例如11号线、14号线等。
管片外径6700mm ,内径6000mm ,厚度350mm ,宽度1.5m ,纵向螺栓16个,管片分度22.5°,采用左右转弯环+标准环的形式。
管片统一采用1+2+3形式(即:1块封顶块(F ),2块邻接块(L1)、(L2)、3块标准块(B1)、(B2)、(B3))。
止水条采用三元乙丙橡胶及遇水膨胀橡胶条,如图9.2所示。
K 块图9.2用于深圳地铁的Փ6700盾构管片(14号线,2020年)日本的一个六角形管片的案例,并采用插销式接头的案例:隧道直径为Ф6600mm,单线隧道衬砌主要采用6等分的RC平板型管片,环宽1600mm,厚320mm,管片连结采用新研制的FAKT插销式接头。
部分段采用环宽1250mm、厚250mm的蜂窝形RC管片。
如图9.3、图9.4所示。
图9.3日本的六角蜂窝状管片示意图图9.4在盾构隧道中待拼装的六角形管片(傅德明2012)中国在引水隧道中也用过六角形管片(山西万家寨引水工程)。
1.4管环类型:为了满足盾构隧道在曲线上偏转及蛇行纠偏的需要,应设计楔形衬砌环。
1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
第三章隧道二次衬砌结构计算3.1基本参数围岩级别:Ⅴ级围岩容重:γs =18.53/mkN围岩弹性抗力系数:K=1.5×1053/mkN衬砌材料为C25混凝土,弹性模量Eh =2.95×107kPa,容重γh=233/mkN.3.2荷载确定3.2.1围岩垂直均布压力按矿山法施工的隧道围岩荷载为:qs=0.45×21-sγω=0.45×21-sγ[1+i(B-5)]=0.45×24×18.5×[1+0.1×(13.24-5)]=242.96(2/mkN)考虑到初期支护承担大部分围岩压力,而对二次衬砌一般作为安全储备,故对围岩压力进行折减,对本隧道按30%折减,取为1702/mkN .3.2.2 围岩水平均布压力e=0.4q=0.4×170=68 2/mkN3.3计算位移3.3.1单位位移所有尺寸见下图1:半拱轴线长度s=11.4947(m)将半拱轴线长度等分为8段,则∆s=s/8=1.4368(m)∆s/ Eh =0.4871×107-(1-⋅kPam)计算衬砌的几何要素,详见下表3.1.单位位移计算表表3.1注:1.I —截面惯性矩,I=3bd /12,b 取单位长度。
2.不考虑轴力影响。
单位位移值用新普生法近似计算,计算如下: 11δ=⎰sh ds IE M 01≈∑∆I E s 1=0.4871×107-×864.0000=4.2085×105-12δ=21δ=⎰sh ds IE M M 021.≈∑I yE s ∆=0.4871×107-×2643.1776=1.2875×104-22δ=⎰sh ds I E M 022≈∑∆I y Es 2=0.4871×107-×14338.9160=6.9845×104-计算精度校核为:11δ+212δ+22δ=(0.42085+2×1.2875+6.9845) ×104-=9.9803×104-ss δ=∑+∆Iy E s2)1(=0.4871×107-×20489.2712=9.9803×104-闭合差∆=03.3.2载位移—主动荷载在基本结构中引起的位移 (1) 每一楔块上的作用力 竖向力:Q i =i qb 侧向力:E i =eh i 自重力:G i =h ii s d d γ⨯∆⨯+-21 算式中:b i 和h i 由图1中量得 d i 为接缝i 的衬砌截面厚度 作用在各楔块上的力均列入下表3.2:载位移计算表 表3.2(2) 外荷载在基本结构中产生的内力 内力按下算式计算弯矩:0ip M =0,1p i M --e g q i i i i Ea Ga Qa E y G Q x ---∆-+∆∑∑--11)(轴力:0ip N =sin iϕ∑∑-+iiiE G Q ϕcos )(0ip M ,0ip N 的计算结果见下表3.3.表3.4:载位移计算表p i M ,0表3.3载位移计算表ip N 0 表3.4(3)主动荷载位移 计算结果见表3.5:主动荷载位移计算表 表3.5则:p 1∆=⎰sh pds IE M M 01.≈∑∆IM E sp 0= -0.4871×710-×2300881.6426 = -0.1121 p 2∆=⎰sh pds IE M M 02.≈∑∆IyM E sp 0= -0.4871×710-×11795777.616 = -0.5746 计算精度校核:p 1∆+p 2∆= -0.1121-0.5746=-0.6867 sp∆=∑+∆I M y Esp 0)1(=-0.4871×710-×14096659.259=-0.6867闭合差:∆=03.3.3载位移—单位弹性抗力图及相应的摩擦力引起的位移 (1)各接缝处的弹性抗力强度抗力上零点假设在接缝3处,3ϕ=38.7715=b ϕ; 最大抗力值假定在接缝6处,6ϕ=77.5430=h ϕ; 最大抗力值以上各截面抗力强度按下式计算:i σ=h hb ib σϕϕϕϕ]cos cos cos cos [2222-- =h iσϕ]5430.77cos 7715.38cos cos 7715.38cos [2222--=h iσϕ]5614.0cos 6079.0[2- 算出: 3σ=0, 4σ=0.3985h σ, 5σ=0.7556h σ, 6σ=h σ; 最大抗力值以下各截面抗力强度按下式计算: i σ=h hi yy σ]1[2'2'-式中:'i y —所考察截面外缘点到h 点的垂直距离;'h y —墙脚外缘点到h 点的垂直距离。
隧道衬砌结构知识、原理和衬砌计算及设
计公式
简介
隧道衬砌结构是用于支撑和保护隧道壁面的一种结构。
衬砌的设计和计算是确保隧道的安全和稳定性的重要步骤。
衬砌结构类型
隧道衬砌结构通常包括以下几种类型:
1. 塑料管衬砌:使用塑料管来加固和保护隧道壁面。
2. 预制混凝土片衬砌:使用预制混凝土片来支撑和保护隧道壁面。
3. 钢筋混凝土衬砌:使用钢筋混凝土结构来加固和保护隧道壁面。
衬砌计算及设计公式
在进行隧道衬砌的计算和设计时,需要考虑以下因素:
1. 隧道直径:隧道的直径是确定衬砌结构尺寸和类型的关键因素。
2. 地层情况:地层的稳定性和承载能力将影响衬砌的安全性和设计方法。
3. 水压情况:如果隧道处于水下或水土压力较大的地区,需要考虑水压对衬砌的影响。
根据以上因素,可以使用以下公式进行衬砌计算和设计:
1. 隧道衬砌尺寸计算公式:根据隧道直径和地层参数计算衬砌的合适尺寸。
2. 衬砌材料选择公式:根据地层情况和环境条件选择合适的衬砌材料。
3. 衬砌厚度计算公式:根据地层情况和水压情况计算衬砌的合适厚度。
结论
隧道衬砌结构的知识、原理和衬砌计算及设计公式对于确保隧道的安全和稳定性至关重要。
根据隧道的直径、地层情况和水压情况等因素,可以选择合适的衬砌结构类型,并使用相应的公式进行计算和设计。
隧道衬砌计算隧道衬砌是隧道工程中的重要部分,它承担着保护隧道结构、增强隧道稳定性和延长使用寿命的重要任务。
隧道衬砌的计算是确定隧道衬砌结构所需材料和尺寸的过程,下面将介绍隧道衬砌计算的相关内容。
隧道衬砌计算需要确定衬砌的材料。
常用的隧道衬砌材料有混凝土、钢筋混凝土和预制板等。
根据隧道的使用环境、地质条件和设计要求等因素,选择合适的材料进行衬砌计算。
隧道衬砌计算需要确定衬砌的尺寸。
衬砌的尺寸包括衬砌厚度、衬砌宽度和衬砌高度等。
衬砌厚度的确定需要考虑隧道的使用要求和地质条件,以保证衬砌的强度和稳定性。
衬砌宽度的确定需要考虑隧道的截面形状和使用要求,以保证衬砌的稳定性和使用功能。
衬砌高度的确定需要考虑隧道的设计要求和地质条件,以保证衬砌的稳定性和使用寿命。
隧道衬砌计算还需要考虑衬砌的受力情况。
隧道衬砌在使用过程中会受到地压力、水压力、温度变化和地震等外力的作用。
衬砌的受力分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。
隧道衬砌计算还需要考虑衬砌的稳定性。
隧道衬砌在使用过程中需要保持稳定,不受地下水、岩层移动和地震等因素的影响。
衬砌的稳定性分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。
隧道衬砌计算需要进行结构设计。
隧道衬砌的结构设计包括衬砌的布置方式、连接方式和支撑方式等。
衬砌的结构设计需要考虑隧道的使用要求和地质条件,以保证衬砌的稳定性和使用寿命。
隧道衬砌计算是确定隧道衬砌结构所需材料和尺寸的过程,它涉及衬砌材料的选择、衬砌尺寸的确定、衬砌受力情况的分析、衬砌稳定性的考虑和衬砌结构的设计等内容。
隧道衬砌计算的准确性和科学性对于保证隧道工程的安全稳定和使用寿命具有重要意义。
铁路隧道衬砌受力计算公式隧道是铁路线路中重要的组成部分,它可以穿越山脉、河流等地形障碍,使铁路线路更加通畅。
而隧道的衬砌是保证隧道结构安全稳定的重要组成部分。
在设计和施工隧道衬砌时,需要对其受力情况进行合理的计算,以保证其安全可靠。
在铁路隧道衬砌的受力计算中,需要考虑到多种因素,包括隧道的地质情况、地表荷载、车辆荷载等。
为了准确计算隧道衬砌的受力情况,需要使用一定的公式和方法。
首先,我们来看一下隧道衬砌的受力计算公式:1. 地表荷载的计算公式:地表荷载是指地表以上的荷载,包括建筑物、交通载荷等。
在铁路隧道衬砌的设计中,需要考虑地表荷载对衬砌的影响。
地表荷载的计算公式为:P = qA。
其中,P为地表荷载,q为单位面积的地表荷载值,A为地表面积。
2. 车辆荷载的计算公式:铁路隧道是铁路线路的一部分,车辆荷载是指通过隧道的列车对隧道衬砌的荷载。
车辆荷载的计算公式为:P = qL。
其中,P为车辆荷载,q为单位长度的车辆荷载值,L为车辆长度。
3. 地质荷载的计算公式:地质荷载是指地下岩层对隧道衬砌的荷载。
地质荷载的计算公式为:P = γh。
其中,P为地质荷载,γ为岩层的密度,h为岩层的厚度。
在实际的隧道衬砌设计中,需要综合考虑地表荷载、车辆荷载和地质荷载对隧道衬砌的影响,进行合理的受力计算,以保证隧道衬砌的安全可靠。
除了上述的受力计算公式外,还需要考虑到隧道衬砌的材料和结构形式对受力的影响。
隧道衬砌的材料通常为混凝土、钢筋混凝土等,其受力性能需要通过实验和理论分析进行评定。
而隧道衬砌的结构形式包括单壁式、双壁式、拱形等,不同结构形式对受力的分布和传递方式有所不同,需要进行详细的计算和分析。
在进行隧道衬砌受力计算时,还需要考虑到温度变化、地震荷载等外部因素对隧道衬砌的影响。
温度变化会导致隧道衬砌的膨胀和收缩,地震荷载会对隧道衬砌产生冲击和振动,这些外部因素需要进行合理的考虑和计算。
总之,铁路隧道衬砌受力计算是一个复杂的工程问题,需要考虑多种因素的综合影响。
1.1 工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约 260km , 西至康定约 97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。
二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长 8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。
1.2 工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。
隧道中部地势较高。
隧址区地形地貌与地层岩性及构造条件密切相关。
由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。
隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。
主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“ v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。
1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。
由于山系屏障,二郎山东西两侧气候有显著差异。
东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。
全年分早季和雨季。
夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。
毕业设计之隧道衬砌翠峰山隧道衬砌设计5.1 概述隧道洞身的衬砌结构根据隧道围岩地质条件、施工条件和使用要求大致可以分为以下几种类型:喷锚衬砌、整体式衬砌和复合式衬砌。
规范规定,高速公路的隧道应采用复合式衬砌。
隧道衬砌设计应综合考虑地质条件、断面形状、支护结构、施工条件等,并应充分利用围岩的自承能力。
衬砌应有足够的强度和稳定性,保证隧道长期安全使用。
注:1、隧道高度h=内轮廓线高度+衬砌厚度+预留变形量;2、隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量。
5.2深埋衬砌内力计算5.2.1深、浅埋的判断隧道进、出口段埋深较浅,需按浅埋隧道进行设计。
由明洞计算可知:h q =0. 45⨯2S -1[1+i (B -5)](5.1)式中:s —围岩的级别,取s =4;B —隧道宽度i —以B =5.0m的垂直均布压力增减率,因B =11.8m>5m,所以i =0.1。
带入数据得:h q =6.264对于Ⅳ级围岩: H p =2.5h q =2.5⨯6.264=15.66 深埋:h >H p ;浅埋:h q <h ≤H p ;超浅埋:h ≤h q 。
5.2.2围岩压力计算基本参数:围岩为Ⅳ级,容重γ=20kN /m 3,围岩的弹性抗力系数K =0.5⨯106kN /m 3,衬砌材料为C25钢筋混凝土,弹性模量E h =2.95⨯107KPa 。
1、围岩垂直均布压力根据《公路隧道设计规范》(JTG D70-2019) 的有关计算公式及已知的围岩参数,代入公式:q =0.45⨯2S -1⨯γ⨯ω(5.2)式中: S —围岩的级别,取S=4;γ—围岩容重,根据基本参数γ=23 KN/m3;ω—宽度影响系数,由式ω=1+i(B-5)=1.76计算; B —隧道宽度,B=2⨯(5.7+0.5+0.5)=12.4m;i —以B=5.0m的垂直均布压力增减率。
因B=12.6m>5m,所以i=0.1。
所以围岩竖向荷载: q =0.45⨯24-1⨯20⨯1.74=125.28KN /m 2 2、围岩水平均布压力5 e =0. 2q (5.3)式中:Ⅳ类围岩压力的均布水平力e =(0.15~0.3)q ,这里取值0.25 代入数据得:25125. =28K 3N 1. 3m 2 0. 2⨯/5.2.3衬砌几何要素计算图示如下q1234567R 78R 图5.1 衬砌结构计算图示1、衬砌几何尺寸内轮廓线半径:r 1=5. 70m , r 2=8. 20m ;拱轴线半径:r 1' =5.95m ,r 2' =8.45m ;拱顶截面厚度d 0=0.5m ,拱底截面厚度d n =0.5m。
第四章隧道衬砌荷载计算4.1围岩压力4.1.1围岩压力的概念地下硐室不同于地面建筑,位于岩体介质中,因此应当把围岩视为支护结构的共同承载部分,也就是说,应由支护结构(无论是临时的或永久的)和围岩共同组成静力承载体系。
围岩的静力作用是十分重要的,如果没有这种作用,硐室的施工将是十分困难或者是不可能的。
实际上在岩体中开挖硐室,出现围岩二次应力,同时硐室相应的产生变形和位移。
不同的地质条件和工程条件下,硐室围可能出现两种情况:①硐室的变形属于弹性变形,在无支护情况下仍然能够维持稳定;②硐室的变形属于非弹性变形,由于围岩继续变形导致其破坏,甚至出现大量的塌落,这时就需要支护结构来约束围岩变形的继续扩展,因而支护结构受到围岩变形时产生的压力。
围岩二次应力全部作用称为围岩压力。
围岩二次应力的作用在无支护硐室中出现在硐室周围的部分区域内;在有支护结构(临时的或永久性支护)的硐室中表现为围岩和支护结构的相互作用。
目前一般工程认为的围岩压力是指由二次应力使围岩产生变形或破坏所引起的作用在衬砌上的压力,这种概念实际上是属于狭义的围岩压力。
4.1.2围岩压力的形成关于围岩压力的形成机理以及随时间发生、发展的过程可用奥地利腊布塞维奇教授的剪切滑移破坏理论来说明。
若围岩没有受到其他硐室的影响,且开挖爆破过程中没有受到破坏,则硐室周围的围岩压力随着时间的发展可以分为三个阶段,只讨论在岩体内最大压应力为垂直方向的情况。
在第一阶段,由于岩体的变形,在硐室的周围边界上产生一般的挤压。
同时,在两侧岩石内形成楔形岩块,在两个楔形岩块有向硐室内部滑移的趋势,从而侧向产生压力,这种楔形岩块是由于两侧岩石剪切破坏而形成的。
在第二阶段,在侧向楔形块体发生某种变形以后,硐室的跨度似乎增大。
因此,在岩体内形成了一个垂直椭圆形的高压力区,在椭圆曲线与硐室周界线间的岩体发生了松动。
在第三个阶段,硐顶和硐底的松动岩体开始变形,并向硐内移动,硐顶松动岩石在重力作用下有掉落的趋势,围岩压力逐渐增加。
隧道衬砌抗拉强度计算公式隧道是地下工程中常见的一种结构形式,其衬砌是隧道内部的一种重要构造,用于支撑和保护隧道的内壁。
在设计隧道衬砌时,抗拉强度是一个重要的参数,它影响着衬砌的稳定性和安全性。
因此,对于隧道衬砌抗拉强度的计算公式的研究具有重要的理论和实际意义。
隧道衬砌抗拉强度的计算公式可以通过材料力学和结构力学的理论推导得到,其基本原理是根据材料的物理性质和结构的力学特性来确定。
一般来说,隧道衬砌材料的抗拉强度可以通过以下公式计算:σ = F/A。
其中,σ表示材料的应力,单位为N/m²或Pa;F表示受力,单位为N;A表示受力面积,单位为m²。
在实际工程中,隧道衬砌的抗拉强度计算公式可以根据具体的材料和结构形式进行修正和补充。
例如,对于混凝土材料的隧道衬砌,其抗拉强度计算公式可以根据混凝土的抗拉强度和衬砌的结构形式来确定。
一般来说,混凝土的抗拉强度可以通过以下公式计算:f_t = F/A。
其中,f_t表示混凝土的抗拉强度,单位为N/m²或Pa;F表示受力,单位为N;A表示受力面积,单位为m²。
隧道衬砌的抗拉强度计算公式还可以考虑到材料的弹性模量和应力-应变关系,以更准确地描述材料的力学性能。
在考虑材料的弹性模量和应力-应变关系时,抗拉强度计算公式可以表示为:σ = Eε。
其中,σ表示材料的应力,单位为N/m²或Pa;E表示材料的弹性模量,单位为N/m²或Pa;ε表示材料的应变,无量纲。
在实际工程中,隧道衬砌的抗拉强度计算公式还需要考虑到结构的几何形状和受力情况。
例如,对于圆形隧道衬砌,其抗拉强度计算公式可以根据圆形截面的受力情况进行修正。
一般来说,圆形隧道衬砌的抗拉强度可以通过以下公式计算:σ = M/S。
其中,σ表示材料的应力,单位为N/m²或Pa;M表示受力矩,单位为N·m;S表示受力臂,单位为m。
综上所述,隧道衬砌抗拉强度的计算公式是根据材料力学和结构力学的理论推导得到的,其基本原理是根据材料的物理性质和结构的力学特性来确定。
第五章隧道衬砌结构检算
5.1结构检算一般规定
为了保证隧道衬砌结构的安全,需对衬砌进行检算。
隧道结构应按破损阶段法对构件截面强度进行验算。
结构抗裂有要求时,对混凝土应进行抗裂验算。
5.2隧道结构计算方法
本隧道结构计算采用荷载结构法。
其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。
计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的力,并进行结构截面设计。
5.3隧道结构计算模型
本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。
取单位长度(1m )的隧道结构进行分析,建模时进行了如下简化处理或假定:
①衬砌结构简化为二维弹性梁单元(beam3 ),梁的轴线为二次衬砌厚度中线位置。
②围岩的约束采用弹簧单元(COMBIN14 ),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。
计算时通过多次迭代,逐步杀死受拉的COMBIN14 单元,只保留受压的COMBIN14 单元。
图5-1受拉弹簧单元的迭代处理过程
③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。
④衬砌结构自重通过施加加速度来实现,不再单独施加节点力
⑤衬砌结构材料采用理想线弹性材料。
⑥衬砌结构单元划分长度小于0.5m。
隧道结构计算模型及荷载施加后如图5-2所示。
5.4结构检算及配筋
本隧道主要验算明洞段、V级围岩段和W级围岩段衬砌结构。
根据隧道规深、浅埋判定方法可知,V级围岩段分为超浅埋段、浅埋段和深埋段。
W级围岩段为深埋段。
根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力
图、建立图和弯矩图。
从得出的结果可知,V级围岩深埋段,所受力均较大,故对此工况进行结构检算。
5.4.1 材料基本参数
(1)V级围岩
围岩重度 1 8.5kN /m3,弹性抗力系数 k 300MPa /m ,计算摩擦角
o,泊松比u=0.4 。
0 45
(2)C25 钢筋混凝土
容重25kN / m3,截面尺寸 b h 1.0m 0.6m ,弹性模量E 29.5G Pa 。
轴心抗压强度:f ed 12.5MP a ;弯曲抗压强度:f cmd 13.5MP a ;轴心抗拉强度:f cd 1.
33 M P a ;泊松比u=0.2 ;
(3)HPB235钢筋物理力学参数
密度:s 7800kg / m3;抗拉抗压强度: f std f sed 188MP a;弹性模量:
E s 210GP a;
5.4.2结构力图和变形图(V级围岩深埋段)
5.4.3 结构安全系数
从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算,而根据对称性可知只需要对截面8、11、47进行检算
(1)配筋前检算
混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算: KN R a bh (式5-1)
式中:R a —混凝土或砌体的抗压极限强度(C25取19 MP a);
K—安全系数;
N——轴向力;
h—截面厚度(m);
b —截面宽度,取1m ;
——构件纵向弯曲系数,取1;
—轴向力偏心系数系数;
按抗裂要求,混凝土矩形截面偏心受压构件的抗拉强度应按下式计算: KN 1.75 R1bh/(6e0/h 1)(式5-2)
R —混凝土的抗拉极限强度(C25取2 MP a)
按照式5-1和5-2,可求出安全系数如下表:
而隧道设计规规定,混凝土和砌体结构的强度安全系数如表5-1 : 表5-1 混凝土和砌体结构的强度安全系数
故需要对截面进行配筋。
(2)配筋后检算
根据隧道设计规规定及工程类比,截面配筋情况为:每延米受拉钢筋:4根22,每延米受压钢筋数量:4根22,为对称配筋,且混凝土保护层为5cm。
检算原理如下:
隧道衬砌结构属于偏心受压矩形构件,根据钢筋混凝土结构偏心受压构件强
度计算原理,求解结构的安全系数。
其步骤如下:
(1)计算偏心距e o
e0M/N (式5-3)
式中:M —弯矩;
N——轴向力。
(2)确定截面受压区高度x
先假设衬砌截面受拉钢筋和受压钢筋面积分别为A s和A s,按下列公式计算
出受压区高度X,即可以确定截面中性轴位置。
R g(A$e A s e) R w bx(e h°x/2) (式5-4)
解方程得:
x .. (e h。
)2 2R g(A s e A s e)/(R w b) (e h。
) (式5-5)
式中:e——轴向力到受拉钢筋重心的距离,e e o (h/2 a);
e —轴向力到受压钢筋重心的距离, e h / 2 e0 a';
a —钢筋A s的重心到截面受拉边缘的距离; a —钢筋A s的重心到截面受
压边缘的距离;
R g —钢筋的抗拉计算强度标准值(取235 MP a );
R w —混凝土弯曲抗压极限强度标准值(取18.5 MP a );
h0 —混凝土受压区边缘到受拉钢筋重心的距离;
b —衬砌计算截面宽度,取1m。
当轴向力N位于作用于钢筋A s和A s重心之间时,式(5-4 )和式(5-5)中取正值;当N 作用于两重心以外时,则取负号。
(3)确定截面大小偏心类型
如果x w 0.55h o,矩形截面为大偏心受压构件,否则为小偏心受压构件。
(4)强度检算
1)大偏心受压构件
如果x 2a ,按下式进行强度检算:
KN R b bx R g (A s A s) (式5-6 )
否则x 2a ,按下式进行强度检算:
KNe R g A s(h0 a ) (式5-7)
2)小偏心受压构件
按下式进行强度检算:
KNe 0. 5 R a bh02R g A s(h0 a ) (式5-8 )
如果轴向力N位于钢筋A s的重心与钢筋As的重心之间的情况下,还应符合下列式子:
2
KNe O.5R a bh 0 R g A s (h 0 a)
根据以上步骤求得检算截面受力的相关参数如下表
5-2 :
5.5结论
《公路隧道设计规》中钢筋混凝土结构的强度安全系数,见表 5-3 :
[
通过比较表5-2和表5-3可知,V 级围岩二次衬砌所配钢筋符合要求, 比较
经济合理。
(式 5-9)。