如果aGb成等比数列
- 格式:ppt
- 大小:163.00 KB
- 文档页数:7
4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。
1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
常用数学公式大全公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/tanA-tanB=sin(A-B)/cosAcosBcosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h常用数学公式汇总一、基础代数公式1. 平方差公式:(a+b)×(a-b)=a2-b22. 完全平方公式:(a±b)2=a2±2ab+b2完全立方公式:(a±b)3=(a±b)(a2 ab+b2)3. 同底数幂相乘:am×an=am+n(m、n为正整数,a≠0)同底数幂相除:am÷an=am-n(m、n为正整数,a≠0)a0=1(a≠0)a-p=(a≠0,p为正整数)4. 等差数列:(1)sn==na1+ n(n-1)d;(2)an=a1+(n-1)d;(3)n =+1;(4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:am+an=ak+ai;(其中:n为项数,a1为首项,an为末项,d为公差,sn为等差数列前n项的和)5. 等比数列:(1)an=a1q-1;(2)sn=(q 1)(3)若a,G,b成等比数列,则:G2=ab;(4)若m+n=k+i,则:am·an=ak·ai;(5)am-an=(m-n)d(6)=q(m-n)(其中:n为项数,a1为首项,an为末项,q为公比,sn为等比数列前n项的和)6.一元二次方程求根公式:ax2+bx+c=a(x-x1)(x-x2)其中:x1= ;x2= (b2-4ac 0)根与系数的关系:x1+x2=- ,x1·x2=二、基础几何公式1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两边之和大于第三边、任两边之差小于第三边;(1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。
第30讲 等比数列及其前n 项和1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和.(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( ) (2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )答案:(1)× (2)× (3)× (4)×(教材习题改编)等比数列{a n }中,a 3=12,a 4=18,则a 6等于( ) A .27 B .36 C .812D .54解析:选C .由a 3=12,a 4=18,得⎩⎪⎨⎪⎧a 1q 2=12,a 1q 3=18,解得a 1=163,q =32,所以a 6=a 1q 5=163×⎝⎛⎭⎫325=812.故选C .(教材习题改编)设等比数列{an }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A .31 B .32 C .63D .64解析:选C .由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C .在单调递减的等比数列{an }中,若a 3=1,a 2+a 4=52,则a 1=________.解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:4在数列{an }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 解析:由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列, 由S n =2(1-2n )1-2=126,解得n =6.答案:6(教材习题改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 243=9×q 3,得q 3=27,所以q =3.所以插入的两个数分别为9×3=27,27×3=81. 答案:27,81等比数列基本量的运算[典例引领](1)(2017·高考江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.(2)(2017·高考全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式; ②若T 3=21,求S 3.【解】 (1)设等比数列{a n }的公比为q ,则由S 6≠2S 3得q ≠1,则S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q=634,解得q =2,a 1=14,则a 8=a 1q 7=14×27=32.故填32.(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.(ⅰ) ①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)和(ⅱ)解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.②由b 1=1,T 3=21得q 2+q -20=0,解得q =-5,q =4. 当q =-5时,由(ⅰ)得d =8,则S 3=21. 当q =4时,由(ⅰ)得d =-1,则S 3=-6.解决等比数列有关问题的2种常用思想1.(2018·武汉调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=( )A .-2B .-1C .12D .23解析:选B .由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1.故选B .2.(2018·东北四市模拟)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.解析:由题意得,2(a 1+a 2+a 3)=8a 1+3a 2,所以2a 3-a 2-6a 1=0.设{a n }的公比为q (q >0),则2a 1q 2-a 1q -6a 1=0,即2q 2-q -6=0,解得q =2或q =-32(舍去).因为a 4=16,所以a 1=2,则S 4=2(1-24)1-2=30.答案:30等比数列的判定与证明[典例引领]设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *). (1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.【解】 (1)因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *), 所以当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4, 所以a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6, 所以a 3=8.综上,a 2=4,a 3=8.(2)证明:因为a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).① 所以当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②,得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2.所以-S n +2S n -1+2=0, 即S n =2S n -1+2, 所以S n +2=2(S n -1+2). 因为S 1+2=4≠0,所以S n -1+2≠0,所以S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列.等比数列的4种常用判定方法择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[通关练习]设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1,解得a 4=78. (2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2). 因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.等比数列的性质(高频考点)等比数列的性质是每年高考的重点,多与等比数列基本量的计算综合考查,难度适中,既有选择、填空题,也有解答题,主要命题角度有:(1)等比数列项的性质;(2)等比数列前n 项和的性质.[典例引领]角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________. 【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)等比数列{a n }中,前n 项和为48,前2n 项和为60,则其前3n 项和为________. (2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48,①a 1(1-q2n)1-q=60,②②÷①,得1+q n =54,所以q n =14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q=64×⎝⎛⎭⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q n S n , 所以q n =S 2n -S n S n =14,所以S 3n =S 2n +q 2nS n =60+⎝⎛⎭⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶, 所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64,所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝⎛⎭⎫13n -1.【答案】 (1)63 (2)12×⎝⎛⎭⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形; (2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[注意] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.[通关练习]1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C .12D .18解析:选C .法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C .法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C .2.(2018·云南11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B .由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60,选B .3.已知等比数列{a n }的首项a 1=-1,其前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:-12等比数列基本量的计算方法等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.判定等比数列的方法要证明一个数列是等比数列,最终需归结到定义上,即证a n +1a n=q (q 是不为0的常数).具体方法见本讲[例2]的[规律方法].求解等比数列问题常用的数学思想 (1)方程思想:如求等比数列中的基本量.(2)分类讨论思想:如求和时要分q =1和q ≠1两种情况讨论,判断单调性时对a 1与q 分类讨论.等比数列中的4个易误点(1)特别注意q =1时,S n =na 1这一特殊情况.(2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.(4)S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5D .6解析:选B .由题意知,q ≠1,则⎩⎪⎨⎪⎧3a 1(1-q 3)1-q =a 1q 3-23a 1(1-q 2)1-q=a 1q 2-2,两式相减可得-3(q 3-q 2)1-q =q 3-q 2,即-31-q=1,所以q =4.2.(2018·成都第二次诊断检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( )A .12B .18C .36D .24解析:选B .a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78⇒1+q 2+q 4=13⇒q 2=3,所以a 5=a 3q 2=6×3=18.故选B .3.(2017·高考全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B .每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得a 1(1-27)1-2=381,解得a 1=3,选择B .4.(2018·广州综合测试(一))已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A .5-12B .5+12C .3-52D .3+52解析:选A .设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),由a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=2(5-1)(5+1)(5-1)=5-12,故选A .5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14D .15解析:选C .因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解之得m =5,所以b 5=324,即a 13a 14a 15=324. 所以n =14.6.在等比数列{a n }中,若a 1a 5=16,a 4=8,则a 6=________.解析:因为a 1a 5=16,所以a 23=16,所以a 3=±4.又a 4=8,所以q =±2. 所以a 6=a 4q 2=8×4=32. 答案:327.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和S n =________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n 1-2=2n-1.答案:2n -18.(2018·郑州第二次质量预测)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则S 6S 3=________.解析:由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =a 1(1-q n )1-q ,得S 6=a 1(1-36)1-3,S 3=a 1(1-33)1-3,所以S 6S 3=a 1(1-36)1-3·1-3a 1(1-33)=28.答案:289.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 1qb 1q 3=9. 解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.10.(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列.1.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n 等于( )A .3B .4C .5D .6解析:选A .因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2. 又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q =42,解得q =4.由a n =a 1q n -1=2×4n -1=32,解得n =3.故选A .2.设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0.又a 1=2,则S 101的值为( )A .2B .200C .-2D .0解析:选A .设等比数列的公比为q .由a n +2a n +1+a n +2=0, 得a n (1+2q +q 2)=0.因为a n ≠0,所以1+2q +q 2=0,解得q =-1,所以S 101=a 1=2.故选A .3.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n项和S n =________.解析:因为a n +ma m =a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2, 所以{a n }是首项a 1=2,公比q =2的等比数列, S n =2(1-2n )1-2=2n +1-2.答案:2n +1-24.在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为________.解析:设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1q n -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.答案:935.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解:(1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.6.已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 解:(1)证明:因为a n +S n =n ①, 所以a n +1+S n +1=n +1②. ②-①得a n +1-a n +a n +1=1,所以2a n +1=a n +1,所以2(a n +1-1)=a n -1, 当n =1时,a 1+S 1=1,所以a 1=12,a 1-1=-12,所以a n +1-1a n -1=12,又c n =a n -1,所以{c n }是首项为-12,公比为12的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n,所以a n =c n +1=1-⎝⎛⎭⎫12n.所以当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n-⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n.又b 1=a 1=12也符合上式,所以b n =⎝⎛⎭⎫12n.。
等比数列知识点总结知识点是在教育实践中,对某一个知识的泛称,多用于口语化,特指教科书上或考试的知识。
下面是等比数列知识点总结,请参考!等比数列知识点总结1、等比数列的定义:2、通项公式:a n =a 1q n -1=a 1n q =A B n (a 1q ≠0, A B ≠0),首项:a 1;公比:qa n q =n a m a n =q (q ≠0)(n ≥2, 且n ∈N *),q 称为公比 a n -1推广:a n =a m q n -m q n -m =3、等比中项:(1)如果a , A , b 成等比数列,那么A 叫做a 与b 的等差中项,即:A 2=ab 或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列{a n }是等比数列a n 2=a n -1a n +14、等比数列的前n 项和S n 公式:(1)当q =1时,S n =na 1(2)当q ≠1时,S n ==a 1(1-q n )1-q =a 1-a n q 1-q a 1a -1q n =A -A B n =A ' B n -A ' (A , B , A ', B ' 为常数) 1-q 1-q5、等比数列的判定方法:(1)用定义:对任意的n ,都有a n +1=qa n 或a n +1=q (q 为常数,a n ≠0) {a n }为等比数列 a n(2)等比中项:a n 2=a n +1a n -1(a n +1a n -1≠0) {a n }为等比数列(3)通项公式:a n =A B n (A B ≠0){a n }为等比数列6、等比数列的证明方法: a 依据定义:若n =q (q ≠0)(n ≥2, 且n ∈N *)或a n +1=qa n {a n }为等比数列 a n -17、等比数列的性质:(2)对任何m , n ∈N *,在等比数列{a n }中,有a n =a m q n -m 。
4.3 等比数列 1、等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列. 数学语言表达式:q a a n n =-1(n ≥2,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab .2、等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1qn -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q 1-q. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.3、等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n .(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n . 知识梳理(1)若数列}{n a 为等比数列,则数列}{n a c ⋅(c ≠0),|}{|n a ,}{2n a ,}{n a 1也是等比数列. (2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.5、构造法:(1)由⎩⎨⎧+=+=+++q pa a q pa a n n n n 121相减得)()(112n n n n a a p a a -=-+++,则}{1n n a a -+为等比数列。
第三节 等比数列及其前n 项和[考点要求] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.(对应学生用书第106页)1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的数学表达式为a n +1an =q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1=a m q n -m .(2)前n 项和公式:S n =⎩⎨⎧na 1(q =1),a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1).[常用结论]等比数列的常用性质1.在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .2.若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍然是等比数列.3.等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,其中当公比为-1时,n 为偶数时除外.一、思考辨析(正确的打“√”,错误的打“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) [答案] (1)× (2)× (3)× (4)× (5)× 二、教材改编1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4 D .±42.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A .13 B .-13 C .19 D .-193.在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________. 4.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB(1 GB =210 MB).(对应学生用书第106页)考点1 等比数列的基本运算等比数列基本量运算的解题策略(1)等比数列的通项公式与前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n 项和公式时,注意分q =1和q ≠1两类分别讨论.1.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( ) A .3 B .4 C .5 D .62.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 3.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知a 3=32,S 3=92,则a 2=________. 4.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .抓住基本量a 1, q ,借用方程思想求解是解答此类问题的关键,求解中要注意方法的择优. 考点2 等比数列的判定与证明判定一个数列为等比数列的常见方法(1)定义法:若a n +1a n =q (q 是不为零的常数),则数列{a n }是等比数列;(2)等比中项法:若a 2n +1=a n a n +2(n ∈N +,a n ≠0),则数列{a n }是等比数列; (3)通项公式法:若a n =Aq n -1(A ,q 是不为零的常数),则数列{a n }是等比数列.设数列{a n }中,a 1=1,a 2=53,a n +2=53a n +1-23a n ,令b n =a n +1-a n (n ∈N *) (1)证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.[逆向问题] 已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ,若不存在,请说明理由.[解] (1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21. (2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1, ∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2, ∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).(1)证明一个数列为等比数列常用定义法与通项公式法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)已知等比数列求参数的值,常采用特殊到一般的方法求解,如本例的逆向问题.[教师备选例题]设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n-a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列;(2)求{a n }和{b n }的通项公式. 考点3 等比数列性质的应用等比数列性质的应用可以分为3类 (1)通项公式的变形. (2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)[一题多解]已知数列{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5 D .-7 (2)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2B .73C .310 D .1或2(3)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.在解决等比数列的有关问题时,要注意挖掘隐含条件,特别关注项a n 或和S n 的下角标数字间的内在关系,活用性质,减少运算量,提高解题速度.[教师备选例题]数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式a n =________.12×⎝ ⎛⎭⎪⎫13n -1 [设此数列{a n }的公比为q ,由题意,知S 奇+S 偶=4S 偶,所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64,所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1q n -1=12×⎝ ⎛⎭⎪⎫13n -1.]1.已知数列{a n }是等比数列,若a 2=1,a 5=18,则a 1a 2+a 2a 3+…+a n a n +1(n ∈N +)的最小值为( )A .83 B .1 C .2 D .32.等比数列{a n }满足a n >0,且a 2a 8=4,则log 2a 1+log 2a 2+log 2a 3+…+log 2a 9=________.。
等比数列考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·qn -m(m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外). (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k. (5)若⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1,则等比数列{a n }递增.若⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减.常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n,这里c ≠0,q ≠0. 3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n-A (A ≠0,q ≠1,0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( × )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( )A .-12B .-2C .2D .±12答案 D解析 设等比数列的公比为q , ∵{a n }是等比数列,a 2=2,a 4=12,∴a 4=a 2q 2,∴q 2=a 4a 2=14,∴q =±12.2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列, 且a 1a 11+2a 6a 8+a 3a 13=25, ∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25. 又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q,a ,aq ,则⎩⎪⎨⎪⎧a +aq +aq =13,a ·aq ·aq =27,解得⎩⎪⎨⎪⎧a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3,∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n等于( ) A .2n-1 B .2-21-nC .2-2n -1D .21-n-1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 11-q n 1-q =2n-1,所以S n a n =2n -12n -1=2-21-n.方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24,②②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.(2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q , 因为a 24=a 6,所以(a 1q 3)2=a 1q 5, 所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 11-q 51-q=13×1-351-3=1213. 教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________. 答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于( ) A .-2或32 B .-2或64 C .2或-32 D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2, 解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64, 当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q 1-q.跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5 答案 C解析 a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列, ∴a n =2×2n -1=2n.又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +11-2101-2=215-25,即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. ①求{a n }的通项公式; ②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去).所以{a n }的通项公式为a n =2n,n ∈N *. ②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1=(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1--22n]1--22=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. 解 (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列, 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n . (1)证明:数列{a n +a n +1}为等比数列; (2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n , 所以a n +2+a n +1=3(a n +1+a n ), 因为{a n }中各项均为正数, 所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3,所以数列{a n +a n +1}是公比为3的等比数列. (2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1, 所以a 2-3a 1=0,所以a n +1-3a n =0, 故a n +1=3a n , 所以4a n =2×3n -1,a n =12×3n -1.思维升华 等比数列的三种常用判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 11-q31-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13), 解得λ=12,此时S n +12=12×3n,则S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列.题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023等于( ) A.20243 B .1011 C.20232D .1012答案 C解析 由题意得a 5a 2019=3, 根据等比数列性质知,a 1a 2023=a 2a 2022=…=a 1011a 1013=a 1012a 1012=3,于是a 1012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023 =log 3(a 1a 2a 3…a 2023)11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50 答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列, 即4,8,S 9-S 6,S 12-S 9是等比数列, ∴S 12=4+8+16+32=60. 教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3, ∴S 9-S 6=4S 3, ∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 答案 2解析 由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20 答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0. 因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30), 所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .16答案 A解析 ∵a 1a 2…a 8=16, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝ ⎛⎭⎪⎫1a 1+1a 8+⎝ ⎛⎭⎪⎫1a 2+1a 7+⎝ ⎛⎭⎪⎫1a 3+1a 6+⎝ ⎛⎭⎪⎫1a 4+1a 5=12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5) =12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( ) A.643B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q , 则a 4+a 5a 1+a 2=q 3=8, 所以q =2,又a 1+a 2=a 1(1+q )=1, 所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A .2B .4C.92D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24, ∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13B .-13C.19D .-19 答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13.4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( ) A .6里 B .12里 C .24里 D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12,因为S 6=a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=a 1·q 3=192×18=24.5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列答案 AD 解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列; 对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( ) A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *), 当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n , 可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式, 所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1, 又S 6=S 3+q 3S 3, 得63=7+7q 3. ∴q 3=8,q =2.由S 3=a 11-q 31-q =a 11-81-2=7,得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________.答案 3 81解析 由{a n }是等比数列, 得a 3a 5a 7a 9a 11=a 57=243, 故a 7=3,a 4=a 7q3=81.9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *. (1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列. (1)解 S n =na 1+n n -12d =na 1+n (n -1)=n 2+(a 1-1)n , 又S n =pn 2+2n ,n ∈N *, 所以p =1,a 1-1=2,即a 1=3, 所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9, 所以q =3, 所以b n =b 3·q n -3=3n -2,所以b 1=13,所以T n =131-3n1-3=3n-16,所以T n +16=3n 6,又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2),所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列.10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10. (1)证明 由S n +1=4a n +1, 得S n =4a n -1+1(n ≥2,n ∈N *), 两式相减得a n +1=4a n -4a n -1(n ≥2), 所以a n +1-2a n =2(a n -2a n -1), 所以b n b n -1=a n +1-2a na n -2a n -1=2a n -2a n -1a n -2a n -1=2(n ≥2),又a 1=1,S 2=4a 1+1, 故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列. (2)解 由(1)可得b n =2·2n -1=2n,所以c n =|2n-100|=⎩⎪⎨⎪⎧100-2n,n ≤6,2n-100,n >6,所以T 10=600-(21+22+…+26)+27+28+29+210-400 =200-21-261-2+27+28+29+210=200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+-1n3D .S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+-1n3,则a 2=23+-123=3,但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4, 所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=21-4101-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1, ∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列, ∴S n 无最大值,故C 错误; 又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2015=T 2021,则log 3a 2019log 3a 2021=________.答案 15解析 由题意得,T 2015=T 2021=T 2015·a 2016a 2017a 2018a 2019a 2020a 2021, 所以a 2016a 2017a 2018a 2019a 2020a 2021=1, 根据等比数列的性质,可得a 2016a 2021=a 2017a 2020=a 2018a 2019=1, 设等比数列的公比为q ,所以a 2016a 2021=a 20212q 5=1⇒a 2021=52,qa 2018a 2019=a 20192q=1⇒a 2019=12,q所以log 3a 2019log 3a 2021=123523log 1.5log q q14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1023个正方形,则有1+2+…+2n -1=1023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎪⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误;对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确. 16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n 项和为2n -1·3n+12.(1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值.解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列, 所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =2n -1·3n+12,所以a 1b 1+a 2b 2+…+a n -1b n -1=2n -3·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2),因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <34.因为∀n ∈N *,S n ≤m 恒成立, 所以m ≥34,即实数m 的最小值为34.。
等比数列及其前n 项和考点与题型归纳一、基础知识1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .只有当两个数同号且不为0时,才有等比中项,且等比中项有两个. 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.-(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列与指数型函数的关系当q >0且q ≠1时,a n =a 1q·q n 可以看成函数y =cq x,其是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x的图象上;对于非常数列的等比数列{a n }的前n 项和S n =a 11-q n 1-q =-a 11-q q n +a 11-q ,若设a =a 11-q,则S n =-aq n+a (a ≠0,q ≠0,q ≠1).由此可知,数列{S n }的图象是函数y =-aq x+a 图象上一系列孤立的点.对于常数列的等比数列,即q =1时,因为a 1≠0,所以S n =na 1.由此可知,数列{S n }的图象是函数y =a 1x 图象上一系列孤立的点.二、常用结论汇总——规律多一点设数列{a n }是等比数列,S n 是其前n 项和.·(1)通项公式的推广:a n =a m ·q n -m(n ,m ∈N *).(2)若m +n =p +q ,则a m a n =a p a q ;若2s =p +r ,则a p a r =a 2s ,其中m ,n ,p ,q ,s ,r ∈N *.(3)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m(k ,m ∈N *).(4)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n 也是等比数列.(5)若数列{a n }的项数为2n ,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q . 考点一 等比数列的基本运算[典例] (2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3.%(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .[解] (1)设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1--2n3.由S m =63,得(-2)m=-188,此方程没有正整数解.]若a n =2n -1,则S n =1-2n1-2=2n-1.由S m =63,得2m=64,解得m =6. 综上,m =6.[题组训练]1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4D .22~解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q=4.2.(2019·长春质检)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=( )A .4B .10C .16D .32解析:选C 设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4,因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,所以q =2,则a 5=2×23=16.3.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,~则⎩⎪⎨⎪⎧S 3=a 11-q 31-q =74,S 6=a11-q 61-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:32考点二 等比数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列. ^[证明] 因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n ,所以b n +1b n =a n +2-2a n +1a n +1-2a n =4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2. 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法].1.掌握等比数列的4种常用判定方法定义法 中项公式法 通项公式法 前n 项和公式法2.等比数列判定与证明的2点注意~(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n 项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n }不是等比数列,只需要说明前三项满足a 22≠a 1·a 3,或者是存在一个正整数m ,使得a 2m +1≠a m ·a m +2即可.[题组训练]1.数列{a n }的前n 项和为S n =2a n -2n,证明:{a n +1-2a n }是等比数列. 证明:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,由a 1+a 2=2a 2-4得a 2=6. 由于S n =2a n -2n ,故S n +1=2a n +1-2n +1,后式减去前式得a n +1=2a n +1-2a n -2n,即a n +1=2a n +2n,|所以a n +2-2a n +1=2a n +1+2n +1-2(2a n +2n)=2(a n +1-2a n ),又a 2-2a 1=6-2×2=2,所以数列{a n +1-2a n }是首项为2、公比为2的等比数列.2.(2019·西宁月考)已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上.在数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.解:(1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1.>∴数列{a n }是一个以2为首项,1为公差的等差数列.∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明:∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.①∴T n -1=-12b n -1+1(n ≥2).②①②两式相减,得b n =-12b n +12b n -1(n ≥2).}∴32b n =12b n -1,∴b n =13b n -1.由①,令n =1,得b 1=-12b 1+1,∴b 1=23.∴数列{b n }是以23为首项,13为公比的等比数列.考点三 等比数列的性质考法(一) 等比数列项的性质[典例] (1)(2019·洛阳联考)在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A .-2+22B .-2}D .- 2 或2(2)(2018·河南四校联考)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16[解析] (1)设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.(2)由分数的性质得到1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.因为a 8a 1=a 7a 2=a 3a 6=a 4a 5,所以原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5,又a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.故选A.[答案] (1)B (2)A。
即病毒共复制了13次.∴所需时间为13×3=39(秒).](对应学生用书第106页)考点1等比数列的基本运算等比数列基本量运算的解题策略(1)等比数列的通项公式与前n项和公式共涉及五个量a1、a n、q、n、S n、已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n项和公式时、注意分q=1和q≠1两类分别讨论.1.设S n为等比数列{a n}的前n项和、已知3S3=a4-2、3S2=a3-2、则公比q=()A.3B.4C.5D.6∴q =-12或q =1. ∴a 2=a3q =-3或32.]4.(20xx·全国卷Ⅲ)等比数列{a n }中、a 1=1、a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和、若S m =63、求m . [解] (1)设{a n }的公比为q 、由题设得a n =q n -1. 由已知得q 4=4q 2、解得q =0(舍去)、q =-2或q =2. 故a n =(-2)n -1或a n =2n -1(n ∈N +). (2)若a n =(-2)n -1、则S n =1-(-2)n 3. 由S m =63得(-2)m =-188、 此方程没有正整数解. 若a n =2n -1、则S n =2n -1. 由S m =63得2m =64、解得m =6. 综上、m =6.抓住基本量a 1, q 、借用方程思想求解是解答此类问题的关键、求解中要注意方法的择优.考点2 等比数列的判定与证明故⎩⎨⎧⎭⎬⎫an 2n 是首项为12、公差为34的等差数列. ∴an 2n =12+(n -1)·34=3n -14、 故a n =(3n -1)·2n -2.(20xx·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1、b 1=0、4a n +1=3a n -b n +4、4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列、{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.[解] (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n )、即a n +1+b n +1=12(a n +b n ). 又因为a 1+b 1=1、所以{a n +b n }是首项为1、公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8、即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1、所以{a n -b n }是首项为1、公差为2的等差数列. (2)由(1)知、a n +b n =12n -1、a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12、 b n =12[(a n +b n )-(a n -b n )]=12n -n +12. 考点3 等比数列性质的应用。
高考数学第一轮复习 第3讲 等比数列及前n 项和 考点一 等比数列的概念及运算知识点1 等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数q (q ≠0),那么这个数列叫做等比数列,这个常数q 叫做等比数列的公比.2 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 3 等比数列的通项公式及其变形通项公式:a n =a 1·q n -1(a 1q ≠0),其中a 1是首项,q 是公比.通项公式的变形:a n =a m ·q n -m . 4 等比数列前n 项和公式S n =⎩⎪⎨⎪⎧ a 1(1-q n)1-q (q ≠1),na 1(q =1)或S n =⎩⎪⎨⎪⎧a 1-a n q 1-q (q ≠1),na 1(q =1).5 等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列.注意点 等差中项与等比中项的区别两个数的等差中项只有一个,两个同号且不为0的数的等比中项有两个.入门测1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列. ( )(2)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )2.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( ) A .63 B .64 C .127D .1283.已知在等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则该等比数列的公比q 为( )A.14B.12 C .2D .8[考法综述] 通过等比数列的通项公式,前n 项和公式等考查,a 1,a n ,n ,q ,S n 之间的运算关系.通过等比数列的概念考查判断数列为等比数列的方法.命题法1 等比数列的基本运算典例1 (1)在等比数列{a n }中,前n 项和为S n ,若S 3=7,S 6=63,则公比q 的值是( ) A .2 B .-2 C .3D .-3(2)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.【解题法】 等比数列的基本运算方法(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列问题一般要给出两个条件,可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a n ,a 1,q ,n ,S n 的“知三求二”问题.(3)对称设元法:一般地,连续奇数个项成等比数列,可设为…,xq ,x ,xq ,…;连续偶数个项成等比数列,可设为…,x q 3,xq ,xq, xq 3,…(注意:此时公比q 2>0,并不适合所有情况),这样既可减少未知量的个数,也使得解方程较为方便.命题法2 等比数列的判定与证明典例2 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.【解题法】 等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .842.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列3.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1) C.n (n +1)2D.n (n -1)24.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q =2,S k +2-S k =48,则k 等于( ) A .7 B .6 C .5D .45.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________. 6.等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N *都有a n +2+a n +1-2a n =0,则S 5=________.7.设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 8.已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.9.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.考点二 等比数列的性质及应用知识点等比数列及其前n 项和的性质设数列{a n }是等比数列,S n 是其前n 项和.(1)若m +n =p +q ,则a m a n =a p a q ,其中m ,n ,p ,q ∈N *.特别地,若2s =p +r ,则a p a r =a 2s ,其中p ,s ,r ∈N *.(2)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m (k ,m ∈N *).(3)若数列{a n },{b n }是两个项数相同的等比数列,则数列{ba n },{pa n ·qb n }和⎩⎨⎧⎭⎬⎫pa n qb n (其中b ,p ,q 是非零常数)也是等比数列.(4)S m +n =S n +q n S m =S m +q m S n .(5)当q ≠-1或q =-1且k 为奇数时,S k ,S 2k -S k ,S 3k -S 2k ,…是等比数列. (6)若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列. (7)若数列{a n }的项数为2n ,S 偶与S 奇分别为偶数项与奇数项的和,则S 偶S 奇=q ;若项数为2n +1,则S 奇-a 1S 偶=q .注意点 使用性质解题时的注意事项(1)在使用等比数列及其前n 项和的性质时,要注意字母间的上标、下标的对应关系. (2)在等比数列中,若a m ·a n =a p ·a q (m ,n ,p ,q ∈N *),则不一定有m +n =p +q 成立.如{a n }是非零常数列时,此结论就不成立.入门测1.思维辨析(1)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)若{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) (4)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )2.公比为2的等比数列{a n }的各项都是正数,且a 4a 10=16,则a 6=( ) A .1 B .2 C .4D .83.若等比数列{a n }满足a 2a 4=12,则a 1a 23a 5=________.[考法综述] 等比数列的性质是高考中的常考内容,灵活应用由概念推出的重要性质,在解题过程中可以达到避繁就简的目的.命题法 等比数列性质的应用典例 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558(2)已知等比数列{a n }的各项均为正数,且a 1+2a 2=3,a 24=4a 3a 7,则数列{a n }的通项公式a n=________.【解题法】 等比数列性质的应用问题(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4D .32.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73 C.83D .33.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( ) A .512 B .256 C .81D .164.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.6.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b }的通项公式;(2)求数列{b n}的前n项和S n.设四个实数成等比数列,其积为16,中间两项的和为5,则公比为________.课时练基础组1.在数列{a n}中,a n≠0,“a n=2a n-1,n=2,3,4,…”是“{a n}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分与不必要条件2.等比数列{a n}中,a1=3,a4=24,则a3+a4+a5=()A.33B.72C.84 D.1893.设等比数列{a n}的前n项和为S n,若S m-1=5,S m=-11,S m+1=21,则m=()A.3 B.4C.5 D.64.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12 B.10C.8 D.2+log355.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则log2a1+log2a3+…+log2a2n-1等于()A.n(2n-1) B.(n+1)2C.n2D.(n-1)26.]各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于() A.80 B.30C.26 D.167.已知公差不为0的等差数列{a n}满足a1,a3,a9成等比数列,S n为数列{a n}的前n项和,则S11-S9S7-S6=________.8.若数列{a n}满足:a1=1,a n+1=12a n(n∈N*),其前n项和为S n,则S4a4=________.9.若等比数列{a n}满足a m-3=4且a m a m-4=a24(m∈N*且m>4),则a1a5的值为________.10.已知公比为2的等比数列{a n}中,a2+a5+a8+a11+a14+a17+a20=13,则该数列前21项的和S21=________.11.已知正项等比数列{a n}中,2a1+a2=a3,3a6=8a1a3.(1)求数列{a}的通项公式;(2)设b n =log 2a 1+log 2a 2+…+log 2a n -n log 23,求数列⎩⎨⎧⎭⎬⎫1b n +1的前n 项和T n .12.已知a <b ,且满足a 2-a -6=0,b 2-b -6=0,数列{a n },{b n }满足a 1=1,a 2=-6a ,a n +1=6a n -9a n -1(n ≥2,n ∈N *),b n =a n +1-ba n (n ∈N *).(1)求证:数列{b n }是等比数列; (2)求数列{a n }的通项公式a n .能力组13.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314C.334D.17214.数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n ,若b 10b 11=2015110,则a 21=______.15已知公差不为0的等差数列{a n }的前n 项和为S n ,S 3=a 4+6,且a 1,a 4,a 13成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n +1,求数列{b n }的前n 项和.16.已知数列{a n }满足a 1=1,a n +1=2⎝⎛⎭⎫1+1n 2a n . (1)设b n =a nn 2,求证:数列{b n }是等比数列;(2)求数列{a n }的通项公式;(3)设c n =a n +1-2a n ,求数列{c n }的前n 项和S n .。
§2.4 等比数列第1课时 等比数列的概念及通项公式学习目标 1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程.知识点一 等比数列的概念1.定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.递推公式形式的定义:a na n -1=q (n >1)⎝⎛⎭⎫或a n +1a n =q ,n ∈N *.3.等比数列各项均不能为0.知识点二 等比中项与等差中项的异同知识点三 等比数列的通项公式若等比数列{a n }的首项为a 1,公比为q a n =a 1q n -1(n ∈N *).1.若a n +1=qa n ,n ∈N *,且q ≠0,则{a n }是等比数列.( × ) 2.任何两个数都有等比中项.( × )3.等比数列1,12,14,18,…中,第10项为129.( √ )4.常数列既是等差数列,又是等比数列.( × )题型一 等比数列的判定命题角度1 已知数列前若干项判断是否为等比数列 例1 判断下列数列是否为等比数列. (1)1,3,32, 33,…,3n -1,…;(2)-1,1,2,4,8,…; (3)a 1,a 2,a 3,…,a n ,….解 (1)记数列为{a n },显然a 1=1,a 2=3,…,a n =3n -1,….∵a n a n -1=3n -13n -2=3(n ≥2,n ∈N *), ∴数列为等比数列,且公比为3.(2)记数列为{a n },显然a 1=-1,a 2=1,a 3=2,…, ∵a 2a 1=-1≠a 3a 2=2,∴此数列不是等比数列. (3)当a =0时,数列为0,0,0,…是常数列,不是等比数列;当a ≠0时,数列为a 1,a 2,a 3,a 4,…,a n ,…,显然此数列为等比数列,且公比为a . 反思感悟 判定等比数列,要抓住3个要点:①从第二项起.②要判定每一项,不能有例外.③每一项与前一项的比是同一个常数,且不能为0.跟踪训练1 下列各组数成等比数列的是( )①1,-2,4,-8;②-2,2,-22,4;③x ,x 2,x 3,x 4;④a -1,a -2,a -3,a -4.A .①②B .①②③C .①②④D .①②③④答案 C解析 ①②显然是等比数列;由于x 可能为0,③不是; a 不能为0,④符合等比数列定义,故④是. 命题角度2 已知递推公式判断是否为等比数列 例2 已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)证明:数列{a n +1}是等比数列; (2)求数列{a n }的通项公式. (1)证明 ∵a n +1=2a n +1, ∴a n +1+1=2(a n +1).由a 1=1,知a 1+1≠0,从而a n +1≠0. ∴a n +1+1a n +1=2(n ∈N *). ∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是以a 1+1=2为首项,2为公比的等比数列. ∴a n +1=2·2n -1=2n .即a n =2n -1.反思感悟 等比数列的判定方法(1)定义法:a n a n -1=q (n ≥2,q 是不为0的常数)⇔{a n }是公比为q 的等比数列.(2)等比中项法:a 2n =a n -1·a n +1(n ≥2,a n ,a n -1,a n +1均不为0)⇔{a n }是等比数列. 跟踪训练2 数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求数列{a n }的通项公式. 解 (1)a 2=3a 1-2×2+3=-4, a 3=3a 2-2×3+3=-15. 又a 1-1=-2,a n +1-(n +1)a n -n =3a n -2(n +1)+3-(n +1)a n -n =3a n -3na n -n =3(n =1,2,3,…).∴数列{a n -n }是以-2为首项,3为公比的等比数列.(2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.题型二 等比数列通项公式的应用 例3 在等比数列{a n }中. (1)已知a 2=4,a 5=-12,求a n ;(2)已知a 3+a 6=36,a 4+a 7=18,a n =12,求n .解 (1)设等比数列的公比为q ,则⎩⎪⎨⎪⎧a 1q =4,a 1q 4=-12.解得⎩⎪⎨⎪⎧a 1=-8,q =-12. ∴a n =a 1q n -1=(-8)⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n -4. (2)设等比数列{a n }的公比为q .∵a 4+a 7=a 3q +a 6q =(a 3+a 6)q ,∴q =1836=12.∵a 4+a 7=18,∴a 4(1+q 3)=18.∴a 4=16,a n =a 4·q n -4=16·⎝⎛⎭⎫12n -4. 由16·⎝⎛⎭⎫12n -4=12,得n -4=5,∴n =9. 反思感悟 等比数列通项公式及应用应注意两点(1)a 1和q 是等比数列的基本元素,只要求出这两个基本元素,其余的元素便可求出. (2)等比数列的通项公式涉及4个量a 1,a n ,n ,q ,知任意三个就可以求出另外一个. 跟踪训练3 在等比数列{a n }中: (1)已知a 1=3,q =-2,求a 6; (2)已知a 3=20,a 6=160,求a n .解 (1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96.(2)设等比数列的公比为q ,则⎩⎪⎨⎪⎧ a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1q n -1=5×2n -1,n ∈N *.方程的思想在等比数列中的应用典例1 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 考点 等比数列的性质题点 等比数列的性质的其他应用问题解 方法一 设这四个数依次为a -d ,a ,a +d ,(a +d )2a ,由条件得⎩⎪⎨⎪⎧a -d +(a +d )2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4或⎩⎪⎨⎪⎧a =9,d =-6.所以当a =4,d =4时,所求的四个数为0,4,8,16; 当a =9,d =-6时,所求的四个数为15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1. 方法二 设这四个数依次为2a q -a ,aq,a ,aq (q ≠0), 由条件得⎩⎨⎧2aq -a +aq =16,aq +a =12,解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =3,q =13.当a =8,q =2时,所求的四个数为0,4,8,16; 当a =3,q =13时,所求的四个数为15,9,3,1.故所求的四个数为0,4,8,16或15,9,3,1.典例2 设四个实数依次成等比数列,其积为210,中间两项的和是4,则这四个数为多少? 解 设这四个数依次为aq,a ,aq ,aq 2(q ≠0),根据题意得⎩⎪⎨⎪⎧a 4·q 2=210,a +aq =4,解得q =-2或-12,当q =-2时,a =-4,所求四个数依次为2,-4,8,-16. 当q =-12时,a =8,所求四个数依次为-16,8,-4,2,综上,这四个数依次为2,-4,8,-16或-16,8,-4,2.[素养评析] (1)解决这类题目通常用方程的思想,列方程首先应引入未知数,三个数或四个数成等比数列的设元技巧:①若三个数成等比数列,可设三个数为aq ,a ,aq 或a ,aq ,aq 2(q ≠0).②若四个数成等比数列,可设为a q ,a ,aq ,aq 2或a q 3,aq,aq ,aq 3(q ≠0).(2)像本例,明确运算对象,选择运算方法,求得运算结果充分体现数学运算的数学核心素养.1.等比数列{a n }的公比|q |>1,{a n }中有连续四项在集合{-54,-24,-18,36,81}中.则q 等于( )A .-12 B.12 C .-32 D.32答案 C解析 ∵{a n }中的项必然有正有负, ∴q <0.又|q |>1, ∴{|a n |}递增或递减.由此可得{a n }的连续四项为-24,36,-54,81. ∴q =-32.2.等比数列x,3x +3,6x +6,…的第4项等于( ) A .-24 B .0 C .12 D .24 答案 A解析 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第4项为-24.3.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32 答案 C解析 由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.4.45和80的等比中项为 . 答案 -60或60解析 设45和80的等比中项为G , 则G 2=45×80,∴G =±60.5.若{a n }为等比数列,且3a 4=a 6-2a 5,则公比是 . 答案 -1或3解析 设公比为q (q ≠0),则3a 1q 3=a 1q 5-2a 1q 4, 因为a 1q 3≠0,所以q 2-2q -3=0, 解得q =-1或q =3.1.等比数列的判断或证明(1)利用定义:a n +1a n=q (与n 无关的常数).(2)利用等比中项:a 2n +1=a n a n +2(n ∈N *,且数列各项均不为零).2.两个同号的实数a ,b 才有等比中项,而且它们的等比中项有两个(±ab ),而不是一个(ab ),这是容易忽视的地方. 3.等比数列的通项公式a n =a 1q n -1共涉及a 1,q ,n ,a n 四个量,已知其中三个量可求得第四个量.一、选择题1.2+3和2-3的等比中项是( ) A .1 B .-1 C .±1 D .2 答案 C解析 设2+3和2-3的等比中项为G ,则G 2=(2+3)(2-3)=1,∴G =±1. 2.(2018·四川广安中学月考)有下列四个说法: ①等比数列中的某一项可以为0;②等比数列中公比的取值范围是(-∞,+∞);③若一个常数列是等比数列,则这个常数列的公比为1; ④若b 2=ac ,则a ,b ,c 成等比数列. 其中正确说法的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 只有③正确.3.若1,a,3成等差数列,1,b,4成等比数列,则ab 的值为( )A .±12 B.12 C .1 D .±1考点 等比中项 题点 利用等比中项解题 答案 D解析 ∵1,a,3成等差数列,∴a =1+32=2,∵1,b,4成等比数列,∴b 2=1×4,b =±2,∴a b =2±2=±1.4.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9. ∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.5.已知a ,b ,c ∈R ,如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9且b 与首项-1同号, ∴b =-3,且a ,c 必同号.∴ac =b 2=9.6.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( ) A .9 B .10 C .11 D .12 答案 C解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1qm -1=q m -1, ∴m -1=10,∴m =11.7.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2 C .1 D .-2 答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2. 又∵a ,b ,c ,d 成等比数列,∴ad =bc =2. 二、填空题8.在等比数列{a n }中,若a 3=3,a 10=384,则公比q = . 答案 2解析 a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2.9.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为 . 答案 80,40,20,10解析 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12.∴这4个数依次为80,40,20,10.10.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q = . 答案 1或-2解析 根据题意,代入公式⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2,解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧a 1=-1,q =-2.11.在《九章算术》中“衰分”是按比例递减分配的意思.今共有粮98石,甲、乙、丙按序衰分,乙分得28石,则衰分比例为 . 答案 12解析 设衰分比例为q ,则甲、乙、丙各分得28q ,28,28q 石,∴28q +28+28q =98,∴q =2或12. 又0<q <1,∴q =12.三、解答题12.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 解 ∵S n =2a n +1, ∴S n +1=2a n +1+1.∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0, 又由a n +1=2a n 知a n ≠0, ∴a n +1a n=2,∴{a n }是首项为-1,公比为2的等比数列. ∴a n =-1×2n -1=-2n -1.13.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得 2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数, 所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1,n ∈N *.14.如图给出了一个“三角形数阵”,已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( ) 14 12,14 34,38,316…A.116B.18C.516D.54答案 C解析 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 15.在各项均为负数的数列{a n }中,已知2a n =3a n +1,且a 2a 5=827. (1)求证:{a n }是等比数列,并求出其通项公式;(2)试问-1681是这个等比数列中的项吗?如果是,指明是第几项;如果不是,请说明理由. 解 (1)∵2a n =3a n +1,∴a n +1a n =23. 又∵数列{a n }的各项均为负数,∴a 1<0,∴数列{a n }是以23为公比的等比数列. ∴a n =a 1·q n -1=a 1·⎝⎛⎭⎫23n -1, ∴a 2=a 1·⎝⎛⎭⎫232-1=23a 1, a 5=a 1·⎝⎛⎭⎫235-1=1681a 1, 又∵a 2·a 5=23a 1·1681a 1=827, ∴a 21=94.又∵a 1<0,∴a 1=-32. ∴a n =⎝⎛⎭⎫-32×⎝⎛⎭⎫23n -1=-⎝⎛⎭⎫23n -2(n ∈N *). (2)令a n =-⎝⎛⎭⎫23n -2=-1681, 则n -2=4,n =6∈N *,∴-1681是这个等比数列中的项,且是第6项.。
最新等比数列的性质2022最新关于等比数列的性质在现实学习生活中,大家都没少背知识点吧?知识点就是学习的重点。
那么,都有哪些知识点呢?下面是小编为大家整理的最新等比数列的性质,欢迎大家借鉴与参考,希望对大家有所帮助。
高考数学高频考点:等比数列1.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G=ab是a,G,b三数成等比数列的必要不充分条件。
2.等比数列通项公式an=a1*q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:q、r、p成等比数列,则aq·ap=ar,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)(6)任意两项am,an的关系为an=am·q’(n-m)(7)在等比数列中,首项a1与公比q都不为零。
习题课 等比数列的性质的综合问题答案一、等比数列的实际应用例1 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值. (1)用一个式子表示n (n ∈N *)年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?解 (1)从第一年起,每年车的价值(万元)依次设为:a 1,a 2,a 3,…,a n , 由题意,得a 1=13.5,a 2=13.5(1-10%), a 3=13.5(1-10%)2,….由等比数列的定义,知数列{a n }是等比数列, 首项a 1=13.5,公比q =1-10%=0.9, ∴a n =a 1·q n -1=13.5×0.9n -1.∴n 年后车的价值为a n +1=(13.5×0.9n )万元. (2)由(1)得a 5=a 1·q 4=13.5×0.94≈8.9(万元), ∴用满4年时卖掉这辆车,大概能得到8.9万元.反思感悟 等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.跟踪训练1 有纯酒精a (a >1)升,从中取出1升,再用水加满,然后再取出1升,再用水加满,如此反复进行,则第九次和第十次共取出纯酒精________升. 答案 ⎝⎛⎭⎫1-1a 8⎝⎛⎭⎫2-1a 解析 由题意可知,取出的纯酒精数量是一个以1为首项,1-1a 为公比的等比数列,即第一次取出的纯酒精为1升,第二次取出的为1-1a (升),第三次取出的为⎝⎛⎭⎫1-1a 2升,…, 第n 次取出的纯酒精为⎝⎛⎭⎫1-1a n -1升, 则第九次和第十次共取出纯酒精数量为 a 9+a 10=⎝⎛⎭⎫1-1a 8+⎝⎛⎭⎫1-1a 9 =⎝⎛⎭⎫1-1a 8⎝⎛⎭⎫2-1a (升). 二、等差数列与等比数列的转化问题1 若等差数列a n =2n +1,那么数列{22n +1}是等差或等比数列吗? 提示 设b n =22n +1,则b n -b n -1=22n +1-22n -1=22n -1(4-1)=3×22n-1不是常数,故{b n }不是等差数列;而b n b n -1=22n +122n -1=22n +1-(2n -1)=22=4,是常数,故{b n }是等比数列. 问题2 若等比数列a n =2n ,则{lg a n }为等差数列吗?提示 若等比数列a n =2n ,则b n =lg a n =lg 2n =n lg 2是关于n 的一次函数,是等差数列. 知识梳理1.若数列{a n }是公差为d 的等差数列,则数列{n aa }是等比数列. 2.若数列{a n }是公比为q (q >0)的等比数列,则数列{log a a n }是等差数列.注意点:(1)其底数a 满足a >0,且a ≠1;(2)等比数列{n aa }的公比为a d ;(3)等差数列{log a a n }的公差为log a q .例2 已知数列{a n }是首项为2,公差为-1的等差数列,令b n =12na ⎛⎫⎪⎝⎭,求证数列{b n }是等比数列,并求其通项公式.解 依题意得,a n =2+(n -1)×(-1)=3-n , 于是b n =⎝⎛⎭⎫123-n.而b n +1b n =⎝⎛⎭⎫122-n⎝⎛⎭⎫123-n =⎝⎛⎭⎫12-1=2. ∴数列{b n }是首项为14,公比为2的等比数列,通项公式为b n =14·2n -1=2n -3.延伸探究 已知各项均为正数的等比数列{a n }满足:a 4=128,a 8=215.设b n =log 2a n ,求证:数列{b n }是等差数列,并求其通项公式. 解 设等比数列{a n }的公比为q , 由已知得q 4=a 8a 4=28.∵数列{a n }是各项均为正数的等比数列, ∴q =4,∴a 1=a 4q 3=2,∴a n =2×4n -1=22n -1.又∵b n -b n -1=log 2a n -log 2a n -1=log 24=2(n ≥2), b 1=log 2a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列, ∴b n =2n -1.反思感悟 在等差数列与等比数列相互转化的过程中,相当于构造了一个新的数列,需判断是否满足等比数列或等差数列的定义.跟踪训练2 数列{a n }满足log 2a n -1=log 2a n +1(n ∈N *),若a 1+a 3+…+a 2n -1=2n ,则log 2(a 2+a 4+a 6+…+a 2n )的值是( )A .n -1B .n +1C .2n -1D .2n +1答案 A解析 由log 2a n -1=log 2a n +1,即log 2a n +1-log 2a n =-1, 即log 2a n +1a n =-1得a n +1a n =12,∴数列{a n }是等比数列,首项为a 1,公比为12,∵a 1+a 3+…+a 2n -1=2n ,∴a 2+a 4+…+a 2n =12(a 1+a 3+…+a 2n -1)=2n -1,则log 2(a 2+a 4+a 6+…+a 2n )=n -1. 三、等比数列的综合应用例3 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. 解 (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2, 所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (1+n ).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2,从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0,解得k =6或k =-1(舍去),因此k =6. 反思感悟 解决等差、等比数列的综合问题应注意的四个方面 (1)等差数列、等比数列公式和性质的灵活应用. (2)对于解答题注意基本量及方程思想.(3)注重问题的转化,利用非等差数列、非等比数列构造出新的等差数列或等比数列,以便利用公式和性质解题.(4)当题中出现多个数列时,既要纵向考查单一数列的项与项之间的关系,又要横向考查各数列之间的内在联系.跟踪训练3 若等比数列{a n }满足2a 1+a 2+a 3=a 4,a 5-a 1=15. (1)求数列{a n }的首项a 1和公比q ; (2)若a n >n +100,求n 的取值范围.解 (1)由题意,得⎩⎪⎨⎪⎧2a 1+a 1q +a 1q 2=a 1q 3,a 1q 4-a 1=15,解得a 1=1,q =2.(2)由(1)可知a n =2n -1,即2n -1>n +100,验证可得n ≥8,n ∈N *.1.某细菌培养过程中,每15分钟分裂1次,经过2小时,这种细菌由1个繁殖成( ) A .64个 B .128个 C .256个 D .255个答案 C解析 某细菌培养过程中,每15分钟分裂1次,经过2小时,共分裂8次,所以经过2小时,这种细菌由1个繁殖成28=256个.2.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000 D .-10 000答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6, ∴a 38=106,∴a 8=102=100.∴a 1a 15=a 28=10 000.3.若a ,b ,c 成等比数列,其中a ,b ,c 均是不为1的正数,n 是大于1的整数,那么log a n ,log b n ,log c n ( ) A .是等比数列B .是等差数列C .每项取倒数成等差数列D .每项取倒数成等比数列答案 C解析 因为a ,b ,c 成等比数列,可知log n a ,log n b ,log n c 成等差数列,即1log a n ,1log b n ,1log c n 成等差数列.4.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.答案 1解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.1.在正项等比数列{a n }中,a 2a 7=4,则log 2a 1+log 2a 2+…+log 2a 8等于( )A .2B .4C .6D .8 答案 D解析 原式=log 2(a 1a 2a 3…a 8)=log 2(a 2a 7)4=4log 24=8.2.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项, 所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0, 所以(a 1+2d )2=a 1(a 1+6d ), 所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.3.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }的前6项和为( ) A .-24 B .-3 C .3 D .8 答案 A解析 根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ), 解得d =0(舍去),d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24.4.在公差不为0的等差数列{a n }中,a 1=1,且a 3,a 7,a 16成等比数列,则公差为( ) A.34 B .-15 C.56 D .1 答案 C解析 设等差数列{a n }的公差为d (d ≠0),由a 1=1,a 3,a 7,a 16成等比数列,得a 27=a 3·a 16,即(1+6d )2=(1+2d )·(1+15d ),整理得6d 2-5d =0,解得d =56或d =0(舍去),即数列{a n }的公差d =56,故选C.5.已知{a n }是等差数列,且公差d ≠0,若a =12a,b =32a,c =52a,则a ,b ,c ( ) A .是等比数列,非等差数列 B .是等差数列,非等比数列 C .既非等比数列,又非等差数列 D .既是等差数列,又是等比数列答案 A解析 由{a n }是等差数列,且公差d ≠0,得a 1,a 3,a 5是公差为2d 的等差数列,故a ,b ,c 成等比数列,若一个数列既是等差数列,又是等比数列,则该数列只能是常数列,而a ,b ,c 不是常数列,故a ,b ,c 不是等差数列.6.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于( ) A .-2 B .2 C .-8 D. 8 答案 BD解析 由已知得⎩⎪⎨⎪⎧a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧ a =2,b =4,c =6或⎩⎪⎨⎪⎧a =8,b =4,c =0.故a =2或a =8.7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -6解析 由题意知,a 3=a 1+4,a 4=a 1+6. ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+4)2=(a 1+6)a 1,解得a 1=-8,∴a 2=-6.8.画一个边长为2的正方形,再以这个正方形的一条对角线为边画第2个正方形,以第2个正方形的一条对角线为边画第3个正方形,……,这样共画了10个正方形,则第10个正方形的面积等于________. 答案 2 048解析 依题意,得这10个正方形的边长构成以2为首项,2为公比的等比数列{a n },所以a n =2×(2)n -1,所以第10个正方形的面积S =a 210=[2×(2)9]2=4×29=2 048.9.受疫情影响,某公司的销售额受到严重影响,从2020年的7月销售收入128万元,9月跌至32万元,你能求出该公司7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时候跌至每月销售收入8万元?解 设每月平均下降的百分比为x ,则每月的销售收入构成了等比数列{a n },a 1=128,则a 2=a 1(1-x ), a 3=a 1(1-x )2=128(1-x )2=32,解得x =50%.设a n =8,a n =128(1-50%)n -1=8,解得n =5,即从2020年7月算起第5个月,也就是在2020年的11月该公司的销售收入跌至8万元.10.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . (1)证明 因为b n =log 2a n , 所以b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q . (2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2. 又因为a 1>1,所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1,因此S n =4n +n (n -1)2×(-1)=9n -n 22.又因为d =log 2q =-1, 所以q =12,b 1=log 2a 1=4,即a 1=16,所以a n =25-n (n ∈N *).11.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1等于( ) A .2 B .-2 C.12 D .-12答案 D解析 因为{a n }是首项为a 1,公差为-1的等差数列, 所以S n =na 1+12n ·(n -1)·(-1),由S 1,S 2,S 4成等比数列可知S 22=S 1·S 4, 代入可得(2a 1-1)2=a 1·(4a 1-6), 解得a 1=-12.12.已知等比数列{a n }中,a 2=14,a 5=132,则数列{log 2a n }的前10项之和是( )A .45B .-35C .55D .-55答案 D解析 设等比数列{a n }的公比为q ,由a 2=14,a 5=132,可得a 2q 3=14×q 3=132,解得q =12,又由a 1q =a 1×12=14,解得a 1=12,所以a n =⎝⎛⎭⎫12n , 则log 2a n =log 2⎝⎛⎭⎫12n =-n , 数列{log 2a n }的前10项之和为 S 10=10×[(-1)+(-10)]2=-55.13.已知函数f (x )=log a x (a >0,a ≠1),则下列条件能使数列{a n }成等比数列的是( ) A .f (a n )=2n B .f (a n )=n 2 C .f (a n )=2n D .f (a n )=2n答案 C解析 由f (x )=log a x (a >0,a ≠1), 令y =log a x ,可得x =a y ,故对于A ,有a n =2na ,不是等比数列; 对于B ,a n =2n a ,不是等比数列; 对于C ,a n =a 2n ,为等比数列; 对于D ,a n =2na ,不是等比数列.14.已知等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,则a 1a 2a 3·…·a n 的最大值为________.答案 1 024解析 因为等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,所以⎩⎪⎨⎪⎧a 1q ·a 1q 4=2a 1q 2,a 1q 3+2a 1q 6=2×54, 解得a 1=16,q =12,所以a n =16×⎝⎛⎭⎫12n -1=25-n, 所以a 1a 2a 3·…·a n =24+3+2+…+(5-n )=2922n n -+,所以当n =4或n =5时,a 1a 2a 3·…·a n 取最大值,且最大值为210=1 024.15.已知a 1,a 2,a 3,……,a n 是各项不为零的n (n ≥4)项等差数列,且公差不为零,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列,则n 的值为( ) A .4 B .6 C .7 D .无法确定 答案 A解析 当n ≥6时,无论删掉哪一项,必定会出现连续三项既是等差数列,又是等比数列,则该数列为常数列,于是该数列公差为零,不满足题意,则n =4或n =5.当n =5时,由以上分析可知,只能删掉第三项,此时a 1a 5=a 2a 4⇒a 1(a 1+4d )=(a 1+d )(a 1+3d )⇒d =0,不满足题意. 故n =4.验证过程如下: 当n =4时,有a 1,a 2,a 3,a 4.将此数列删去某一项得到的数列(按照原来的顺序)是等比数列. 如果删去a 1或a 4,则等于有3个项既是等差又是等比,不满足题意. 故可以知道删去的是a 2或a 3.如果删去的是a 2,则a 1∶a 3=a 3∶a 4,故a 1(a 1+3d )=(a 1+2d )2, 整理得到3a 1d =4a 1d +4d 2,即4d 2+a 1d =0,故4d +a 1=0,即a 1d =-4.如果删去的是a 3,则a 1∶a 2=a 2∶a 4,故a 1(a 1+3d )=(a 1+d )2, 整理得3a 1d =2a 1d +d 2,即a 1d =d 2,故a 1=d ,即a 1d =1.可得a 1d =-4或1.故答案为A.16.已知数列{a n }的前n 项和为S n ,且满足a 1=1,nS n +1-(n +1)S n =n (n +1)2,n ∈N *.(1)求数列{a n }的通项公式;(2)是否存在正整数k ,使a k ,S 2k ,a 4k 成等比数列?若存在,求k 的值;若不存在,请说明理由. 解 (1)方法一 由nS n +1-(n +1)S n =n (n +1)2,得S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为S 11=1,公差为12的等差数列,∴S n n =1+12(n -1)=12(n +1),∴S n =n (n +1)2. 当n ≥2时,a n =S n -S n -1=n (n +1)2-(n -1)n2=n . 而a 1=1适合上式,∴a n =n .方法二 由nS n +1-(n +1)S n =n (n +1)2, 得n (S n +1-S n )-S n =n (n +1)2,∴na n +1-S n =n (n +1)2,①当n ≥2时,(n -1)a n -S n -1=n (n -1)2,② ①-②,得na n +1-(n -1)a n -a n =n (n +1)2-n (n -1)2,∴na n +1-na n =n ,∴a n +1-a n =1,∴数列{a n }是从第2项起的等差数列,且首项为a 2=2,公差为1, ∴a n =2+(n -2)×1=n (n ≥2). 而a 1=1适合上式,∴a n =n . (2)由(1)知a n =n ,S n =n (n +1)2.假设存在正整数k ,使a k ,S 2k ,a 4k 成等比数列,则S 22k =a k ·a 4k ,即⎣⎡⎦⎤2k (2k +1)22=k ·4k .∵k 为正整数,∴(2k +1)2=4. 得2k +1=2或2k +1=-2,解得k =12或k =-32,与k 为正整数矛盾.∴不存在正整数k ,使a k ,S 2k ,a 4k 成等比数列.。