1S 2
1 23
2 24
n2 2n
n 1 2 n+1
②
由①-②得
1S 2
1 22
1 23
1 2n
n 1 2n+1
1 2
n 1 2 n 1
S 1 n1 2n
an 2n
1
an 2n
2
n 1 2n
an 2n1 n 1
变式训练:答案an 6 4n1 (n 1) 2n
数列 满足 an
an1 3 4 5 6
n 1
an a1
1 2 n(n 1)
a1
1 an
2 n(n 1)
累乘
例 2:已知数列an 中,a1
1且满足 an1 an
n ,求数 n2
列an 的通项公式。
其他解法探究:
a n 1 an
n n2
(n 2)an1
nan
(n 1)(n 2)an1 n(n 1)an
则可构造n(n 1)an 是常数数列
故an n2 n 2(n 1,2,3,)
方法归纳:累加
可求和
变式训练:
1.已知数列an中, a1 2 满足 an1 an 2n n ,求数列an 的通 项公式. 2.已知数列an 中, a1 2 满足 an1 an n 2n n ,求数列an 的 通项公式.
类型二:形如 an1 f (n)
an1 2an n 2n1 2n1 2n1
an1 an n 2n1 2n 2n1
累加
a2 22
a1 2
1 ,a3 22 23
a2 22
2 23
,,
an 2n
an1 2n1
n 2n
1
,