导数中证明不等式技巧
- 格式:doc
- 大小:1.07 MB
- 文档页数:16
高考中利用导数证明不等式的一些策略1与lnx分开来考虑,即将f(x)分解为两个函数的和:f(x)=lnx+2ex-1.然后分别对这两个函数求导,得到f'(x)=1/x+2ex>0,说明f(x)在定义域上单调递增,且f(0)=1,因此f(x)>1成立。
评注:对于这种需要分离成两个函数的不等式,可以先观察不等式的特征,尝试将其分解为两个函数的和或差,然后分别对这些函数求导来证明不等式。
类型三、需要构造辅助函数的不等式1.利用辅助函数构造上下界例3(2016年全国卷1第23题改编)已知a,b,c>0,证明:(a+b+c)(1/a+1/b+1/c)≥9分析:将(a+b+c)(1/a+1/b+1/c)展开,得到a/b+b/a+a/c+c/a+b/c+c/b+3≥9.观察不等式中的每一项,可以发现这些项都可以表示为三个数的和,因此可以构造辅助函数f(x)=ln(x)+1/x-1,然后对f(x)求导,得到f'(x)=1/x^2-1,f'(x)>0当且仅当x1,因此f(x)在(0,1)和(1,∞)上分别是减函数和增函数。
接着,将a/b+b/a+a/c+c/a+b/c+c/b分别表示为f(ab)+f(ac)+f(bc)+3,然后应用均值不等式,得到f(ab)+f(ac)+f(bc)≥3f((abc)^(2/3))=3ln(abc)+3/(abc)^(2/3)-3.将此式代入原不等式中,得到3ln(abc)+3/(abc)^(2/3)≥6,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3.再次利用辅助函数,构造g(x)=lnx+(1/3)x^(-2/3)-2/3,对其求导得到g'(x)=1/x-(2/9)x^(-5/3),g'(x)>0当且仅当x9/4,因此g(x)在(0,9/4)和(9/4,∞)上分别是减函数和增函数。
由于a,b,c>0,因此abc>0,因此可将不等式中的abc替换为x,得到g(abc)≥0,即ln(abc)+(1/3)/(abc)^(2/3)-2/3≥0,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3,因此原不等式成立。
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!导数中的不等式证明导数中的不等式证明是高考中的一个经典考点。
由于不等式证明的灵活性和多样性,该考点备受命题者的青睐。
本文将从五个方面系统地介绍一些常规的不等式证明手段。
命题角度1:构造函数典例1】(赣州市2018届高三摸底考试)已知函数$f(x)=1-\ln x+\frac{e}{x}$,$g(x)=x-\frac{e}{x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。
求$a,b$的值,并证明当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。
解析】(1)$a=b=-1$;2)$g(x)=-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$f(x)+g(x)\geq\frac{2}{x}$ $\Leftrightarrow 1-\frac{1}{x}+\frac{e}{x}-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}\geq\frac{2}{x}$ $\Leftrightarrow\frac{1}{x}+\frac{ e}{2\ln x}-\frac{x}{2}+\frac{e}{2x}\leq1$。
令$h(x)=f(x)+g(x)-\frac{2}{x}$,则$h(x)=1-\frac{1}{x}+\frac{e}{x}-\ln x-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$h'(x)=-\frac{1}{x^2}+\frac{e}{x^2}-\frac{1}{x}-\frac{e}{2x^2}+\frac{1}{2}-\frac{e}{2x^2}$,$h''(x)=\frac{2}{x^3}-\frac{3e}{x^3}+\frac{2e}{x^3}$。
利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。
分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
高中数学解题方法构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:1.移项法构造函数 2、作差法构造函数证明3、换元法构造函数证明4、从条件特征入手构造函数证明5、主元法构造函数6、构造二阶导数函数证明导数的单调性7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数1.移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。
【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
导数中证明不等式技巧——构造切线放缩二元变量凹凸反转唯手熟尔!在导数中证明不等式时,我们可以运用一些技巧来简化证明过程。
以下是几种常用的技巧:1.构造法:构造一个函数,使其导数的符号与要证明的不等式的符号相同。
例如,要证明$f(x)>g(x)$,可以构造一个函数$h(x)=f(x)-g(x)$,然后证明$h'(x)>0$。
这样,当$h'(x)>0$时,$h(x)$就递增,从而$f(x)-g(x)$也递增,即$f(x)>g(x)$。
2.切线放缩法:通过构造一个切线来放缩函数。
例如,要证明$f(x)>g(x)$,可以找到函数$f(x)$在其中一点处的切线,然后利用切线的性质来证明不等式。
具体地,找到函数$f(x)$在其中一点$x_0$处的切线$y=h(x_0)+h'(x_0)(x-x_0)$,然后证明$h(x_0)+h'(x_0)(x-x_0)>g(x)$成立。
3.二元变量法:将不等式中的一些变量表示为另一个变量的函数,然后对新的不等式进行处理。
例如,对于$f(x)>g(x)$,我们可以将其中的一个变量表示为另一个变量的函数,例如$x=h(y)$,然后将不等式转化为$F(y)>G(y)$的形式进行证明。
4.凹凸反转法:利用函数的凹凸性质来证明不等式。
例如,要证明$f(x)>g(x)$,可以证明$-f(x)<-g(x)$,然后利用函数的凹凸性质,通过证明$-f(x)$是凸函数,而$-g(x)$是凹函数,从而得到$-f(x)<-g(x)$成立。
最后,无论采用哪种技巧,熟练掌握基本的导数计算和不等式性质是非常重要的。
只有通过大量的练习,加深对导数和不等式的理解,才能真正掌握这些技巧,并在实际应用中灵活运用。
高考数学助手:导数中证明不等式技巧构造切线放缩二元变量凹凸反转
导数中不等式的证明是历年的高考中一个永恒的话题,由于不等式证明的灵活性,多样性,该考点也备受命题者的青睐。
今天将会通过五个方面系统的介绍一些常规的不等式的证明手段。
总的来说:
命题角度1 构造函数
命题角度2 放缩法
命题角度3 切线法
命题角度4 二元或多元不等式的证明思路
命题角度5 函数凹凸性的应用
这五种命题角度,五种解题方法,同学们一定要会呢!导数在高考中占的比重还是挺大的!。
用导数证明函数不等式地四种常用方法本文将介绍用导数证明函数不等式地四种常用方法.例1 证明不等式:)0)1ln(>+>x x x (.证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数.而这用导数易证:1()10(0)1f x x x '=->>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥).设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥).若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥).接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决.例2 证明不等式:)1ln(+≥x x .证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-.显然,本题不能用例1地单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 地最小值是0,而这用导数易证:1()1(1)11x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得min ()(1)0(1)f x f x =-=>-所以欲证结论成立.注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0()f x g x x I ->≥∈.设()()()()h x f x g x x I =-∈,即证()()0()h x x I >≥∈,也即证min ()()0()h x x I >≥∈(若min ()h x 不存在,则须求函数()h x 地下确界),而这用导数往往容易解决.例3 (2014年高考课标全国卷I 理科第21题)设函数1e ()e ln x xb f x a x x -=+,曲线()y f x =在点(1,(1))f 处地切线为e(1)2y x =-+.(1)求,a b ;(2)证明:()1f x >.解 (1)112()e ln e e e x x x x a b b f x a x x x x--'=+-+. 题设即(1)2,(1)e f f '==,可求得1,2a b ==.(2)即证2ln e (0)ex x x x x ->->,而这用导数可证(请注意11e ≠): 设()ln (0)g x x x x =>,得min 11()e e g x g ⎛⎫==- ⎪⎝⎭. 设2()e (0)ex h x x x -=->,得max 1()(1)e h x h ==-. 注 i)欲证函数不等式()()(,f x g x x I I ≥∈是区间),只需证明min max ()()()f x g x x I ≥∈,而这用导数往往可以解决.欲证函数不等式()()(,f x g x x I I >∈是区间),只需证明min max ()()()f x g x x I >∈,或证明min max ()()()f x g x x I ≥∈且两个最值点不相等,而这用导数往往也可以解决.ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:已知函数2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上地最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 地取值范围;(3)证明:对一切(0,)x ∈+∞,都有12ln e e x x x>-成立. 例4 (2013年高考北京卷理科第18题)设L 为曲线C :y =ln x x在点(1,0)处地切线.(1)求L 地方程;(2)证明:除切点(1,0)之外,曲线C 在直线L 地下方.解 (1)(过程略)L 地方程为y =x -1.(2)即证1ln -≤x xx (当且仅当1=x 时取等号). 设x x x x g ln 1)(--=,得g ′(x )=x 2-1+ln x x 2)0(>x . 当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,得g (x )单调递减;当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,得g (x )单调递增.所以0)1()(min ==g x g ,得欲证结论成立.(2)地另解 即证1ln -≤x x x (当且仅当1=x 时取等号),也即证0ln 2≥--x x x (当且仅当1=x 时取等号).设x x x x g ln )(2--=,可得)0)(1(12)(>-+='x x xx x g . 进而可得0)1()(min ==g x g ,所以欲证结论成立.(2)地再解 即证1ln -≤x xx (当且仅当1=x 时取等号),也即证x x x -≤2ln (当且仅当1=x 时取等号). 如图1所示,可求得曲线x y ln =与)0(2>-=x x x y 在公共点(1,0)处地切线是1-=x y ,所以接下来只需证明)0(1,1ln 2>-≤--≤x x x x x x (均当且仅当1=x 时取等号)前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.图1例5 (2013年高考新课标全国卷II 理21(2)地等价问题)求证:e ln(2)x x >+.分析 用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式地第四种常用方法.设()e (2),()ln(2)(2)xf x xg x x x =>-=+>-,我们想办法寻找出一个函数()h x ,使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到.当然,函数()h x 越简洁越好.但()h x 不可能是常数(因为函数()ln(2)(2)g x x x =+>-地值域是R ),所以我们可尝试()h x 能否为一次函数,当然应当考虑切线.如图2所示,可求得函数()e (2)x f x x =>-在点(0,1)A 处地切线是1y x =+,进而可得()()(2)f x h x x ≥>-;还可求得函数()ln(2)(2)g x x x =+>-在点(1,0)B -处地切线也是1y x =+,进而可得()()(2)h x g x x ≥>-.图2进而可用导数证得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,所以欲证结论成立.当然,用例2地方法,也可给出该题地证明(设而不求):设)2ln(e )(+-=x x f x ,得1()e (2)2x f x x x '=->-+. 可得()f x '是增函数(两个增函数之和是增函数),且1e 20,(1)e 102f f ⎛⎫''=<=-> ⎪⎝⎭,所以函数()g x '存在唯一地零点0x (得21e ,e 2,1e )2(000000+==+=+-x x x x x x ),再由均值不等式可得 00min 0000011()()e ln(2)ln e 22022x x f x f x x x x x -⎛⎫==-+=-=++-> ⎪++⎝⎭(因为可证01x ≠-)所以欲证结论成立.例6 求证:e ln 2x x >+.证法1 (例5地证法)用导数可证得1e +≥x x (当且仅当0=x 时取等号),2ln 1+≥+x x (当且仅当1=x 时取等号),所以欲证结论成立.证法2 (例2地证法)设x x f x ln e )(-=,得1()e (0)x f x x x'=->.可得()f x '是增函数且1110,(0)02 1.52g g ⎛⎫''-=-<=> ⎪⎝⎭,所以函数)(x g 存在唯一地零点0x (得00001e ,e x x x x -==),再由均值不等式可得 00min 0000011()()e ln ln e 2x x f x f x x x x x -==-=-=+>(因为可证01x ≠) 所以欲证结论成立.注 欲证函数不等式()()(,f x g x x I I >∈是区间),只需寻找一个函数()h x (可以考虑曲线()y h x =是函数(),()y f x y g x ==地公切线)使得()()()(2)f x h x g x x ≥≥>-且两个等号不是同时取到,而这用导数往往容易解决.下面再给出例5和例6地联系.对于两个常用不等式e 1,ln 1x x x x ≥+≤-,笔者发现e xy =与ln y x =互为反函数,1y x =+与1y x =-也互为反函数,进而得到了本文地几个结论.定理 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若()f x 是增函数,()()f s g s ≥恒成立,则11()()ft g t --≤恒成立; (2)若()f x 是减函数,()()f s g s ≥恒成立,则11()()ft g t --≥恒成立; (3)若()f x 是增函数,()()f s g s ≤恒成立,则11()()ft g t --≥恒成立; (4)若()f x 是减函数,()()f s g s ≤恒成立,则11()()ft g t --≤恒成立. 证明 下面只证明(1),(4);(2),(3)同理可证.(1)设不等式()()f s g s ≥中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≤中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≥恒成立,得00()()g x f x ≤.由()f x 是增函数,得1()f x -也是增函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.(4)设不等式()()f s g s ≤中s 地取值范围是A ,当s A ∈时,(),()f s g s 地取值范围分别是,A A f g ,得不等式11()()f t g t --≥中t 地取值范围是A A f g ⋂,所以1000,,(),()A A t f g x A t g x x g t -∀∈⋂∃∈==.由()()f s g s ≤恒成立,得00()()g x f x ≥.由()f x 是减函数,得1()f x -也是减函数,所以1110000(())(())(())f g x f f x x g g x ---≤==,即11()()f t g t --≤.得11,()()A A t f g f t g t --∀∈⋂≤,即欲证结论成立.推论1 已知(),()f x g x 都是单调函数,它们地反函数分别是11(),()fx g x --. (1)若(),()f x g x 都是增函数,则()()f s g s ≥恒成立11()()ft g t --⇔≤恒成立; (2)若(),()f x g x 都是减函数,则()()f s g s ≥恒成立11()()ft g t --⇔≥恒成立. 证明 (1)由定理(1)知“⇒”成立.下证“⇐”:因为()g x 是增函数,11()()g t f t --≥恒成立,11(),()g x f x --地反函数分别是(),()g x f x ,所以由“⇒”地结论得()()g s f s ≤恒成立,即()()f s g s ≥恒成立.(2)同(1)可证.推论2 把定理和推论1中地“,≥≤”分别改为“,><”后,得到地结论均成立. (证法也是把相应结论中地“,≥≤”分别改为“,><”.)在例5与例6这一对姊妹结论“e ln(2),ln e 2x x x x >+<-”中e x y =与ln y x =互为反函数,ln(2)y x =+与e 2x y =-也互为反函数,所以推论2中地结论“若(),()f x g x 都是增函数,则()()f s g s >恒成立11()()ft g t --⇔<恒成立”给出了它们地联系.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。