大学物理习题课
- 格式:docx
- 大小:97.05 KB
- 文档页数:5
第11章光的量子效应及光子理论一、 选择题1. 金属的光电效应的红限依赖于: 【 C 】(A)入射光的频率; (B)入射光的强度;(C)金属的逸出功; (D)入射光的频率和金属的逸出功。
2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足: 【 A 】hceU )D (;hceU )C (;eU hc )B (;eU hc)A (0≥≤≥≤λλλλ 3. 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同; (3) 对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同; (4) 对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。
其中正确的是: 【 D 】(A) (1),(2),(3); (B) (2),(3),(4); (C) (2),(3); (D)(2),(4)二、填空题1. 当波长为300 nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =;此金属的红限频率Hz 104140⨯=ν。
2. 频率为100MHz 的一个光子的能量是J 1063.626-⨯,动量的大小是s N 1021.234⋅⨯-。
3. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电势增大(增大、减小)V 03.1U =∆。
4. 某一波长的X 光经物质散射后,其散射光中包含波长大于X 光和波长等于X 光的两种成分,其中大于X 光波长的散射成分称为康普顿散射。
三、计算题1. 已知钾的红限波长为558 nm ,求它的逸出功。
如果用波长为400 nm 的入射光照射,试求光电子的最大动能和遏止电压。
由光电方程2m mv 21A h +=ν,逸出功0h A ν=,0chA λ=,eV 23.2A =用波长为400nm 的入射光照射,光电子的最大动能:A h mv 212m -=ν A chE km -=λ,将nm 400=λ和eV 23.2A =代入得到:eV 88.0E km =遏止电压:a 2m eU mv 21=,2m a mv e21U =,V 88.0U a = 2. 从铝中移出一个电子需要4.2 eV 的能量,今有波长为200 nm 的光投射至铝表面。
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
第十八章 波 动1、一横波沿绳子传播,其波的表达式为 x)2- t 100050ππcos(.y = (SI) 求: (1) 波的振幅、波速、频率和波长。
(2) 绳子上各质点的最大振动速度和最大振动加速度。
(3) 在m .x 201=处和m .x 702=处二质点振动的位相差。
解:(1))0.02 (100cos 05.0) 2 100cos(05.0x t x t y -=-=πππ m A 05.0=∴,υππω 2 100 ==502/100==⇒ππυ(HZ) )(501-⋅=s m u , )(15050m u===υλ(2) ) 2 100sin(10005.0πππ-⨯-==∂∂t v tY, )(7.15510005.01max -⋅==⨯=s m v ππ) 2 100cos()100(05.02 22x t a t Yπππ-⨯-==∂∂∴ 8.4934500)100(05.022m ax ==⨯=ππa )(2-⋅s m(3)ππλπϕ=-=-=∆12.07.022 12x x2、一平面简谐波沿x轴正向传播,波的振幅cm A 10=,波的圆频率-1s rad 7 ⋅=πω,当s .t 01=时,cm x 10=处的a 质点正通过其平衡位置向y轴负方向运动,而cm x 20=处的b质点正通过cm y 5=点向y轴正方向运动。
设该波波长10c m>λ,求该平面波的表达式。
解:设波动方程为:)2 7cos(1.0πϕπλ⋅-+=xt Yt=1(s)时, 05.0)2 7cos(1.0 ,0)2 7cos(1.02.01.0=⋅-+==⋅-+=πϕππϕπλλ b a Y Y∵0<a v ⇒ ππϕππλk 22 721.0+=⋅-+ ① ∵ 0>b v , ⇒ ππϕππλk 22 732.0+-=⋅-+ ② 且m 1.0 >λ,故b a ,两质点的位相差π2<①-②得:5λ=1.2, 即 λ=0.24(m ) 代入①得:πϕ317-= 所以 波动方程为:) 7cos(1.031325πππ+-=x t Y 3、图示一平面简谐波在0=t 时刻的波形图,求: (1)该波的波动方程; (2)P处质点的振动方程。
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
第5章 刚体的定轴转动2、(0116)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间? 3、(0979)一电唱机的转盘以n = 78 rev/min 的转速匀速转动.(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B . (2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度?及转过的圈数N . 4、(0115)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)5、(0156)如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)6、(0157)一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示). 7、(0159)一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10?3 kg ·m 2.一变力F =0.5t (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度. 8、(0163) 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 9、(0307)长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为?,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来? 10、(0131)有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径). 11、(0303) 质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s ?1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.第6章 狭义相对论基础1、(4170)一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少? 2、(4364)一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少? 3、(4500)一电子以=v 0.99c (c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?(电子静止质量m e =9.11×10-31 kg)第5章 刚体的定轴转动(答案)2、(0116)解:设在某时刻之前,飞轮已转动了t 1时间,由于初角速度? 0=0则 ?1β=t 1 ① 1分 而在某时刻后t 2 =5 s 时间内,转过的角位移为222121t t βωθ+= ② 2分 将已知量=θ100 rad , t 2 =5s , =β 2 rad /s 2代入②式,得?1 = 15 rad /s 1分从而 t 1 = ?1/=β 7.5s即在某时刻之前,飞轮已经转动了7.5S 1分 3、(0979)解:(1) 转盘角速度为602782π⨯=π=n ωrad/s=8.17 rad/s 1分P 点的线速度和法向加速度分别为v =??r =8.17×0.15=1.23 m/s 1分a n =?2r =8.172×0.15=10 m/s 2 1分(2) 1517.800-=-=t ωβrad/s 2=-0.545 rad/s 21分 21517.821221⨯⨯π=π=t ωN =9.75 rev 1分 4、(0115)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ 3分总摩擦力矩 mgR M M R μ32d 0==⎰ 1分故平板角加速度 ? =M /J 1分设停止前转数为n ,则转角 ? = 2?n由 J /Mn π==422θβω 2分 可得 g R MJ n μωωπ16/342020=π=1分 5、(0156)解:根据转动定律f A r A = J A ?A ① 1分其中221AA A r m J =,且 f B r B = J B ?B ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A ?A = r B ?B ③ 1分由①、②式,有 BB B A A A B A B A B A B A r m r m r J r J f f ββββ== ④由③式有 ?A / ?B = r B / r A将上式代入④式,得 f A / f B = m A / m B = 21 2分6、(0157)解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg -T =ma ① 2分 T r =J? ② 2分 由运动学关系有: a = r? ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(S gt 22-1)2分 7、(0159)解:根据转动定律 M =J d ? / d t 1分 即 d ?=(M / J ) d t 1分其中 M =Fr , r =0.1 m , F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得d ?=50t d t 1分则1 s 末的角速度 ?1=⎰1050t d t =25 rad / s 2分8、(0163)解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律M = J? 1分其中 4/30sin 21mgl mgl M ==ο 1分于是 2rad/s 35.743 ===l gJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lgJ M β 1分9、(0307)解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg ??=0 1分f =?N 2 1分解得 222/tg h L h h x -=⋅=μθμ 1分10、(0131)解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒. 1分设J 0和??0、J 和?分别为收缩前后球体的转动惯量和角速度, 则有J 0??0 = J? ① 2分由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2 / 5代入①式得 ??= 4??0 1分即收缩后球体转快了,其周期442200T T =π=π=ωω 1分 周期减小为原来的1 / 4.11、(0303)解:由人和转台系统的角动量守恒J 1?1 + J 2?2 = 0 2分其中 J 1=300 kg ·m 2,?1=v /r =0.5 rad / s , J 2=3000 kg?m 2∴ ?2=-J 1?1/J 2=-0.05 rad/s 1分 人相对于转台的角速度 ?r =?1-?2=0.55 rad/s 1分 ∴ t =2? /r ω=11.4 s 1分第6章 狭义相对论基础(答案) 1、(4170)解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为221cx x v -=,0y y =,0z z =. 相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ2222011/cV c m v v --=)1(2200c V m v -=2分2、(4364)解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ?t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则?t 2 = L 0/v =3.75×10-7 s 2分3、(4500) 解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分(2) 20v 21e K m E == 4.01×10-14 J22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ K K E E /08.04×10-23分。