7晶体生长界面稳定性解析
- 格式:ppt
- 大小:1.57 MB
- 文档页数:37
晶体生长过程中的界面动力学研究晶体生长是一个涉及到物理学、化学、数学等多个学科的领域,其中界面动力学是其中一个重要研究方向。
界面动力学主要研究在不同条件下晶体生长中液-固界面的动力学行为,通过理论和实验的研究,可以更好地描述和控制晶体生长过程,为材料科学和能源科技等领域提供有价值的参考。
一、晶体生长中的界面动力学晶体是由分子或原子组成的有序物质,其生长过程需要溶液中物质的扩散、吸附和结晶等多个过程。
生长的过程主要体现在液-固(或气-固)的交界处,也就是晶体的界面上。
因此,界面动力学研究的重点就是晶体生长过程中液-固界面的动力学行为。
在界面动力学中,最常用的理论模型之一是“再结晶理论”。
该理论模型假设晶体生长过程中液相分子能自由扩散并进入固相,并沿晶体表面扩散最终结晶,从而形成晶体。
当液滴通过晶体表面时,会先选择朝向能量最低的方向,并形成一个滑移平面。
在此基础上,随着液滴进一步扩散和吸附的过程,晶体的生长速度逐渐加快,形成自组装式生长。
二、晶体生长中的液-固界面结构和动力学特性晶体生长中液-固界面的结构和动力学特性将直接影响晶体的生长速率和晶体质量,因此对液-固界面的研究是极其重要的。
我们可以通过扫描电子显微镜和原子力显微镜等手段来观察晶体生长界面的微观形态,并通过彩色蚀刻实验(Color etching)来定性分析不同条件下的晶体生长速率、表面形貌和结构等。
此外,可以通过电感耦合等离子体法(ICP)技术来实时监测溶液中的化学物质浓度和温度等变化,以揭示生长过程中的动力学特性。
三、界面动力学的应用界面动力学研究的应用广泛,主要应用于材料科学、能源技术和生物科学等领域。
其中最典型的应用就是在晶体生长和半导体制造过程中。
在晶体生长中,界面动力学可以被用于控制晶体质量和晶体形态等,从而提高晶体生长效率和质量。
在半导体制造中,界面动力学可以被用于控制晶体表面的缺陷和杂质,从而提高器件性能和可靠性。
此外,界面动力学在化学反应动力学、能源材料和环境科学等方面也发挥着重要的作用。
四,晶体生长的界面形状晶体的形态问题是一个十分复杂而未能彻底解决的问题自然界中存在的各式各样美丽的雪晶就体现了形态的复杂性影响晶体形态的因素:晶体的形态不仅与其生长机制有关,螺型位错在界面的露头处所形成的生长蜷线令人信服地证明了这一点,而且还与界面的微观结构、界面前沿的温度分布及生长动力学等很多因素有关。
鉴于问题的复杂性鉴于问题的复杂性,下面仅就界面的微观结构和界面前沿温度分布的几种典型情况叙述力如下:()一在正的温度梯度下生长时界面形态:结晶潜热散失:在这种条件下,结晶潜热只能通过已结晶的固相和型壁散失,相界面推移速度:相界面向液相中的推移速度受其散热速率的控制。
根据界面微观结构的不同晶体形态有两种类型:规则的几何外形和平面长大方式()A正温度梯度光滑界面的情况正温度梯度下的光滑界面:对于具有光滑界面的晶体来说,其显微界面为某一品体学小平面,它们与散热方T等温面呈一定角度,但从宏观来看,仍为平向成不同的角度分布着,与熔点m行于Tm等温面的平直面,如图2.25 a所示。
这种情况有利于形成具有规则形状的晶体,现以简单立方晶体为例进行说明 晶面不同原子密度不同表面能不同长大速度不同:在讨论形核问题时曾经假定,形成一个球形晶核时,其界面上各处的表面能相同。
但实际上晶体的界面是由许多晶体学小平面所组成,晶面不同,则原子密度不同,从而导致其具有不同的表面能。
热力学的研究结果表明,原子密度大的晶面长大速度较小;原子密度小的晶面长大速度较大。
但是长大速度大的晶面易于被长大速度小的晶面所制约,这个关系可示意的用图2.26来说明图中实线八角形代表晶体从1τ开始生长,一次经历432τττ等不同时间时的截面,箭头表示长大速度。
由图可以看,简单立方晶体的{001}晶面为密排面,{110}为非密排面,因此[]101方向长大速度大, []100、[]001等方向的生长速度小,非密排面将逐渐缩小而消失,最后晶体的界面将完全变为密排品面,显然这是一个必然的结果所以以光滑界面结晶的晶体如Al Si ,及合金中的某些金属化合物,若无其它因素干扰,大多可以成长为以密排晶面为表面的晶体,具有规则的几何外形()B 正温度梯度光滑界面的情况粗糙界面和熔点等温面的关系:具有粗糙界面结构的晶体,在正的温度梯度下成长吋,其界面为平行于熔点m T 等温面的平直界面,它与散热方向垂直,如图2.25 b 所示正温度梯度粗糙界面平面长大方式:T相重合,一般说来,这种晶体成长时所需的过冷度很小,界面温度差不多与熔点m所以晶体在成长时界面只能随着液体的冷却而均匀一致地向液相推移,如果一旦T以上的温度区域,成局部偶有突出,那么它便进入低于临界过冷度甚至熔点m长立刻减慢下来,甚至被熔化掉,所以固液界面始终可以近似地保持平面。
第七章晶体生长动力学生长驱动力与生长速率的关系(动力学规律或界面动力学规律),先解决生长机制问题。
§ 1邻位面生长——台阶动力学邻位面生长一一奇异面上的台阶运动问题1. 界面分子的势能邻位面上不同位置的吸附分子[3]界面上不同位置的势能曲线1—2 : 2 ① i+8 ① 2;1 —3 : 4 ① i+12① 2;1—4 : 6①1+12①2 分子最稳定位置(相变潜热)单分子相变潜热:I sf=W s+W k①流体分子⑴体扩散吸附分子⑵面扩散台阶分子⑶ 线扩散扭折⑷② 流体分子 ⑴ 体扩散 吸附分子⑵面扩散扭折⑷ ③ 流体分子 ⑴体扩散扭折⑷2.面扩散W s =2①严8 ①2 吸附分子 —流体需克服的势垒U 〃 吸附分子在界面振动频率吸附分子在晶 面发生漂移的机率为:exp^ s/kT),面 扩散系数为:D ssD s =[ u // exp(- /kT)]丄吸附分子平均寿命:T s,.脱附频率s1/ s 」_exp( W s/kT)s 二丄 e>p(W s/kT)V丄Xs:吸附分子在界面停留的平均寿命T s 内,由于无规则漂移而在给定方向的迁移(分子无规则漂移的方均根偏差)X —s D s(爱因斯坦公式)1 s s X s exp[W s- s]/2kT2s s由于对一般的晶面:W - 0.45l sf -0i sf20面扩散激活能u // = u 丄s考虑脱附分子数:2X sX s 1exp[0.22l sf /kT]Xs 决定了晶体生长的途径。
3.台阶动力学一一面扩散控制台阶的运动受面扩散控制界面N o ,格点Ns 有吸附分子::“ exp (-W k/kT )(对单原子或简单原子,可忽略取向效应)Xs >> X o 则吸附分子均能到达台阶设台阶长度为a 则单位时间到达台阶的分子数为:2X ss 丄aTs界面某格点出现吸附分子的机率:N o若:Xs >> X 。
晶体生长中的形态稳定和动力学研究晶体是我们熟悉的物质形态之一,在矿物、分子化合物、金属等许多物质当中都存在着晶体。
晶体的形态和结构决定着其物理和化学特性,因此人们一直致力于探究晶体的生长机制。
在晶体学中,形态稳定和动力学是两个基本问题,它们在晶体生长中的作用不可忽视。
一、形态稳定形态稳定是晶体生长中必须考虑的一个问题。
所谓形态稳定,就是指晶体在生长过程中,以规则的面、角、棱为特征的各向同性的固体晶体形态。
它既反映了晶体在空间中的静态结构,也直接影响晶体在时间上的持久与发展。
那么,导致形态稳定的因素有哪些呢?主要是晶体表面的各种奇异行为和晶体的结构特性。
晶体表面存在各种表面能、原子面密度、表面缺陷等信息,而晶体的结构特性又决定其所表现出的属性和性能,这些因素共同作用使晶体保持稳定的形态和结构。
二、动力学研究形态稳定表明晶体在空间中有一些稳定的生长方向,但是它不能解释晶体生长的实际过程。
晶体生长是一个动态的过程,主要受到温度、溶液浓度、晶体生长速度等多个因素的影响,因此只有加入动力学因素,才能真正刻画出晶体生长的过程。
在动力学研究中,晶体生长速度通常被看作是一个关键问题。
由于晶体的结构特性和物理化学性质,它们呈现出不同的生长速度,以致于在同一生长条件下,各个方向的生长速度不同。
这就导致了晶体在生长过程中出现形态变化。
比如,如果某一方向的生长速度较快,材料会从这个方向生长出来,然后逐渐向其它方向发展。
研究晶体的动力学行为需要建立一系列模型和方法。
通过对晶体生长速度、生长界面、动态行为等方面的分析和探究,可以得出一系列表征晶体生长过程的参数,并得到关于生长条件和物质性质的深入认识,为制备优质晶体提供理论基础。
三、晶体生长中的形态稳定和动力学的应用形态稳定和动力学在晶体生长的研究中的应用非常广泛,其主要涉及三个方面:晶体光电化学、生物无机化学及新型材料科学。
在这些方向的研究中,形态和动力学模型可以被应用于晶体分析和晶体控制,以制备出具有所需特性和用途的晶体材料。