薄膜电池与晶硅电池对比[1]
- 格式:ppt
- 大小:4.87 MB
- 文档页数:38
1、晶硅电池:
晶硅电池包括单晶硅和多晶硅,其中多晶硅电池占主导地位,且技术最为成熟。
优势:
晶硅电池的光电转化率更高,国内晶硅电池转化率也已达到了17%到19%。
晶硅电池技术发展得较为成熟,企业不需频繁进行技术改造。
晶硅电池的设备投资较低,国产设备已经可以满足电池片生产线大部分的需求。
晶硅技术的另一优势在于成熟的生产工艺。
目前大部分单晶硅电池片厂商良品率可达98%以上,而多晶硅电池片生产的良品率也在95%以上。
劣势:
产业链工艺复杂,成本大幅度降低的可能不大。
原材料成本波动幅度较大,近年来国际市场上的多晶硅接连上演过山车的行情。
硅产业是一个高污染、高耗能的产业,存在政策调整风险。
2、薄膜电池:
薄膜电池是在玻璃、不锈钢等物质表面附上几微米后的感光材料制成。
优势:薄膜电池用材料少、制造工艺简单、耗能少、可大面积连续生产,并可采用玻璃或不锈钢等低成本材料作为衬底。
薄膜电池现已发展出多种技术路线,其中CIGS(铜铟镓硒)薄膜太阳能技术、柔性薄膜光伏模块技术等已取得阶段性成果,与晶硅电池光电转化率上的差距正在逐渐缩小。
薄膜电池弱光响应较好,因此特别适合应用于沙漠光伏电站。
以薄膜太阳能电池为主要部件的光伏系统,能够很好的实现光伏建筑一体化。
劣势:
薄膜电池的光电转化率偏低,一般只有8%左右。
薄膜电池的设备和技术投资
是晶硅电池的数倍。
薄膜电池组件生产的良率不尽如人意。
非/微晶硅薄膜电池组件的良品率目前只在60%左右。
CIGS电池组主流厂商也只到65%。
晶硅和薄膜组件结构
晶硅组件是一种太阳能电池组件,由晶硅材料制成。
晶硅材料是一种半导体材料,具有良好的光电转换性能。
晶硅组件的结构包括以下几个部分:
1. 表面玻璃:晶硅组件的顶部覆盖着一层透明的玻璃,用于保护内部的电池芯片。
2. 透明导电膜:在表面玻璃下方,有一层透明导电膜,通常采用氧化锡或氧化铟锡等材料制成,用于收集光电池产生的电流。
3. P-N结:在透明导电膜下方,有一层P-N结,由P型硅和N型硅材料组成。
P型硅材料中的杂质含有三价元素,如硼,使其带正电荷;N型硅材料中的杂质含有五价元素,如磷,使其带负电荷。
P-N结的形成使得晶硅材料具有半导体的特性。
4. 金属电极:在P-N结的两侧,分别连接有金属电极,通常采用铝或银等导电性好的材料制成,用于收集电池产生的电流。
薄膜组件是另一种太阳能电池组件,与晶硅组件相比,薄膜组件的材料更加薄而灵活。
薄膜组件的结构包括以下几个部分:
1. 表面玻璃:薄膜组件的顶部也覆盖着一层透明的玻璃,用于保护内部的薄膜材料。
2. 透明导电膜:在表面玻璃下方,与晶硅组件类似,也有一层透明导电膜,用于收集光电池产生的电流。
3. 薄膜材料:在透明导电膜下方,有一层薄膜材料,通常采用非晶硅、铜铟镓硒(CIGS)或钙钛矿等材料制成。
这些材料具有较高的光电转换效率,同时也具有较高的柔韧性,可以适应不同形状的表面。
4. 金属电极:在薄膜材料的底部,也连接有金属电极,用于收集电池产生的电流。
总体而言,晶硅组件和薄膜组件都是通过光电效应将太阳光转化为电能的装置,它们的结构有些相似,但材料和制备工艺有所不同。
薄膜太阳能电池和硅晶太阳能电池随着能源危机的日益严重以及对环境保护的需求,太阳能作为一种可再生能源被越来越广泛应用。
而太阳能电池作为太阳能利用的核心技术之一,也得到了持续的研发和改进。
薄膜太阳能电池和硅晶太阳能电池作为两种主要类型的太阳能电池,在市场上占据了主导地位。
本文将分别介绍这两种太阳能电池的原理、特点以及应用领域。
薄膜太阳能电池是一种使用薄膜材料制造的太阳能电池。
薄膜材料可以是非晶硅、铜铟镓硒等。
与硅晶太阳能电池相比,薄膜太阳能电池具有以下几个特点。
薄膜太阳能电池具有较高的柔性。
由于薄膜材料的特性,薄膜太阳能电池可以制成柔性的电池片,能够适应各种形状和曲面。
这为太阳能电池的应用提供了更大的灵活性,可以广泛应用于建筑物外墙、屋顶、车顶等不同的场景中。
薄膜太阳能电池具有较高的光电转换效率。
虽然薄膜太阳能电池的光电转换效率相对较低,但是由于其较高的透明度,可以在低光照条件下仍然具有较高的发电效率。
这使得薄膜太阳能电池在阴天或者室内光照较弱的环境下也能够有效发电。
薄膜太阳能电池具有较低的制造成本。
相对于硅晶太阳能电池来说,薄膜太阳能电池的制造过程更加简单,材料成本也相对较低。
这使得薄膜太阳能电池在大规模生产时具有一定的竞争优势,能够更好地满足市场需求。
薄膜太阳能电池主要应用于一些对电池柔性性能要求较高的场合,如建筑一体化太阳能系统、便携式电子设备以及一些特殊形状的电池应用等领域。
它的柔性和透明性使得它可以与建筑物的外观融为一体,同时也可以为便携设备提供绿色能源。
硅晶太阳能电池是一种使用硅晶片制造的太阳能电池。
与薄膜太阳能电池相比,硅晶太阳能电池具有以下几个特点。
硅晶太阳能电池具有较高的光电转换效率。
由于硅晶材料的特性,硅晶太阳能电池的光电转换效率相对较高,可以达到20%以上。
这使得硅晶太阳能电池在光照充足的环境下具有较高的发电效率,能够提供更多的电能。
硅晶太阳能电池具有较长的使用寿命。
硅晶太阳能电池的材料稳定性较高,能够在较长的时间内保持较高的发电效率。
晶体硅太阳能电池和薄膜太阳能电池。
【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。
晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。
制造成本高和生产过程能耗大是其主要缺点。
薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。
但是转换效率较低,使用寿命短。
比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。
未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。
【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。
1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。
它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。
太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。
太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。
目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。
晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。
太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。
随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。
1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。
它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。
晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。
薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。
薄膜太阳能电池与晶体硅电池特点介绍商用的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能 电池和薄膜太阳能电池。
薄膜电池目前常见有:非晶硅电池、碲化镉电池、铜铟 硒电池等。
上述各类型电池主要性能如下表1.1 所示。
表1.1 太阳能电池分类汇总表种 类 电池类型 商用效率实验室效率使用寿命优点单晶硅 14%~17%23% 25 年效率高 技术成熟晶硅电池多晶硅 13%~15%20.3% 25 年 效率较高 技术成熟非晶硅 6%~9% 13% 25 年弱光效应好 成本相对较低碲化镉 8%~10% 15.8% 25 年弱光效应好 成本相对较低薄膜电池铜铟硒 10%~13%15.3% 25 年弱光效应好 成本相对较低单晶硅、多晶硅太阳能电池具有制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高的特点;非晶硅薄膜太阳能电池具有弱光效应好,成本相对于硅太阳能电池较低的优点。
而碲化镉则由于原材料存在较严重的环保回收问题;铜铟硒电池则因原材料稀缺性、成品率低,其规模化生产受到限制。
一、非晶硅薄膜与晶体硅的区别1、非晶硅薄膜组件材料和制造工艺对环境友好,易于形成大规模生产能力;2、非晶硅薄膜组件品种多,用途广;3、非晶硅薄膜组件能更好的配合建筑分格,更能体现建筑美观;4、非晶硅薄膜组件具备弱光发电的性能;5、非晶硅薄膜组件透光性好,透光度可从5%到30%;6、非晶硅薄膜组件高温性能好,高温对发电性能的影响比晶体硅的小很多;7、晶体硅具有“热斑效应”,而阴影对非晶硅的影响很小;8、晶体硅组件光电转换效率较非晶硅薄膜组件稍高;9、晶体硅组件占地面积较非晶硅薄膜组件稍少;二、温度对输出功率的影响1、当工作温度为25℃时,两者均无功率损失;2、随着工作温度的不断上升,晶体硅的实际输出功率会出现大幅度下降,下降幅度约为非晶硅的3 倍;3、高温环境下,非晶硅材料的优势尤为明显。
温度系数(%/℃)组件类别开路电压 短路电流 最大功率 非晶硅 -0.34 0.018 -0.19晶体硅 -0.34 0.065 -0.43 三、弱光环境发电量的测试四、“热斑效应”的影响1、对于晶体硅太阳电池,小遮挡即可引起大功率损失,即“热斑效应”;2、阴影遮挡对于薄膜电池的影响要小得多。
发电成本高是两大类太阳能电池的共性问题晶硅太阳能电池和薄膜太阳能电池是目前光伏市场的两种要产品,晶硅太阳能电池占据市场主流,约占90%左右的市场份额。
由于多晶硅生产工艺的属性决定了其产业链生产环节,尤其是多晶硅提纯中会存在高能耗、一些技术水平不高的企业甚至存在高污染问题。
而在应用中,晶硅太阳电池由于其温度效应和光谱响应范围窄的影响,使本来较高的光电转换效率大打折扣,从而影响光伏组件实际发电量。
薄膜太阳能电池因没有这些缺点应运而生,其不足在于转换效率相对较低,生产工艺复杂,生产设备昂贵,难以实现规模化生产。
发电成本高是两大类太阳能电池的共性问题。
中科院院士、北京大学物理学院教授甘子钊介绍说,薄膜太阳能电池家族主要包括硅基非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三大类薄膜太阳能电池。
铜铟镓硒薄膜太阳能电池具有生产成本较低、能耗低,污染小、不衰减、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近多晶硅太阳能电池,而耗材大大低于晶体硅电池,因此,被国际上称为“下一代非常有前途的新型薄膜太阳能电池”。
此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求建筑物BIPV应用的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有潜在的广泛市场。
但CIGS要实现大面积量产,提升效率和良品率,是必须攻克的难题。
河南燕垣光伏能源有限公司总工程师陆真冀具体介绍了CIGS薄膜电池的几大优势,他说,CIGS薄膜电池具有更低廉的发电成本,减少了材料消耗,薄膜电池的生产成本普遍低于晶硅电池;更优越的弱光性能同规模组件,薄膜电池一天的发电量比晶硅电池大约超出10%~20%;更加多样化的用途薄膜电池,可以发展出多用途的产品,比如柔性基底电池等等。
因此,也受到业内不少厂商的广泛关注,但主要都是大面积平板CIGS薄膜电池。
太阳能集电管应运而生CIGS太阳能集电管具有高效、廉价、有自主知识产权、设备能够国产化等一系列优点。
薄膜组件和晶硅组件在加纳的发电效果对比报告xxxxxx公司xxxxxxx研究院2023年06月一、项目所在地1.地理位置加纳1000MWp太阳能光伏地面电站位于加纳北部地区Tamale市西南侧36km,Kusawgu一带,场区处于国道Yapei至Tamale北侧,距离Tamale市约36km,距离Yapei市区7km。
场区中心位于西经1°6'39"、北纬9°11'49",场区海拔高度在120~135m 之间,地势平坦。
站址区紧邻Tamale至Yapei国道。
首期装机为150MWp。
2.气候特征加纳属热带气候,分雨季和旱季。
5-10月为雨季,11-4月为旱季。
3-4月气温最高,为23-35℃,最高可达43℃;8-9月较凉爽,为22-27℃,最低纬度15℃左右。
西南部年均降水量是1200-1800mm,北部600-1200mm。
空气湿度较大,保持在90%左右。
3.光照资源加纳是非洲太阳能资源较丰富的国家,太阳总辐射的空间分布总体分布趋势:总体来说,北部年值高于南部,散射辐射比例为北部小于南部。
北部地区年太阳总辐射量为5.3kWh/m2/d,除西部和南部沿海地区年太阳总辐射小于5kWh/m2/d以外,其他地区均在5kWh/m2/d以上。
其中,位于加纳最北部的上东与上西地区辐射量为 5.3-5.6kWh/m2/d,属加纳全国总辐射最多地区,其中上西地区年总量达5.6kWh/m2/d为加纳最高。
布朗阿哈福地区、阿萨帝地区等南部区域日照辐射量为低于5kWh/m2/d,西部个别地区低于4.6kWh/m2/d,尤其阿桑克兰瓜、恩奇一带低至3.1kWh/m2/d,为全国最低值区。
加纳太阳能总辐射及散射空间分布图见下图。
从宏观上看,本项目场址位于北部Tamale地区,在加纳全国境内太阳能资源较为丰富,散射比值较小,仅次于上东与上西地区,具备较大开发价值。
加纳太阳能资源分布图Tamale市位于加纳北部地区,太阳总辐射年总量为6800MJ/m2左右,大部分地区属于“资源很丰富区”。
晶体硅VS薄膜电池优劣势权威对比命长、光电转化效率相对较高的特点;非晶硅薄膜电池太阳能电池具有弱光效应好,成本相对于晶硅太阳能电池较低的优点。
而碲化镉则由于原材料存在较严重的环保问题;铜铟镓硒电池则因原材料稀缺性、成本率低,其规模受到限制。
晶体硅太阳能电池板晶体硅(c-Si)太阳能电池是目前应用最广泛的太阳能电池,主要因为晶体硅具有稳定性,效率能够达到15%-25%。
不过晶体硅吸收光线能力差,这可能是其超小型结构的天生缺陷,因此必须相当厚且坚固。
一个基本的晶体硅电池包括7层(图1),透明的粘着剂连着玻璃保护层,下面是抗反射涂层,确保所有的光线穿过硅晶体层。
类似于半导体技术,N层夹着P层,有两个电接触点:上层带正电,下层带负电。
图1:晶体硅电池包含7层,其中两层是外部的电接触——将整个结构连在一起通常晶体硅有两种类型:单晶硅和多晶硅。
单晶硅来自高纯度的单晶体,切割自直径为150mm的晶圆,厚度为200mm。
而多晶硅更受欢迎,制造量更大,例如将硅切割成条状再切成晶圆。
无论哪一种,硅太阳能电池产生的电量都约为0.5V,多个电池可以串联依靠提高输出电压。
薄膜太阳能电池板即使采用废弃硅片,考虑到其效率水平,硅晶圆并不一定成本低廉。
薄膜太阳能电池比传统太阳能电池板更便宜,但效率也更低,光伏转换率在20%-30%之间。
根据所采用的材料不同,典型的薄膜太阳能电池可分为以下四类:非晶硅(a-Si)和薄膜硅(TF-Si);碲化镉(CdTe);铜铟镓硒(CIS 或CIGS)和染料敏化太阳能电池(DSC)加上其他天然材料。
薄膜太阳能电池和硅晶体太阳能电池的结构并没有太大不同,它包含六层(图2)结构。
这种结构下,透明涂层覆盖着抗反射层,下面是PN结,然后再是接触板和基底。
很明显,运行原理(光伏)和晶体硅电池是一样的。
图2:薄膜太阳能电池结构包含六层,与对应的晶体硅结构没有太大差别,运行原理也同为光伏原理可能有人会认为,而且他们的想法也可能是对的,就是既然名字是薄膜电池,构成是不是也比其他的电池技术更轻更薄。
晶硅组件与薄膜组件在光伏电站应用差异及发电效果对比传统能源存储量有限,不能过度开发使用,各国都积极推广可再生能源,希望改变能源结构,其中太阳能成为新能源中的焦点。
本文对光伏电站系统做了简单介绍,并就在电站设计中,对使用的晶硅组件与双结硅基薄膜组件产生的差异做了分析,同时对两种组件产品在发电输出上做了数据比较。
根据分析结果和实例可以看出,晶硅组件和双结硅基薄膜组件产品各具优缺点,需根据实际情况进行选用。
一、引言:传统能源日益紧张,各国都投入更大的人力和物力研究开发新的再生能源。
如何能够更加合理使用能源,提高能源的利用效率变得比以往更加具有现实和长远的意义。
太阳能因其具有资源丰富,分布广泛,绿色环保等优点,成为新能源中的焦点。
如今太阳能一般用作发电,在各国政府推出各种利好政策的激励下,大型地面电站在近几年被大力推广。
如何有效的降低光伏电站的系统建设成本,提高系统发电效率,成为光伏企业考虑的主要方向。
本文主要对传统的多晶硅组件和双结硅基薄膜组件在光伏电站系统中的差异表现进行分析,并对安装在同一地区光伏电站中的晶硅组件和双结硅基薄膜组件的发电数据做了对比。
二、光伏发电系统的工作原理太阳能光伏发电系统有很多类型,这里以太阳能光伏并网大型地面电站发电系统为例进行介绍。
光伏地面电站发电系统简化后如图1所示,由太阳能电池阵列,并网逆变器,并网保护装置,以及连接这些设备的布线及汇流箱,安装在交流侧的电表,升压变压器等构成。
太阳能电池产生直流电,直流电通过并网逆变器转换为交流电后并入电网,可以与电力公司提供的交流电一起使用。
图1 并网型光伏地面电站系统简化图太阳能组件是由数十个太阳能电池单元进行封装构成,太阳能组件阵列是由若干个太阳能电池组件串联及并联连接构成。
光伏系统的容量是由太阳能电池组件的最大输出功率之和来表示的。
系统的输出功率取决于辐射照度和太阳能电池单元的温度。
[1]逆变器的作用是将太阳能组件阵列产生的直流电转换成与电力公司供给的相同电压和频率的交流电。