九年级数学下册 第3章 圆 3.2 圆的对称性教案 北师大版
- 格式:doc
- 大小:1.68 MB
- 文档页数:5
课题:圆的对称性(二)教学思路:本节课设计充分体现新课程标准下数学课堂教学,以学生为主体,教师为引导的目的去进行教学,开展以“自主、合作、探究、师生互动”的学习方式,让学生经历学习数学的严谨探索过程,真正成为学习的主人。
教学内容:本节课教学内容是《义务教育课程标准实验教科书数学》(北师大版)九年级(下)第三章“圆”第二节“圆的对称性”第二课时。
是在第一节课的基础上进行教学,教学目的是让学生利用旋转的方法得到圆的旋转不变性;并利用它的旋转不变性重点探究了“圆心角、弧、弦之间关系”。
教材分析:圆这一章有许多重要性质,其中最主要的是圆的对称性,在探索、发现和证明圆的许多重要性质时,都运用了它的对称性。
同时圆的对称性在日常生活和生产中有着广泛的应用,因此这一节内容在整章中具有举足轻重的意义。
所以学好本节内容尤为重要。
“圆的对称性”第二课时的主要内容是垂径定理逆定理,它反映了圆的重要性质,是圆轴对称性的具体化,也是证明线段相等、角相等、弧相等、垂直关系的重要依据,同时也为圆的计算和作图提供了方法与依据。
所以本节知识与方法的学习直接影响着以后学习圆的兴趣。
教学目标:(一)学习目标:1、了解圆的旋转不变性;2、掌握圆心角、弧、弦之间的相等关系定理;(二)能力目标:1、经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
2、使学生掌握“圆心角、弧、弦之间的关系定理”,以及对定理中“在同圆或等圆”条件的理解及定理的证明。
3、通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力。
(三)情感目标:1、培养学生积极探索数学新知的态度及方法,培养学生自主学习、相互合作交流的能力。
2、通过学习垂径定理逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
教学重难点:学习重点:利用圆的旋转不变性研究圆心角、弧、弦之间相等关系的定理。
课题:圆的对称性(二)教学思路:本节课设计充分体现新课程标准下数学课堂教学||,以学生为主体||,教师为引导的目的去进行教学||,开展以“自主、合作、探究、师生互动”的学习方式||,让学生经历学习数学的严谨探索过程||,真正成为学习的主人||。
教学内容:本节课教学内容是《义务教育课程标准实验教科书数学》(北师大版)九年级(下)第三章“圆”第二节“圆的对称性”第二课时||。
是在第一节课的基础上进行教学||,教学目的是让学生利用旋转的方法得到圆的旋转不变性;并利用它的旋转不变性重点探究了“圆心角、弧、弦之间关系”||。
教材分析:圆这一章有许多重要性质||,其中最主要的是圆的对称性||,在探索、发现和证明圆的许多重要性质时||,都运用了它的对称性||。
同时圆的对称性在日常生活和生产中有着广泛的应用||,因此这一节内容在整章中具有举足轻重的意义||。
所以学好本节内容尤为重要||。
“圆的对称性”第二课时的主要内容是垂径定理逆定理||,它反映了圆的重要性质||,是圆轴对称性的具体化||,也是证明线段相等、角相等、弧相等、垂直关系的重要依据||,同时也为圆的计算和作图提供了方法与依据||。
所以本节知识与方法的学习直接影响着以后学习圆的兴趣||。
教学目标:(一)学习目标:1、了解圆的旋转不变性;2、掌握圆心角、弧、弦之间的相等关系定理;(二)能力目标:1、经历探索圆的对称性及相关性质的过程||,进一步体会和理解研究几何图形的各种方法||。
2、使学生掌握“圆心角、弧、弦之间的关系定理”||,以及对定理中“在同圆或等圆”条件的理解及定理的证明||。
3、通过观察、比较、操作、推理、归纳等活动||,发展空间观念、推理能力以及概括问题的能力||。
(三)情感目标:1、培养学生积极探索数学新知的态度及方法||,培养学生自主学习、相互合作交流的能力||。
2、通过学习垂径定理逆定理的证明||,使学生领会数学的严谨性和探索精神||,培养学生学习实事求是的科学态度和积极参与的主动精神||。
《圆的对称性》教学设计圆的对称性是义务教育课程标准实验教科书(北师版)《数学》九年级下册第三章第二节内容,本章主要研究圆的性质及与圆有的关的应用;本节要求.理解圆的轴对称性及其相关性质;利用圆的轴对称性研究垂径定理及其逆定理。
圆是一种特殊图形,它既是轴对称图形,又是中心对称图形。
该节内容分为2课时。
本节课是第1课时,学生通过前面的学习,能用折叠的方法得到圆是一个轴对称图形。
其对称轴是任一条过圆心的直线。
【知识与能力目标】1.理解圆的轴对称性及其相关性质;2.利用圆的轴对称性研究垂径定理及其逆定理.【过程与方法目标】经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
【情感态度价值观目标】培养学生独立探索,相互合作交流的精神。
通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
【教学重点】利用圆的轴对称性研究垂径定理及其逆定理.【教学难点】和圆有关的相关概念的辨析理解。
多媒体课件第一环节课前准备活动内容:(提前一天布置)1.每人制作两张圆纸片(最好用16K打印纸)2.预习课本P88~P92内容活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。
实际教学效果:1.学生在制作图纸片时,有时可能没有将圆心标出来,老师要对其进行启发引导,找出圆心。
2.预习提纲,要简明扼要,学生基本上能通过阅读教材就能较好完成。
第二环节创设问题情境,引入新课活动内容:教师提出问题:轴对称图形的定义是什么?我们是用什么方法研究了轴对称图形?学生回忆并回答。
活动目的:通过教师与学生的互动,一方面使学生能较快进入新课的学习状态,另一方面也提高学生的学习的兴趣,让他们带着问题去学习,揭开了探究该节课内容的序幕。
实际教学效果:1.由于学生在七年级学习了轴对称图形的内容。
圆的对称性教学目标(一)教学知识点1.圆的轴对称性.(二)能力训练要求1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.2.培养学生独立探索、相互合作交流的精神.教学过程Ⅰ.创设问题情境,引入新课[师]前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?[生]如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形,这条直线叫对称轴.[师]我们是用什么方法研究了轴对称图形?[生]折叠.[师]今天我们继续用前面的方法来研究圆的对称性.Ⅱ.讲授新课[师]同学们想一想:圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?[生]圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.[师]是吗?你是用什么方法解决上述问题的?大家互相讨论一下.[生]我们可以利用折叠的方法,解决上述问题.把一个圆对折以后,圆的两半部分重合,折痕是一条过圆心的直线,由于过圆心可以作无数条直线,这样便可知圆有无数条对称轴.[师]很好.教师板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.下面我们来认识一下弧、弦、直径这些与圆有关的概念.1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).2.弦:连接圆上任意两点的线段叫做弦(chord).3.直径:经过圆心的弦叫直径(diameter).如下图,以A、B为端点的弧记作»AB,读作“圆弧AB”或“弧AB”;线段AB 是⊙O 的一条弦,弧CD 是⊙O 的一条直径.注意:1.弧包括优弧(major arc)和劣弧(minor arc),大于半圆的弧称为优弧,小于半圆的弧称为劣弧.如上图中,以A 、D 为端点的弧有两条:优弧ACD (记作¼ACD ),劣弧ABD (记作»AD ).半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.2.直径是弦,但弦不一定是直径.下面我们一起来做一做:(出示投影片§3.2.1A)按下面的步骤做一做:1.在一张纸上任意画一个⊙O ,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD .3.在⊙O 上任取一点A ,过点A 作CD 折痕的垂线,得到新的折痕,其中,点M 是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B ,如上图.[师]老师和大家一起动手.(教师叙述步骤,师生共同操作)[师]通过第一步,我们可以得到什么?[生齐声]可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.[师]很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?[生]我发现了,AM =BM ,»»AC BC =,»»AD BD =. [师]为什么呢?[生]因为折痕AM与BM互相重合,A点与B点重合.[师]还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?[师生共析]如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM =BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.因此AM=BM,=,=.Ⅲ.课时小结1.本节课我们探索了圆的对称性.2.利用圆的轴对称性研究了垂径定理及其逆定理.3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.Ⅳ.课后作业(一)课本(二)1.预习内容:2.预习提纲:(1)圆是中心对称图形.(2)圆心角、弧、弦之间相等关系定理.Ⅴ.活动与探究1.银川市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面宽度为60cm,水面至管道顶部距离为10cm,问修理人员应准备内径多大的管道?[过程]让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理基本结构图,进而发展学生的思维.[结果]如下图示,连结OA,过O作OE⊥AB,垂足为E,交圆于F,则AE=12AB=30cm.令⊙O的半径为R,则OA=R,OE=OF-EF=R-10.在Rt△AEO中,OA2=AE2+OE2,即R2=302+(R-10)2.解得R=50cm.修理人员应准备内径为100cm 的管道.板书设计圆的对称性一、圆是轴对称图形,其对称轴是任意一条过圆心的直径.二、与圆有关的概念:1.圆弧2.弦3.直径注意:弧包括优弧、劣弧、半圆.三、课堂练习四、课时小结五、课后作业。
3.2 圆的对称性1.理解圆的旋转不变性;(重点)2.掌握圆心角、弧、弦之间相等关系的定理;(重点)3.能应用圆心角、弧、弦之间的关系解决问题.(难点)一、情境导入我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】利用圆心角、弧、弦之间的关系证明弧相等如图,在⊙O中,AB、CD是直径,CE∥AB且交圆于E,求证:BD︵=BE︵.解析:首先连接OE,由CE∥AB,可证得∠DOB=∠C,∠BOE=∠E,然后由OC=OE,可得∠C=∠E,继而证得∠DOB=∠BOE,则可证得BD︵=BE︵.证明:连接OE,∵CE∥AB,∴∠DOB=∠C,∠BOE=∠E.∵OC=OE,∴∠C=∠E,∴∠DOB=∠BOE,∴BD︵=BE︵.方法总结:此类题主要运用了圆心角与弧的关系以及平行线的性质.注意掌握辅助线的作法及数形结合思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第8题【类型三】综合运用圆心角、弧、弦之间的关系进行计算如图,在△ABC中,∠ACB=90°,∠B=36°,以C为圆心,CA为半径的圆交AB于点D,交BC于点E.求AD︵、DE︵的度数.解析:连接CD,由直角三角形的性质求出∠A的度数,再根据等腰三角形及三角形内角和定理分别求出∠ACD及∠DCE的度数,由圆心角、弧、弦的关系即可得出AD︵、DE︵的度数.解:连接CD,∵△ABC是直角三角形,∠B=36°,∴∠A=90°-36°=54°.∵AC=DC,∴∠ADC=∠A=54°,∴∠ACD=180°-∠A-∠ADC=180°-54°-54°=72°,∴∠BCD=∠ACB-∠ACD=90°-72°=18°.∵∠ACD、∠BCD分别是AD︵,DE︵所对的圆心角,∴AD︵的度数为72°,DE︵的度数为18°.方法总结:解决本题的关键是根据题意作出辅助线,构造出等腰三角形.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型四】有关圆心角、弧、弦之间关系的探究性问题如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.是否存在点P,使得QP=QO?若存在,求出相应的∠OCP的大小;若不存在,请简要说明理由.解析:点P是直线l上的一个动点,因而点P与线段OA有三种位置关系:点P在线段OA上,点P在OA的延长线上,点P在OA的反向延长线上.分这三种情况进行讨论即可.解:当点P在线段OA上(如图①),在△QOC中,OC=OQ,∴∠OQC=∠OCP.在△OPQ中,QP=QO,∴∠QOP=∠QPO.又∵∠AOC=30°.∴∠QPO=∠OCP+∠AOC=∠OCP+30°.在△OPQ中,∠QOP+∠QPO+∠OQC=180°,即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,整理得3∠OCP=120°,∴∠OCP=40°;当P在线段OA的延长线上(如图②),∵OC=OQ,∴∠OQP=(180°-∠QOC)×12=90°-12∠QOC.∵OQ=PQ,∴∠OPQ=(180°-∠OQP)×12=45°+14∠QOC.在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°,∴30°+∠QOC+90°-12∠QOC+45°+14∠QOC=180°,∴∠QOC =20°,则∠OQP =80°,∴∠OCP =100°;当P 在线段OA 的反向延长线上(如图③),∵OC =OQ ,∴∠OCP =∠OQC =(180°-∠COQ )×12=90°-12∠COQ .∵OQ =PQ ,∴∠OPQ =∠POQ =12∠OQC =45°-14∠COQ .∵∠AOC =30°,∴∠COQ+∠POQ =150°,∴∠COQ +45°-14∠COQ =150°,∴∠COQ =140°,∴∠OCP =(180°-140°)×12=20°.方法总结:本题通过同圆的半径相等,将圆的问题转化为等腰三角形的问题,是一种常见的解题方法,还要注意分类讨论思想的运用.三、板书设计圆的对称性1.圆心角、弧、弦之间的关系2.应用圆心角、弧、弦之间的关系解决问题本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再通过教师演示动态教具引导,让学生感受圆的旋转不变性,并得出圆心角、弧、弦三者之间的关系,能用这一关系定理,解决圆的计算证明问题,同时注重培养学生的探索能力和逻辑推理能力,力求体验数学的生活性、趣味性.。
北师大版九年级数学下册:3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版九年级数学下册第3章第2节的内容。
本节主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴。
教材通过生活中的实例引入圆的对称性,让学生感受数学与生活的联系,培养学生的应用意识。
二. 学情分析九年级的学生已经掌握了八年级数学中的轴对称图形知识,对对称性有一定的理解。
但圆的对称性与轴对称图形的对称性有所区别,需要学生进一步理解和掌握。
同时,学生需要将已有的知识应用到生活中,发现圆的对称性在实际生活中的运用。
三. 教学目标1.了解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴。
2.能运用圆的对称性解决实际问题,培养学生的应用意识。
3.培养学生的观察能力、思考能力和合作能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称性在实际生活中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生观察、思考、讨论,从而掌握圆的对称性。
六. 教学准备1.准备相关的图片和案例,用于导入和呈现。
2.准备一些实际的例子,用于巩固和拓展。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)–展示一些生活中的圆形物品,如硬币、圆桌等,引导学生观察这些物品的对称性。
–提问:这些圆形物品有什么共同特点?它们有什么特殊的对称性?2.呈现(10分钟)–介绍圆的对称性,解释圆是轴对称图形,圆有无数条对称轴。
–展示圆的对称轴的画法,让学生理解圆的对称轴是如何确定的。
3.操练(10分钟)–让学生分组,每组选取一个圆形物品,尝试找出它的所有对称轴。
–每组派代表分享他们的发现,讨论哪些是正确的,哪些是错误的。
4.巩固(10分钟)–给出一些实际的例子,让学生运用圆的对称性解决问题。
–引导学生发现圆的对称性在实际生活中的应用,如设计图案、安排物体布局等。
5.拓展(10分钟)–引导学生思考:除了圆形,还有哪些图形具有对称性?它们的对称性有什么特点?–让学生尝试找出生活中具有对称性的物品,下节课分享。
北师大版九年级数学下册:第三章 3.3《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章 3.3《圆的对称性》主要介绍了圆的对称性质。
通过本节课的学习,学生能够理解圆的对称性,掌握圆的对称性质,并能够运用这些性质解决实际问题。
本节课的内容是学生对圆的性质的进一步理解,为后续学习圆的方程和应用打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的对称性有一定的了解。
但是,对于圆的对称性质的理解还需要进一步的引导和启发。
因此,在教学过程中,需要通过实例和问题引导学生主动探索和发现圆的对称性质,培养学生的观察能力和思维能力。
三. 教学目标1.理解圆的对称性质,能够运用圆的对称性质解决实际问题。
2.培养学生的观察能力、思维能力和解决问题的能力。
3.激发学生对数学的兴趣,培养学生的数学思维。
四. 教学重难点1.圆的对称性质的理解和运用。
2.圆的对称性质在实际问题中的应用。
五. 教学方法1.引导发现法:通过实例和问题引导学生主动探索和发现圆的对称性质。
2.问题驱动法:通过问题的提出和解决,激发学生的思维,引导学生深入理解圆的对称性质。
3.合作交流法:鼓励学生之间进行合作交流,共同探讨问题的解决方法。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解圆的对称性质。
2.实例和问题:准备一些与圆的对称性相关的实例和问题,引导学生进行思考和探索。
3.练习题:准备一些有关圆的对称性的练习题,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些具有对称性的图形,如正方形、矩形等,引导学生回顾图形的对称性质。
然后提出问题:“圆有哪些对称性质?”让学生思考和讨论。
2.呈现(10分钟)展示圆的对称性质的课件,包括圆的轴对称性和中心对称性。
通过实例和动画演示,让学生直观地理解圆的对称性质。
3.操练(10分钟)让学生分组进行合作交流,每组选择一个与圆的对称性相关的问题进行思考和解决。
3.2圆的对称性一、教学目标1.掌握圆的轴对称性和中心对称性2.掌握圆心角的概念.3.掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.二、课时安排1课时三、教学重点掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.四、教学难点掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.五、教学过程(一)导入新课1、举例说明什么是弧、弦及圆心角。
2、圆是轴对称图形吗?你是怎么验证的?(二)讲授新课活动内容1:探究1:圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线(2)圆是中心对称图形,对称中心为圆心.(2)若旋转角度不是180°,而是旋转任意角度,则旋转过后的图形能与原图形重合吗?圆绕圆心旋转任意角度α,都能够与原来的图形重合.____________________.(圆具有旋转不变性)探究2:圆心角、弧、弦之间的关系(1)相关概念:_______:顶点在圆心的角.( 圆心角 )(2)在同圆或等圆中,圆心角、弧、弦之间的关系活动2:探究归纳【定理】________________,相等的圆心角所对的弧相等,所对的弦相等.【推论】_____ __,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.(在同圆或者等圆中)(三)重难点精讲【例1】如图,点O是∠EPF的平分线上的一点,以O为圆心的圆和角的两边分别交于点 A ,B 和C ,D ,求证:AB=CD.证明:作OM ⊥AB ,ON ⊥CD ,M ,N 为垂足..MPO NPO OM AB OM ON ON CD AB CD ∠=∠⎫⎪⊥⇒=⎬⎪⊥⎭⇒=【例2】A,B 分别为CD 和EF 的中点,AB 分别交CD,EF 于点M,N ,且AM=BN.求证:CD=EF. 证明:连接OA ,OB ,设分别与CD ,EF 交于点F ,G∵A 为 中点,B 为 中点∴OA ⊥CD ,OB ⊥EF.故∠AFC=∠BGE=90°又由OA=OB ,∴∠OAB=∠OBA ,且AM=BN ,∴△AFM ≌△BGN ,∴AF=BG ,∴OF=OG ,∴DC=EF.(四)归纳小结总结本课的内容:1.掌握圆的轴对称性和中心对称性2.掌握圆心角的概念.3.掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.(五)随堂检测1.如图,在⊙O 中, AB AC = ,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.2.如图,AB 是⊙O 的直径, BC CD DE ==, ∠COD=35°,求∠AOE 的度数.3.如图:⊙1O 和⊙2O 是两个等圆,直线12A B 平行于12O O . 分别交⊙ 1O 于点1A ,1B ,交⊙2O 于点2A ,2B .求证:111222.AO B A O B ∠=∠参考答案预习检测:1. ∠AOB=∠COD OE=OF AB CD =,2. ∠AOB=∠COD AB CD =,AB=CD 3. ∠AOB=∠COD AB=CD OE=OF4. OE=OF AB=CD AB CD =,随堂检测1. 证明:∵AB AC =∴ AB=AC ,△ABC 是等腰三角形.又∠ACB=60°,∴△ABC 是等边三角形, AB=BC=CA.∴ ∠AOB =∠BOC =∠AOC.2. 证明:∵BC CD DE ==BOC=COD=DOE=35∴∠∠∠180335AOE ∴∠=-⨯75.=3. 证明:分别作O 1C 1⊥A 1B 1,O 2C 2 ⊥ A 2B 2,垂足分别为C 1 ,C 2,∵A 1B 2∥O 102,∴ O 1C 1= O 2C 2.111222A O B A O B .∴∠=∠六.板书设计3.2圆的对称性【定理】________________,相等的圆心角所对的弧相等,所对的弦相等.【推论】_____ __,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.例题1:例题2:七、作业布置课本P72随堂练习练习册相关练习八、教学反思。
北师大版九年级数学下册:3.2《圆的对称性》教案一. 教材分析北师大版九年级数学下册3.2《圆的对称性》是一节概念性较强的课程。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能运用圆的对称性解决一些实际问题。
二. 学情分析九年级的学生已经掌握了八年级数学中关于对称轴、对称图形等基本知识,他们对轴对称图形有了一定的认识。
但圆的对称性较为抽象,学生需要通过实例来更好地理解和掌握。
三. 教学目标1.知识与技能:让学生理解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:圆的对称性,圆是轴对称图形,圆有无数条对称轴。
2.难点:理解圆的对称性与轴对称图形的关系。
五. 教学方法1.情境教学法:通过实例和问题情境,引发学生的思考和探索。
2.引导发现法:教师引导学生发现圆的对称性,培养学生独立思考的能力。
3.合作交流法:学生在小组内进行讨论和交流,分享学习心得和解决问题的方法。
六. 教学准备1.教具准备:多媒体课件、圆规、直尺、练习题等。
2.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆对称现象,如圆形的钱币、圆桌、圆形的图案等,引导学生关注圆的对称性。
提问:这些圆形的物品有什么共同特点?学生回答后,教师总结:圆的对称性。
2.呈现(10分钟)教师利用多媒体课件展示圆的对称性,让学生观察和思考。
呈现圆的轴对称图形,引导学生发现圆有无数条对称轴。
同时,让学生尝试画出圆的对称轴,并观察圆的对称轴的特点。
3.操练(10分钟)教师提出问题:如何判断一个图形是否是圆的对称图形?让学生在小组内进行讨论和交流,总结出判断方法。
北师大版数学九年级下册3.2《圆的对称性》教案一. 教材分析北师大版数学九年级下册3.2《圆的对称性》是本册教材中的重要内容,主要让学生了解圆的对称性质,掌握圆的对称性的应用。
本节课的内容对于学生来说比较抽象,但与生活实际息息相关,有利于激发学生的学习兴趣,培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念,如圆的半径、直径等,并了解了一些基本的平面几何知识。
但是,对于圆的对称性的理解和应用,还需要进一步的引导和培养。
因此,在教学过程中,要注重启发学生思考,引导学生发现圆的对称性,并学会运用圆的对称性解决实际问题。
三. 教学目标1.知识与技能:让学生理解圆的对称性质,学会运用圆的对称性解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:圆的对称性质的理解和应用。
2.难点:圆的对称性质在实际问题中的灵活运用。
五. 教学方法采用问题驱动法、合作学习法、案例教学法等,充分调动学生的积极性,引导学生主动探究,合作交流,提高学生的抽象思维能力和解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体教学设备等。
2.学具:学生每人一本教材,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆对称现象,如圆形的挂钟、圆形的脸谱等,引导学生发现圆的对称性质,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和演示,向学生介绍圆的对称性质,如圆的任何一条直径所在的直线都是圆的对称轴,圆的任何一点关于圆心都有对称点等。
同时,引导学生发现圆的对称性质与生活的密切关系。
3.操练(10分钟)学生分组讨论,每组设计一个具有圆对称性质的图案,并利用圆规和直尺进行绘制。
通过实践活动,加深学生对圆的对称性质的理解。
北师大版九年级数学下册:3.2《圆的对称性》教学设计一. 教材分析《圆的对称性》是北师大版九年级数学下册第三章第二节的内容。
本节课主要让学生了解圆的对称性,掌握圆是轴对称图形,以及圆有无数条对称轴等特点。
通过学习,使学生能够运用圆的对称性解决一些实际问题,培养学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经学习了初级代数、几何等知识,对图形的对称性有一定的了解。
但针对圆这一特殊图形的对称性,学生可能还比较陌生。
因此,在教学过程中,需要教师引导学生从具体实例中发现圆的对称性,并通过讲解和练习使学生理解和掌握。
三. 教学目标1.理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴。
2.能够运用圆的对称性解决一些实际问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称性在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组讨论法等教学方法。
通过具体实例引入圆的对称性,引导学生发现和总结圆的对称性特点,并通过练习和实际问题使学生理解和掌握圆的对称性。
六. 教学准备1.准备相关课件和教学素材。
2.准备练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个具体实例引入圆的对称性,例如:展示一个圆形图案,让学生观察并说出这个图案的特点。
引导学生发现圆的对称性,并提出问题:为什么圆有无数条对称轴?2.呈现(15分钟)教师通过讲解和动画演示,详细讲解圆的对称性。
讲解圆是轴对称图形,圆有无数条对称轴,以及圆的对称轴是如何确定的。
同时,展示一些实际问题,让学生理解和掌握圆的对称性。
3.操练(15分钟)学生分组进行练习,教师巡回指导。
练习题包括判断题、选择题和填空题等,主要考察学生对圆的对称性的理解和掌握。
4.巩固(10分钟)教师通过一些实际问题,让学生运用圆的对称性进行解决。
例如:一个圆形桌面,要如何摆放才能使桌子上的物体在桌面的任何位置都能看到?5.拓展(10分钟)引导学生思考圆的对称性在其他领域的应用,例如:在艺术设计、建筑、工程等领域中的应用。
3.2【圆的对称性】【学习目标】1、知道圆的轴对称性和中心对称性及相关性质;2、通过圆的旋转不变性,明白圆心角、弧、弦之间相等关系定理.【学习重点】教学重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.一、情境导入二、新知学习1、(1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?你是用什么方法解决的?与同伴进行交流。
(2)想一想:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?圆是中心对称图形呢?如果是,对称中心是什么?练习:1.下列命题中,正确的是()A.圆只有一条对称轴B.圆的对称轴不止一条,但只有有限条C.圆有无数条对称轴,每条直径都是它的对称轴D.圆有无数条对称轴,每条直径所在的直线都是它的对称轴2、圆心角的概念:我们把顶点在圆心的角叫做圆心角练习:判别下列各图中的角是不是圆心角,并说明理由。
ABCO3、通过圆的旋转不变性,你能说出圆心角、弧、弦之间存在的相等关系定理吗?【做一做】在等圆☉O 和☉O'中,分别作相等的圆心角∠AOB和∠A'O'B'(如图所示),将两圆重叠,并固定圆心,然后将其中一个圆旋转一个角度,使得OA与O'A'重合,你能发现哪些等量关系?说一说你的理由.旋转能使∠AOB和∠A'O'B'完全重合,同圆或等圆可得OA=OB=O'A'=O'B',从而得∠OAB=∠OBA=∠O'A'B'=∠O'B'A',AB=A'B',圆心角定理:【想一想】在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;在同圆或等圆中,相等的弦所对的圆心角______,所对的弧_________.圆心角、弧、弦之间相等关系定理:注意:三、例题学习,BE 如图,AB,DE是⊙O的直径,C是⊙O的一点,且AD CE与CE的大小有什么关系?为什么?四、随堂练习1.如图,在⊙O中, ,∠A =30°,∠B=2.若圆的一条弦把圆分成度数比为1∶3的两条弧,则优弧所对的圆心角为()A.45B.90°C.135°D.270°3.如图所示,已知AB是☉O的直径,,∠BOC=40°,那么∠AOE等于()A.40°B.60°C.80°D.120°4.如图所示,直尺ABCD的一边与量角器的零刻度线重合,若从量角器的中心O引射线OF经过刻度120°,交AD于点E,则∠DEF=.5、 如图,A 、B 是⊙O 上的两点,∠AOB=120°,C 是 的中点。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。
教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。
本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。
二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。
但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。
同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。
三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。
2.能够运用圆的对称性解决实际问题。
3.培养学生的观察能力、动手操作能力和推理能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义及性质的掌握。
五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。
六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。
2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。
3.准备一些实际问题,用于巩固学生对圆对称性的运用。
七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。
然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。
2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。
同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。
3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。
北师大版数学九年级下册3.2《圆的对称性》说课稿一. 教材分析《圆的对称性》这一节的内容是北师大版数学九年级下册第三章第二节的内容。
本节课的主要内容是让学生了解圆的对称性,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性在实际问题中的应用。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对轴对称图形和中心对称图形有了初步的认识。
但是,对于圆的对称性的理解还需要进一步的引导和培养。
因此,在教学过程中,我将会以学生的已有知识为基础,通过实例和问题,引导学生深入理解圆的对称性。
三. 说教学目标1.知识与技能:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.过程与方法:通过观察、思考、交流等活动,学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高对几何图形的审美能力。
四. 说教学重难点1.教学重点:学生能够理解圆的对称性,知道圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
2.教学难点:学生能够发现圆的对称性,并能够运用圆的对称性解决实际问题。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和实例教学法。
通过提出问题,引导学生思考和探索,从而发现圆的对称性。
同时,我会利用多媒体教学手段,展示相关的几何图形和实例,帮助学生更好地理解和掌握圆的对称性。
六. 说教学过程1.导入:通过提出问题,引导学生思考和探索圆的对称性。
2.新课导入:介绍圆的对称性,让学生了解圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。
3.实例讲解:通过展示相关的实例,让学生深入理解圆的对称性。
4.练习与讨论:让学生进行相关的练习,并通过讨论交流,巩固对圆的对称性的理解。
5.总结与拓展:总结本节课的主要内容,并进行拓展,引导学生思考圆的对称性在实际问题中的应用。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教学设计一. 教材分析北师大版九年级数学下册第三章《圆的对称性》的内容包括圆的对称性质、圆的对称变换以及圆的对称图案。
这部分内容是学生在学习了圆的基本概念和性质之后,进一步深入研究圆的性质的重要内容。
通过这部分的学习,学生可以更好地理解圆的对称性,提高他们的空间想象能力和审美能力。
二. 学情分析九年级的学生已经掌握了圆的基本概念和性质,对于新的知识有一定的接受能力。
但是,对于圆的对称性的理解和应用,他们可能还比较困难。
因此,在教学过程中,我需要注重引导学生通过实际操作和思考,来理解和掌握圆的对称性。
三. 教学目标1.理解圆的对称性质,掌握圆的对称变换。
2.能够运用圆的对称性来解决实际问题。
3.提高学生空间想象能力和审美能力。
四. 教学重难点1.圆的对称性质的理解和应用。
2.圆的对称变换的理解和运用。
五. 教学方法采用问题驱动法,引导学生通过实际操作和思考,来理解和掌握圆的对称性。
同时,运用多媒体教学,直观地展示圆的对称变换,帮助学生更好地理解和掌握知识。
六. 教学准备1.多媒体教学设备。
2.圆的模型或者图片。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些具有对称性的图片,如圆、圆环、圆盘等,引导学生观察和思考这些图形的对称性。
提问:你们认为这些图形有什么共同的特点?学生回答后,教师总结:这些图形都具有对称性,今天我们就来学习圆的对称性。
2.呈现(10分钟)教师通过多媒体展示圆的对称性质,如圆的对称轴、对称中心等。
同时,引导学生通过实际操作,如折叠圆纸片,来验证圆的对称性质。
在这个过程中,教师讲解圆的对称性质,并强调圆的对称变换。
3.操练(10分钟)学生分组进行练习,运用圆的对称性质来解决实际问题。
例如,每组设计一个具有对称性的图案,并解释其对称性。
在这个过程中,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师通过一些例题,让学生进一步理解和掌握圆的对称性。
圆的对称性【教学内容】圆的对称性(一)【教学目标】知识与技能理解圆是轴对称图形和中心对称图形,从圆具有旋转不变性,深入领会同圆或等圆中,相等的圆心角、弧、弦之间的对应关系。
过程与方法经历圆是轴对称图形和中心对称图形的探索,学会运用同圆或等圆中,相等的圆心角、弧、弦之间的对应关系来解决数学问题。
情感、态度与价值观引导学生对圆的对称性观察认识,激发学生的探究兴趣,并在运用数学知识解答问题活动中获取成功的体验,建立学习的自信心。
【教学重难点】重点:圆心角、弧、弦之间关系定理的证明和应用.难点:“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.【导学过程】【知识回顾】什么叫做圆?圆是轴对称图形吗?它的对称轴是什么?【情景导入】对折一张圆形的纸片,可以看到圆是轴对称图形,它的对称轴是直径所在的直线。
【新知探究】探究一、圆是轴对称图形,它的对称轴有无数条。
任意一条过圆心的直线都是它的对称轴。
探究二、圆也是中心对称图形,圆绕着它的圆心旋转180°能够与它自身重合,对称中心是圆心。
实际上,圆绕它的圆心旋转任意一个角度都能与它自身重合。
圆心角:顶点在圆心的角。
学生作出几个圆心角,体会它的特征。
探究三、在等圆⊙O和⊙Oˊ中,分别作相等的圆心角∠AOB和∠AˊOBˊ固定圆心,将其中一个圆旋转任一角度,使得OA与OˊAˊ重合,你能发现哪些等量关系?归纳你发现的结论:【知识梳理】本节课我们学习圆是轴对称图形和中心对称图形,并学习同圆或等圆中,圆心角、弧、弦之间的关系定理。
【随堂练习】1、已知A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.2、如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?3、如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.4、判断题(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()5、填空题⊙O中,弦AB的长恰等于半径,则弦AB所对圆心角是________度.6、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,若AC=2.5 cm,ED=1.5 cm,OA=5 cm,则AB长度是___________.A、6 cmB、8 cmC、7 cmD、7.5 cm7、选择填空题如图2,过⊙O内一点P引两条弦AB、CD,使AB=CD,求证:OP平分∠BPD.证明:过O作OM⊥AB于M,ON⊥CD于N.A OM⊥PB B OM⊥ABC ON⊥CD D ON⊥PD。
《圆的对称性》
◆模式介绍
“探究式教学”是指学生在学习概念和原理时,教师只是给他们一些事例和问题,让学生自己通过阅读、观察、实验、思考、讨论、听讲等途径去主动探究,自行发现并掌握相应的原理和结论的一种教学方法.它的指导思想是在教师的指导下,以学生为主体,让学生自觉地、主动地探索,掌握认识和解决问题的方法和步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成概念,建立自己的认知模型和学习方法架构.探究式教学法能充分发挥了学生的主体作用.
探究式教学通常包括以下五个教学环节:
创设情境——启发思考——探究问题——形成结论——巩固提高
◆设计说明
首先通过问题1引导学生用折叠等方法探索圆是轴对称图形,为后面探索并认识圆心角、弧、弦之间相等关系的定理作准备.问题2让学生了解圆的旋转不变性——一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.问题3通过实验探索圆的另一个特征——在同圆或等圆中,圆心角相等时,它们所对的弧相等,所对的弦也相等.最后通过例、习题的巩固,加深学生对圆心角、弧、弦之间相等关系定理的理解.
◆教材分析
本节是北师大版义务教育教科书《数学》九年级下册第三章《圆》的第2节《圆的对称性》的教学内容,本节课是在学生了解了圆的相关概念和对称的相关知识的基础上进行的,它圆的轴对称性和中心对称性是本节中探索并认识圆心角、弧、弦之间相等关系定理的重要依据,也是下一节证明垂径定理的理论基础.
同时,弧,弦,圆心角之间的关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据,为后续证明线段相等、角相等、弧相等提供了又一种解决问题的方法.
◆教学目标
【知识与能力目标】
1、认识圆的轴对称性和中心对称性及相关性质.
2、探索并认识圆心角、弧、弦之间相等关系的定理.
【过程与方法】
经历探索圆的轴对称性和中心对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法.
【情感态度与价值观】
经历探索圆的轴对称性和中心对称性及相关性质的过程,感受数学活动充满了探索性与创造性,体验发现的乐趣.
◆教学重难点
【教学重点】
圆的轴对称性和中心对称性,圆心角、弧、弦之间相等关系的定理.
【教学难点】
圆的轴对称性和中心对称性的认识.
◆课前准备
多媒体课件、教具等.
◆教学过程
【创设情境】
问题1 (1)圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
(2)你是用什么方法解决上述问题的?与同伴进行交流.
结论:(1)圆是轴对称图形,对称轴有无数条(所有经过圆心的直线都是对称轴).
(2)利用折叠的方法.
设计意图:引导学生用折叠等方法探索圆是轴对称图形,为探索并认识圆心角、弧、弦之间相等关系的定理作准备.
【启发思考】
问题2 一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?
结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.
设计意图:让学生了解圆的旋转不变性——一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.
【探究问题】
问题3 在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.
小红认为AB A B ''=,''=AB A B ,她是这样想的:
∵半径OA 重合,'''∠∠=AOB A O B ,
∴半径OB 与OB '重合,
∵点A 与点A '重合,点B 与点B '重合,
∴AB 与A B ''重合,弦AB 与弦A B ''重合,
∴AB =A B '',AB =A B ''.
追问:小红的想法正确吗?学生交流自己想法,然后得出结论,教师引导点拨.
设计意图:通过实验探索圆的另一个特征:在同圆或等圆中,圆心角相等时,它们所对的弧相等,所对的弦也相等.
【形成结论】
结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
想一想:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?
结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 注意:不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦不一定相等.
设计意图:让学生思考上述命题的的逆命题是否成立,从而得到圆心角、弧、弦之间相等关系的定理.学生之间交流,谈谈各自想法,教师点拨.
【巩固提高】
例1 如图,AB ,DE 是⊙O 的直径,C 是⊙O 的一点,且AD CE =,BE 与CE 的大小有什么关系?为什么?
解:BE =CE .理由是:
∵∠AOD =∠BOE ,∴=AD BE ,又∵22=+AD CE a b ,∴=BE CE ,∴BE =CE . 议一议:在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.
例2 如图,在☉O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F .
(1)如果∠AOB =∠COD ,那么OE 与OF 的大小有什么关系?为什么?
(2)如果OE =OF ,那么弧AB 与弧CD 的大小有什么关系?AB 与CD 的大小有什么关系?为什么?∠AOB 与∠COD 呢?
解:(1)如果∠AOB =∠COD ,那么OE =OF .理由如下:
∵∠AOB =∠COD ,∴AB =CD .
∵OE ⊥AB ,OF ⊥CD ,∴2AE =AB ,2CF =CD .∴AE =CF .
又∵OA =OC ,∴Rt △OAE ≌Rt △OCF ,∴OE =OF .
(2)如果OE =OF ,那么AB =CD ,AB CD =,∠AOB =∠COD .理由如下: ∵O A =OC ,OE =OF ,∴Rt △OAE ≌Rt △OCF ,∴AE =CF .
又∵OE ⊥AB ,OF ⊥CD ,∴2AE =AB ,2CF =CD ,∴AB =CD ,∴AB CD =,∠AOB =∠COD .
学生练习 课本72页随堂练习第1题,第2题,第3题.
课堂小结:
本节课学到那些知识?发现了什么?在运用所学的知识解决问题时应注意什么?
1、圆的轴对称性和中心对称性;
2、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
强调:运用本节知识时不能忘记其成立的条件“在同圆或等圆中”,这个知识点是证明弧相等,弦相等常用的方法.
布置作业:
1、教科书习题3.2第1题.(必做题)
2、教科书习题3.2第3题.(选做题)
◆教学反思
略.
如有侵权请联系告知删除,感谢你们的配合!。