(整理)直流调速工作原理
- 格式:doc
- 大小:1.24 MB
- 文档页数:10
直流电机的调速方法一、前言直流电机是工业生产中常用的驱动设备,它具有调速范围广、转矩平稳等优点。
在实际应用中,为了满足不同的工艺要求,需要对直流电机进行调速。
本文将介绍直流电机的调速方法。
二、基本原理直流电机的调速原理是通过改变电源电压和/或改变电枢回路中的电阻来改变电机的转速。
当电压增大或者回路阻值减小时,会使得转矩增大,从而使得转速提高;反之亦然。
三、调速方式1. 串联型调速串联型调速是通过改变外接串联在直流电机上的可变阻值来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器串联在直流电机中;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
2. 并联型调速并联型调速是通过改变外接并联在直流电机上的可变阻值来改变电枢回路的总电阻,从而达到提高转矩和加快转速的目的。
具体步骤如下:(1)将可变阻器并联在直流电机中;(2)当可变阻器阻值增加时,电枢回路总电阻增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
3. 电枢调速电枢调速是通过改变直流电机中的电枢回路中的电阻来改变回路总阻值,从而达到降低转矩和减缓转速的目的。
具体步骤如下:(1)将可变阻器连接在直流电机的电枢回路上;(2)当可变阻器阻值增加时,回路总阻值增加,从而使得输出功率减小;反之亦然;(3)通过逐渐增加或减小可变阻器的阻值来实现调节。
4. 磁通调速磁通调速是通过改变直流电机中励磁回路中串联在励磁线圈上的可变抵抗来改变磁通量大小,从而达到改变转速和转矩的目的。
具体步骤如下:(1)将可变抵抗串联在励磁线圈上;(2)当可变抵抗阻值增加时,回路总阻值增加,从而使得磁通量减小,输出功率减小;反之亦然;(3)通过逐渐增加或减小可变抵抗的阻值来实现调节。
四、注意事项1. 在进行调速时,应根据直流电机的额定参数和工作要求进行合理选择。
直流调速器的工作原理直流调速器是一种用来控制电动机转速的装置,它可以通过调整输入电压、电流或者改变电机绕组的接线方式来实现电机的调速。
直流调速器广泛应用于各个领域,包括工业控制、机械设备、交通运输等。
直流调速器的工作原理可以简单地描述为通过改变电机终端的电压和电流,来改变电机的转速。
这一过程通过控制电源电压和电流以及电机绕组的接线方式来实现。
在直流调速器中,控制电源一般为直流电源供应。
控制电源可以通过变压器或者其他装置来获得所需的电压和电流。
调速器通过控制电源的输出来改变电机的输入电压和电流,从而实现调速的目的。
直流调速器可以通过不同的方式来改变电机终端的电压和电流。
其中一种常见的方式是通过采用可变阻尼调速器,也即通过改变绕组接线方式来改变电机的速度。
可变阻尼调速器中,电机的绕组通常由串联、并联或者混合接线方式来实现不同的速度调节。
另外一种常见的方式是通过PWM(脉宽调制)技术来实现调速。
PWM技术是一种调制技术,通过改变一个周期内高电平与低电平的时间比例来改变电源输出的电压和电流。
在直流调速器中,PWM控制器可以根据所需的转速设置一个合适的占空比,从而控制输出电压和电流的大小。
此外,直流调速器还可以利用其他的控制技术,例如PID控制技术、闭环控制等来实现更精确的调速效果。
PID控制技术是一种常见的比例-积分-微分控制技术,它通过根据输入和输出之间的误差来实时调整控制器的参数,从而使得系统稳定在所需的转速范围内。
总的来说,直流调速器是通过控制电源输出的电压和电流以及改变电机绕组的接线方式来实现电机调速的装置。
不同的调速器采用不同的原理和技术,但它们的目标都是在不同的工况下实现电机的可靠调速。
通过正确选择和使用直流调速器,可以实现电机的高效运行和精确控制,从而满足各种应用需求。
直流电机pwm调速原理直流电机PWM调速原理是通过改变电源给电机的电压和电流,从而控制电机转速的一种方法。
PWM,即脉冲宽度调制,是一种用来调节电平电路中电平的技术,利用脉冲信号的占空比(高电平与周期时间之比)来控制电平的平均值。
在直流电机PWM调速中,首先需要了解电机的电刷子与换向器的工作原理。
电刷子负责切换电极的极性,而换向器则根据电刷子的位置将电流传送到正确的电极上。
当电流在电机的绕组中流动时,会形成磁场,这个磁场会与永磁体产生相互作用,从而产生电机的转动力。
为了控制电机的转速,可以通过改变供电电压的幅值和频率来实现。
在PWM调速中,电源输出的电压信号被分解为一系列的脉冲信号。
脉冲信号的占空比根据所需的电机转速来确定,占空比越大,电机转速越快。
在每个脉冲周期中,脉冲信号的高电平部分代表电源给电机供电的时间,而低电平部分则代表停止供电的时间。
通过改变脉冲信号的占空比,可以控制电机的平均电压和平均电流。
当占空比增大时,电机平均得到更多的能量供应,转速也会相应增加。
反之,当占空比减小时,电机平均得到更少的能量供应,转速会减慢。
这样,通过不断调整脉冲信号的占空比,就可以实现对直流电机的精准调速。
需要注意的是,在PWM调速中,电机的换向也需要考虑进去。
换向器需要根据电机的转向来控制电刷子的位置,使电流能够按正确的路径流动。
这样能够保证电机的正常运转,并提供足够的转矩和稳定性。
综上所述,直流电机PWM调速是通过改变电源给电机的电压和电流的脉冲信号的占空比来实现的。
通过调节脉冲信号的占空比,可以控制电机的平均电压和电流,从而实现对电机转速的精确控制。
同时,需考虑电机的换向,以保证电机能够正常运转。
直流电机调速公式
直流电机调速公式是用来描述直流电机转速与电压和负载之间的关系的数学公式。
直流电机调速是指通过调节电压或改变负载来控制电机的转速。
直流电机调速公式可以用以下方式表示:
N = k * V / Φ
其中,N表示电机的转速,k是一个常数,V表示电压,Φ表示磁通量。
这个公式可以解释为:电机的转速与电压成正比,与磁通量成反比。
当电压增加时,电机转速也会增加;当磁通量增加时,电机转速会减小。
直流电机调速公式的推导基于电机的基本原理和电磁感应定律。
直流电机是通过电流在电枢线圈中产生的磁场和永磁体之间的相互作用来产生转矩的。
当电压和负载发生变化时,电机内部的磁场也会发生变化,从而影响电机的转速。
调速公式的推导过程比较复杂,需要考虑电机的内部结构、磁场分布、电流分布等因素。
在实际应用中,可以通过调节电压或改变负载来实现对电机转速的控制。
例如,通过增加电压可以提高电机的转速,而通过改变负载可以降低电机的转速。
直流电机调速公式在工业生产和科学研究中具有重要意义。
它可以
帮助工程师和研究人员设计和优化电机控制系统,实现精确的转速调节。
同时,它也为电机的故障诊断和维修提供了理论基础。
直流电机调速公式是描述电机转速与电压和负载之间关系的重要工具。
掌握和理解这个公式可以帮助人们更好地理解和应用直流电机调速技术。
通过合理地调节电压和负载,可以实现对电机转速的精确控制,满足不同应用场景的需求。
直流调速器的工作原理直流调速器是一种能够按照需求改变直流电源输出电压和电流的电路装置。
它具有广泛的应用领域,例如电动机控制、电能调节、电动车辆和风力发电等。
其工作原理是通过控制开关器件的导通和断开,实现直流电压的调节。
下面将详细介绍直流调速器的工作原理。
直流调速器的主要组成部分包括整流器、滤波器、功率开关器件、控制电路、逆变器和环境监控电路。
整流器将交流电源转换成直流电源,滤波器用于去除直流电源中的脉动,功率开关器件负责控制电流的输入和输出,控制电路实现对功率开关器件的控制,逆变器将直流电源转换为交流电源,以满足不同的负载要求,环境监控电路用于监测和控制器件的工作温度和电流等。
直流调速器的工作过程可以分为整流和逆变两个阶段。
首先,在整流阶段,交流电源经过整流器转换成直流电源。
整流器通常由采用可控硅作为开关器件的桥式整流电路构成。
当输入电压通过桥式整流电路时,低频变压器将交流电压转换为带有脉动的直流电压。
控制电路将调制信号与桥式整流电路中的可控硅触发电路相连接,控制可控硅导通和截止。
这样,整流电路会根据调制信号的不同,实现对交流电源的整流,从而改变输出电压和电流。
接下来,在逆变阶段,直流电源经过逆变器转换为交流电源。
逆变器通常由功率开关器件和滤波电路构成。
功率开关器件通常是晶体管或IGBT。
在逆变器的工作过程中,控制电路将调制信号与功率开关器件相连接,以控制开关器件的导通和断开。
当开关器件导通时,电流流经负载,实现能量的输出;当开关器件截止时,电流停止流动,实现能量的截止。
逆变器输出的交流电压的频率和幅值可以通过控制开关器件的导通时间和断开时间来调节,从而实现对交流电源输出电压和电流的调整。
除了上述基本的工作原理外,直流调速器还可以根据具体的应用需求进行一些改进和调整。
例如,在电动机控制方面,可以采用脉宽调制技术,通过改变开关器件的导通比例,使得电机的转速和转矩得以控制。
在故障保护方面,可以使用环境监控电路来监测功率开关器件的温度和电流等参数,以实时检测设备的运行状态,并采取相应的措施以保护设备。
直流调速的工作原理
直流调速系统是通过控制直流电机的电压和电流来实现调速的。
其工作原理如下:
1. 直流电源供电:首先,将直流电源连接到直流电机的电源端,以提供电机所需的电压和电流。
2. 转换器及控制器:在直流电源和直流电机之间,需要使用一个电流转换器(如可控硅、可逆整流器等)和一个控制器来实现对电机的调速控制。
3. 电机驱动:通过控制器对电流转换器的控制信号,调节转换器的开关状态,从而控制直流电机的驱动电压和电流。
通过调节驱动电压和电流的大小和方向,可以实现对电机转速的控制。
4. 反馈系统:为了保持电机转速的稳定性和精确性,通常需要使用一个反馈系统来监测电机的转速,并将实际转速与期望转速进行比较,从而实现闭环控制。
反馈系统通常使用编码器或速度传感器来测量电机转速,并将测量值发送给控制器进行处理。
5. 控制算法:控制器根据反馈系统的测量值和期望转速之间的差异,通过控制电流转换器的开关状态,调整驱动电压和电流的大小和方向,从而实现对电机转速的调节。
常用的控制算法有比例积分控制(PI控制)、模糊控制和遗传算法等。
综上所述,直流调速系统通过对直流电机的电压和电流进行控
制,结合反馈系统和控制算法,实现对电机转速的调节。
这种调速系统广泛应用于许多领域,如工业生产、交通运输、机械设备等。
直流调速的工作原理
直流调速是一种通过改变电机电源电压来实现转速控制的方法。
该方法通过调节电机的电源电压来改变电机的转速,从而实现对电机的调速要求。
直流调速系统由一个直流电动机、一个功率控制器和一个速度反馈回路组成。
功率控制器负责根据输入的转速指令和实际转速信号来计算出电机所需的电压,然后将这个电压通过调节器输出给电机的电源。
在直流调速系统中,电动机通过电枢和励磁线圈两个磁场相互作用来产生转矩。
当电机接受到一定电压时,电动机的转矩和电磁势联动,从而产生转速。
当电机的电源电压增加时,电机的转速也会相应增加。
反之,当电机的电源电压减小时,电机的转速也会下降。
为了实现调速,系统需要通过速度反馈回路来监测电机的实际转速,并将其与设定的转速进行比较。
根据比较的结果,功率控制器会调节输出给电机的电压,使得电机的实际转速逐渐接近设定的转速。
在直流调速系统中,常见的功率控制器有电阻调速、电压调速和电流调速等方法。
通过调节电机的电源电压,可以实现对电机转速的精确控制,满足不同工况下的要求。
同时,直流调速系统还具有响应快、调速范围广和控制精度高等优点,广泛应用于各个领域的工业控制中。
直流电机调速pwm的原理
直流电机调速PWM(脉宽调制)的原理是通过改变电机供电
电压的占空比来实现电机的转速调节。
PWM调速技术通过以
一定的周期(周期时间T)将电源电压以脉冲的形式施加给电机,其中脉冲的宽度(脉宽)决定了每个周期内电源对电机的供电时间比例。
在PWM调速中,周期时间(T)和脉宽时间(Ton)与占空
比(Duty Cycle)之间的关系可以表示为:
占空比(D)= Ton / T
通过改变占空比D的大小,可以控制每个周期中电机所接收
到的有效电压信号的时间比例。
当占空比D变小时,电机接
收到的有效电压时间减少,电机的平均输入功率减小,从而降低转速;反之,当占空比D增大时,电机接收到的有效电压
时间增加,电机的平均输入功率增加,从而提高转速。
实现PWM调速的关键是通过开关器件控制电源电压的开关状
态来实现脉冲信号的生成和调节。
常见的开关器件包括晶体管和MOS管。
通过控制开关器件的导通和截止,可以控制电源
电压的施加和切断。
同时,PWM调速还需要一个控制电路来根据需要改变占空比。
控制电路通常是由微处理器、单片机或专用的PWM芯片来实现,它可以根据不同的控制需求,调整占空比大小,并将相应的控制信号发送给开关器件。
总体而言,直流电机调速PWM的原理是通过改变电机供电电压的占空比来控制电机的转速。
通过控制器件的开关状态和相应的控制电路,可以实现对占空比的调节,从而完成电机的调速操作。
直流调速器工作原理
直流调速器是一种电力变换装置,它将输入的直流电而转换为可调变幅和频率的直流电。
通过调整输入的电压和频率,可以实现对输出电压的调节和控制,实现直流电机的调速。
直流调速器主要由输入电路、整流电路、滤波电路、逆变电路和控制电路组成。
1. 输入电路:接收来自电源的交流电,经过变压器降压后转换为适宜的电压供给整流电路。
2. 整流电路:将输入电路提供的交流电转换为脉冲式的直流电。
常用的整流电路有单相桥式整流电路和三相桥式整流电路。
3. 滤波电路:通过滤波电容和电感元件对脉冲式直流电进行平滑处理,以降低输出电压的脉动和纹波。
4. 逆变电路:将平滑后的直流电转换为可变幅和频率的直流电。
逆变电路可以采用可控硅、晶闸管等器件控制。
5. 控制电路:根据调速需求,通过对逆变电路中控制元件(如可控硅)的控制信号调整逆变电路输出的电压和频率,从而实现对直流电机的调速。
总结:直流调速器的工作原理是通过输入电路将交流电转换为脉冲直流电,经过滤波电路平滑处理后,再通过逆变电路将直流电转换为可变幅和频率的直流电。
控制电路控制逆变电路的输出,实现对直流电机的调速。
直流电机调速器的工作原理
直流电机调速器是一种通过控制电流和电压来改变电机转速的设备。
其工作原理基于调制输出电流和电压的方式,以实现电机的速度调节。
在直流电机调速器中,系统的输入通常由一个外部控制信号提供,该信号可以是电压、电流、或是数字信号。
控制信号经过处理后,被转换为不同的电流或电压输出,然后送至电机。
通过改变输出的电流和电压大小,可以改变电机中的磁场,从而改变电机转速。
直流电机调速器通常由以下几个部分组成:控制电路、功率放大电路、保护电路和电源。
控制电路负责接收输入信号,并根据设定的参数计算出输出电流和电压的大小。
功率放大电路则负责将控制电路输出的低功率信号放大至适合电机需求的高功率信号。
保护电路主要用于监测电机的工作状态,并在电机故障或过载情况下采取相应的保护措施。
电源则为整个调速器提供所需的电能。
通过调节控制电路中的参数,可以改变电机输出的电流和电压大小,从而调节电机的转速。
常见的调速方式包括开环控制和闭环控制。
在开环控制中,调速器根据设定的参数直接调节输出电流和电压;而在闭环控制中,调速器会通过传感器监测电机转速,并根据实际转速与设定转速之间的差异来调节输出电流和电压。
总结而言,直流电机调速器通过调节电机输出的电流和电压来
改变电机的转速。
通过控制电路、功率放大电路、保护电路和电源等组件的协作,可以实现对电机转速的精确控制。
直流无刷电机调速原理引言直流无刷电机(Brushless DC Motor,BLDC)是一种常见的电动机类型,广泛应用于各种领域,包括工业自动化、电动工具、机器人技术和模型飞机等。
为了控制这些电机的速度和运行,了解直流无刷电机的调速原理至关重要。
本文将深入探讨直流无刷电机的调速原理,以及相关的电子控制技术。
第一部分:直流无刷电机基础在探讨调速原理之前,首先需要了解直流无刷电机的基本工作原理。
与传统的有刷直流电机不同,BLDC电机没有碳刷,因此具有更高的效率和可靠性。
它由以下几个关键部件组成:1.永磁体:通常是一个永久磁铁,位于电机的转子(转动部分)中。
这是电机的永久磁场源。
2.绕组:电机的定子(静止部分)上包围着绕组,也称为线圈。
这些绕组通常由铜线绕制,并与电机的电源电路相连。
3.传感器:有些BLDC电机配置了传感器,用于检测转子的位置和速度。
传感器可以是霍尔效应传感器或编码器等。
4.电子控制器:电子控制器是控制电机速度和方向的关键部件。
它根据传感器的反馈信号来决定如何驱动电机。
第二部分:电子控制器的作用电子控制器是直流无刷电机调速的关键。
它的主要功能是根据传感器的反馈信号来确定电机应该如何运行,以达到所需的速度和方向。
以下是电子控制器的工作原理:1.传感器反馈:如果电机配置了传感器,传感器会监测转子的位置和速度。
这些信息通过传感器反馈到电子控制器。
2.控制算法:电子控制器内部包含一个控制算法,它根据传感器反馈信号来计算出正确的控制策略。
这通常是一个闭环反馈系统,允许电机动态调整以维持所需的运行状态。
3.功率驱动:根据控制算法的输出,电子控制器将电源中的电能转化为适当的电流和电压,供电给电机的绕组。
这就是电机开始旋转的过程。
4.相序控制:BLDC电机通常有三相绕组,控制器需要准确确定哪一相应该通电,以使电机旋转。
这是通过改变相序来实现的,以推动电机的转子。
第三部分:电机调速原理现在,让我们深入研究直流无刷电机的调速原理。
直流调速器工作原理
直流调速器工作原理是通过调节电机电压和电流来改变其转速。
其基本原理是利用调制技术将直流电压进行调制,然后经过整流、滤波等电路处理后,供给电机。
调速器内部有一个电压或电流反馈回路,用来检测电机的转速,并将反馈信号与设定值进行对比,然后通过控制电压或电流的大小,使电机达到预定的转速。
调速器一般由调速电路、控制系统和信号处理器组成。
调速电路包括调试电位器、比较器、放大器等元件,用来控制电机的输出电压或电流。
控制系统负责接收来自传感器的反馈信号,并根据设定值与反馈信号的差值来控制输出信号的大小。
信号处理器用于处理传感器反馈信号的噪声和干扰,提高调速系统的稳定性和精确度。
在工作过程中,调速器首先通过测量电机的转速来获取反馈信号,然后将该信号与设定值进行比较。
如果转速低于设定值,调速器会增加输出电压或电流,以增加电机的转速。
如果转速高于设定值,调速器会减少输出电压或电流,以降低电机的转速。
这种负反馈控制的方式可以实现电机的精确调速。
直流调速器的工作原理基于电磁感应定律和电子技术的应用,通过精确控制电压和电流,实现对电机转速的调节,广泛应用于机械传动系统中的调速控制。
直流电机的基本工作原理直流励磁的磁路在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。
在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。
此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。
直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。
在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。
虽然直流发电机和直流电动机的用途各不同,但是它们的结构基本上一样,都是利用电和磁的相互作用来实现机械能与电能的相互转换。
直流电机的最大弱点就是有电流的换向问题,消耗有色金属较多,成本高,运行中的维护检修也比较麻烦。
因此,电机制造业中正在努力改善交流电动机的调速性能,并且大量代替直流电动机。
不过,近年来在利用可控硅整流装置代替直流发电机方面,已经取得了很大进展。
包括直流电机在内的一切旋转电机,实际上都是依据我们所知道的两条基本原则制造的。
一条是:导线切割磁通产生感应电动势;另一条是:载流导体在磁场中受到电磁力的作用。
因此,从结构上来看,任何电机都包括磁场部分和电路部分。
从上述原理可见,任何电机都体现着电和磁的相互作用,是电、磁这两个矛盾着的对立面的一。
我们在这一章里讨论直流电机的结构和工作原理,就是讨论直流电机中的“磁”和“电”如何相互作用,相互制约,以及体现两者之间相互关系的物理量和现象(电枢电动势、电磁转矩、电磁功率、电枢反应等)。
一、直流发电机的基本工作原理直流发电机和直流电动机具有相同的结构,只是直流发电机是由原动机(一般是交流电动机)拖动旋转而发电。
可见,它是把机械能变为电能的设备。
直流电动机则接在直流电源上,拖动各种工作机械(机床、泵、电车、电缆设备等)工作,它是把电能变为机械能的设备。
直流调速器就就是调节直流电动机速度得设备,上端与交流电源连接,下端与直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。
同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机得转速情况,必要时修正电枢电压输出,以此来再次调节电机得转速。
直流电机得调速方案一般有下列3种方式:1、改变电枢电压;(最长用得一种方案)2、改变激磁绕组电压;3、改变电枢回路电阻。
其实就就是可控硅调压电路,电机拖动课本上非常清楚了直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。
转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用调压调速,机械特性曲线很硬,能够在保证了输出转矩不变得情况下,调整转速,很容易实现高精度调速弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。
缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。
直流调速器直流调速器就是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等、一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压得隔离变换,电路得比例常数、积分常数与微分常数用PID适配器调整。
该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有得一切功能。
直流调速器使用条件•1、海拔高度不超过1000米.(超过1000米,额定输出电流值有所降低)2、周围环境温度不高于40℃不低于-10℃。
3、周围环境相对湿度不大于85[%],无水凝滴。
4、没有显着震动与颠簸得场合。
5、周围介质无爆炸危险,无足以腐蚀金属与破坏绝缘得气体及导电尘埃。
6、户内使用•1、输入主电源电压:交流三相380V50HZ2、电网电压允许差:—5[%]---10[%]3、电网频率允许差+ -2[%]4、基本参数5、调速范围:大于1:506、静差度:小于等于5[%]直流调速器用户接线图•1、外接调速电位器;ﻫﻫ2、测速发电机输入及转速表输出;3、继电器触点输出;4、外接主电源常闭触点。
直流调速风机工作原理今天来聊聊直流调速风机工作原理的事儿,我发现这里面还真有不少有趣的门道呢。
先从咱们生活中常见的现象说起吧。
你有没有注意过那种带调速功能的小风扇,就像咱们夏天放在桌上的那种。
你一转那个旋钮,风扇转速就变了,风的大小也就跟着变了,直流调速风机呢,在原理上也有点这个意思。
其实,直流调速风机主要是靠控制直流电机的转速来调节风机的风量。
这里就涉及到一个关键的东西,叫直流电机。
那直流电机怎么就能实现调速呢?打个比方吧,你可以把直流电机想象成一个人在推磨,电压呢就像是这个人使的力气。
如果给他的电压大,那就相当于他力气大,推磨的速度就快,直流电机转得也就快,风机的风叶跟着就转得快,风量就大了;要是电压小呢,就像这人没什么力气了,磨推得慢,电机转速变慢,风机风量就小了。
这就要说到专门控制直流电机电压的一些办法了。
控制电压的方式有好几种,像是通过改变电阻大小来改变电压。
老实说,我一开始也不明白为什么改变电阻就能改变电压呢?后来研究学习才知道,就好比水流在水管里,水管粗细(电阻)变了,同样的水压(电源电压)下,水流的速度(电流)就会改变,再根据欧姆定律,电压也就跟着变了。
直流调速风机在实际应用的场景可多了。
比如说在一些机房里面,用来给设备散热。
有时候设备需要的散热量不是一成不变的,白天工作的时候热量大,可能需要风机高速运转,风量很大的来散热;到了晚上,设备休息了,产生热量小,这时候就让风机慢一点转就行了。
这种直流调速风机就可以根据实际的散热需求精准地调整风速风量,既满足散热要求,又能节省能源。
不过这里要注意一点哦,直流电机在调速的时候,对电源的稳定性要求还挺高的,如果电源波动太大,可能会影响风机的正常工作寿命,还可能导致风量控制不够精准。
这也是在使用和维护直流调速风机要着重关注的地方。
说到这里,你可能会问,那跟交流风机比起来,直流调速风机的优势是不是就只有调速方便这点呢?其实不是的。
这里面还涉及到很多其他的因素。
第一部分直流电机的基本工作原理
一、直流电机的用途
直流电动机的优点:
1 调速范围广,易于平滑调节
2 过载、启动、制动转矩大
3 易于控制,可靠性高
4 调速时的能量损耗较小
缺点:换向困难,维修比较麻烦,制造成本高(与相
同功率的交流异步电机比较。
应用:机床方面的应用:龙门刨床、导轨磨床、龙门铣床等设备的工作驱动电机,导轨磨床、镗床、铣床等设备的主轴电机;
轧钢机、电车、电气铁道牵引、造纸、纺织拖动;
直流发电机:用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。
二、直流电机的工作原理
原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。
1、直流电机的工作原理
工作原理:导体在磁场中运动时,导体中会感应出电势e;e=B×l×v;
B:磁密
L:导体长度;
V:导体与磁场的相对速度。
正方向:用右手定则判断。
电势e正方向表示电位升高的方向,与U相反。
如果同一元件上e和U正方向相同时,e= -U。
理解:电磁感应原理的变形(变化的磁通产生感应电动势)
3、直流电动机的工作原理图。
(1)构成:
磁场:图中N和S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。
励磁绕组——容量较小的发电机是用永久磁铁做磁极的。
容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。
用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。
电枢绕组:在N极和S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。
换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。
换向器上压着固定不动的炭质电刷。
电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。
电动机向负载输出机械功率的同时,却向电动机输入电功率,电动机起着将电能转换为机械能的作用。
能量转换:
电能->电磁转矩->负载(机械能)
3、电机的结构要求:
1 电磁要求: 产生磁场,感应出电动势,通过电流,产生电磁转矩
2机械要求:传递转矩,保持坚固稳定,冷却的要求,检修,运行可靠。
一、定子
定子的作用是产生磁场和作为电机机械支撑。
它由主磁极、换向磁极、电刷、机座、端盖和轴承等组成
二、转子
转子又称电枢,是电机的旋转部分。
它由电枢铁心、绕组、换向器等组成。
三、铭牌和额定值
为了使电机安全而有效地运行,制造厂对电机的工作条件都加以技术规定。
按照规定的工作条件进行运行的状态叫做额定工作状态。
电机在额定工作时的各种技术数据叫做额定值,一般加下标e表示。
这些额定值都列在电机的铭牌上,使用电机前,应熟悉铭牌。
使用中的实际值,一般不应超过铭牌所规定的额定值。
(一)型号:它表示电机的类别。
例如:Z2--12
Z:直流;2:设计序号;1:铁心长度;2:机座号
(二)额定电流Ie:指电源输入到电动机的允许电流。
(三)额定电压Ue:指输入到电动机上的允许电压。
(四)额定转速ne:这是指电机在额定工作状态时,应达到的转速。
(五)额定功率(额定容量) Pe:指在额定电压、额定电流和额定转速下,电动机轴上输出的机械功率Pe=Ue×Ie×ηe
(六)额定效率ηe:额定功率与输入功率之比,称为电机的额定效率,即ηe=(额
定功率/输入功率)×100 %
直流电机的励磁方式
按励磁方式不同,电机可分为
(一)他励直流电机电枢和励磁绕组由两个独立的直流电源供电。
(二)并励直流电机电枢和励磁绕组并联后由一个独立的直流电源供电。
(三)串励直流电机电枢和励磁绕组串联后由一个独立的直流电源
供电
(四)复励直流电机复励电机有两个绕组,一个并励绕组,一个串励
绕组,并励绕组和电枢并联,和串励绕组串联后由
一个独立的直流电源供电。
直流电机调速特性
一、直流电机的转速公式:
:电机磁通量,与励磁电流有关;
:电枢回路电阻;
:电机的扭矩;
:电枢电压;
问题:直流电机调速的方式有几种?
二、直流电机的机械特性
目前我们使用的直流调速器主要通过上述哪些方式进行调速?
你所知道的哪些设备是采用这种方式进行启动的?为什么要采用这种启动方式?有什么好处?
三、他励直流电机的能耗制动:
直流调速器基本原理功能
一、直流电机调速器的工作原理
4Q系列三相交流电源电枢回路控制框图:
通过对大功率晶闸管的导通角的控制,将交流电整流为所需的直流电,提供给直流电动机使用;上图为三相全桥整流,4Q(4象限运行)动力部分基本原理图;可实现回馈制动功能;
单相交流电源供电原理与上图基本相同,上图中减少一对晶闸管即可;(单相供电主要应用于小功率驱动器)
1Q系列三相交流电源电枢回路控制框图:
上图为三相全桥整流,1Q(1)象限运行)动力部分基本原理图;(与4Q相比较,j减少使用6只晶闸管);没有回馈制动功能;
励磁回路控制原理图,通过控制两只晶闸管的导通角,可以控制输出的直流电压;
直流调速器从控制核心的角度分为:模拟控制和数字控制;
模拟式直流调速器的特点:电路简单,价格较为便宜,性价比较好,但参数可调整的较少,调整参数不直观,更多的凭经验办事,且无法直观了解调速器的运行状态;
数字式直流调速器的特点:功能强大,价格较同规格的模拟式产品贵,参数调整较为方便、故障诊断功能强大;调速稳定性好,不会因为时间长而发生信号漂移的问题;
直流调速器主要以调节上述两个指标为整个控制目标,(在选型时可根据需要选择是否带励磁控制功能;)
调速的基本原则:
A、
B、在额定转速下,以调节电枢电压的目标;(在该速度段,电机可输出最大的扭矩)
C、
D、当直流电动机需要运行在高于额定转速情况时,设置电枢电压上升到设定的最大值
后,通过减少励磁电流来达到提高转速的目的;(在该速度段,电机的最大输出扭矩随转速的提升而下降)。