The Forward Time Projection Chamber (FTPC) in STAR
- 格式:pdf
- 大小:851.44 KB
- 文档页数:10
Charge separation relative to the reaction plane in Pb-Pb collisions at ffiffiffiffiffiffiffiffiffis NN p ¼2:76TeVB.Abelev et al.*(ALICE Collaboration)(Received 5July 2012;published 2January 2013)Measurements of charge-dependent azimuthal correlations with the ALICE detector at the LHC arereported for Pb-Pb collisions at ffiffiffiffiffiffiffiffis NN p ¼2:76TeV .Two-and three-particle charge-dependent azimuthal correlations in the pseudorapidity range j j <0:8are presented as a function of the collision centrality,particle separation in pseudorapidity,and transverse momentum.A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed,which shows little or no collision energy dependence when compared to measurements at RHIC energies.This provides a new insight for under-standing the nature of the charge-dependent azimuthal correlations observed at RHIC and LHC energies.DOI:10.1103/PhysRevLett.110.012301PACS numbers:25.75.Ld,11.30.Er,11.30.Qc,12.38.AwThe possibility to observe parity violation in the strong interaction using relativistic heavy-ion collisions has been discussed for many years [1–3].In quantum chromody-namics (QCD),this symmetry violation originates in the interaction between quarks and topologically nontrivial gluonic fields,instantons,and sphalerons [4].This interac-tion,which is characterized by the topological charge [5],breaks the balance between the number of quarks with different chirality,resulting in a violation of the P and CP symmetry.In [6,7],it was suggested that in the vicinity of the deconfinement phase transition,and under the influ-ence of the strong magnetic field generated by the colliding nuclei,the quark spin alignment along the direction of the angular momentum (i.e.the direction of the magnetic field)and the imbalance of the left-and right-handed quarks,generates an electromagnetic current.The experimental search of these effects has intensified recently,following the realization that the consequent quark fragmentation into charged hadrons results in a charge separation along the direction of the magnetic field,and perpendicular to the reaction plane (the plane of symmetry of a collision defined by the impact parameter vector and the beam direction).This phenomenon is called the chiral magnetic effect (CME).Because of fluctuations in the sign of the topologi-cal charge,the resulting charge separation averaged over many collisions is zero.This makes the observation of the CME possible only via P -even observables,expressed in terms of two-particle and multiparticle correlations.The previous measurement of charge separation by the STAR Collaboration [8]is consistent with the qualitative expec-tations for the CME and has triggered an intense discussion [9–13].A significant source of uncertainty in the theoretical consideration of the CME is related to the expected center-of-mass energy dependence.In [7],the authors argued that the uncertainty in making any quantitative prediction relies on the time integration over which the magnetic field develops and decays.As long as a decon-fined state of matter is formed in a heavy-ion collision,the magnitude of the effect should either not change or should decrease with increasing energy [7].In addition,in [12]it is also suggested that there should be no energy depen-dence between the top RHIC and the LHC energies,based on arguments related to the universality of the underlying physical process,without however explicitly quantifying what the contribution of the different values and time evolution of the magnetic field for different energies will be.On the other hand,in [13]it is argued that the CME should strongly decrease at higher energies,because the magnetic field decays more rapidly.Such spread in the theoretical expectations makes it important to measure the charge-dependent azimuthal correlations at the LHC,where the collision energy is an order of magnitude higher compared to the RHIC.In this Letter we report the measurement of charge-dependent azimuthal correlations at midrapidity in Pb-Pb collisions at the center-of-mass energy per nucleon pair ffiffiffiffiffiffiffiffis NN p ¼2:76TeV by the ALICE Collaboration at the LHC.Azimuthal correlations among particles produced in a heavy-ion collision provide a powerful tool for the experi-mental study of particle production with respect to the reaction plane.They are usually quantified by the aniso-tropic flow coefficients,v n ,in a Fourier decomposition [14].Local violation of parity symmetry may result in the additional P -odd sinus terms [3,8,15]:dNd’ $1þ2X n ½v n; cos ðn Á’ Þþa n; sin ðn Á’ Þ ;(1)where Á’ ¼’ ÀÉRP is the azimuthal angle ’ of the charged particle of type relative to the reaction plane*Full author list given at the end of the article.Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0License .Further distri-bution of this work must maintain attribution to the author(s)and the published article’s title,journal citation,and DOI.angle,ÉRP.The leading order coefficient a1; reflects the magnitude while the higher orders(a n; for n>1)describe the specific shape in azimuth of the effects from local parity violation.We thus employ a multiparticle correlator [15]that probes the magnitude of the a1coefficient,and at the same time suppresses the background correlations unrelated to the reaction plane:h cosð’ þ’ À2ÉRPÞi¼h cosÁ’ cosÁ’ iÀh sinÁ’ sinÁ’ i:(2) The indices and refer to the charge of the particles.The brackets denote an average over the particle pairs within the event as well as an average over the analyzed events.In practice,the reaction plane angle is not known and is esti-mated by constructing the event plane using azimuthal par-ticle distributions.In Eq.(2),the terms h cosÁ’ cosÁ’ i and h sinÁ’ sinÁ’ i quantify the correlations in-and out-of plane,respectively.The latter is sensitive to the charge correlations resulting from the CME:h sinÁ’ sinÁ’ i$ h a1; a1; i.The construction of the correlator in Eq.(2)as the difference between these two contributions suppresses correlations not related to the reaction plane orientation (nonflow).The contribution from the CME to the correla-tions of pairs of particles with same and opposite charge is expected to be similar in magnitude and opposite in sign. This expectation could be further modified by the medium created in a heavy-ion collision,that may result in the dilution of the correlations between particles with opposite sign[6,7].In order to evaluate each of the two terms in Eq.(2),we also measure the two-particle correlator:h cosð’ À’ Þi¼h cosÁ’ cosÁ’ iþh sinÁ’ sinÁ’ i;(3) which in contrast to the correlator in Eq.(2)is independent of the reaction plane angle and susceptible to the large P-even background contributions.The combination of these correlators provides access to both components, h cosÁ’ cosÁ’ i and h sinÁ’ cosÁ’ i,which is impor-tant for detailed comparisons with model calculations.It should be pointed out that both correlators of Eq.(2) and Eq.(3)could be affected by background sources.In [10],it is argued that the effect of momentum conservation influences in a similar way the pairs of particles with opposite and same charge,and could result in a potentially significant correction to both h cosð’ þ’ À2ÉRPÞi and h cosð’ À’ Þi.Also in[10],it was suggested that local charge conservation effects may be responsible for a sig-nificant part of the observed charge dependence of the correlator h cosð’ þ’ À2ÉRPÞi.Recent calculations [16]suggest that the correlator in Eq.(2)may have a negative(i.e.out-of-plane),charge-independent,dipole flow contribution originating fromfluctuations in the initial energy density of a heavy-ion collision.A description of the ALICE detector and its perform-ance can be found in[17,18].For this analysis,the follow-ing detector subsystems were used:the time projection chamber(TPC)[19],the silicon pixel detector(SPD), two forward scintillator arrays(VZERO),and two zero degree calorimeters(ZDC)[17].We analyzed a sample of about13Â106minimum-bias trigger events of Pb-Pb collisions atffiffiffiffiffiffiffiffis NNp¼2:76TeV collected with the ALICE detector.The standard ALICE offline event selection criteria[20]were applied,including a collision vertex cut ofÆ7cm along the beam axis.The collision centrality is estimated from the amplitude mea-sured by the VZERO detectors[17].The data sample is divided into centrality classes which span0%-70%of the hadronic interaction cross section,with the0%-5%class corresponding to the most central(i.e.smaller impact pa-rameter)collisions.Charged particles reconstructed by the TPC are accepted for analysis within j j<0:8and0:2< p T<5:0GeV=c.A set of requirements described in[20] were applied in order to ensure the quality of the tracks but also to reduce the contamination from secondary particles. To evaluate the systematic uncertainties in the analysis, events recorded with two different magneticfield polarities were analyzed leading to an uncertainty that is less than7% for all centrality classes.The cut on the collision vertex was varied fromÆ7cm toÆ10cm from the nominal collision point,with steps of1cm,contributing a maximum of5%to the total uncertainty.A bias due to the centrality determina-tion was studied by using multiplicities measured by the TPC or the SPD,rather than the VZERO,and was found to be less than10%.Contamination due to secondary tracks that do not originate from the collision vertex was reduced by requiring that the distance of closest approach between tracks and the primary vertex is less than2cm.The effect of secondary tracks on the measurement was estimated by varying the cut from2to4cm in steps of0.5cm and was calculated to be below15%.Effects due to nonuniform acceptance of the TPC were estimated to be below2%and are corrected for in the analysis.A significant contribution to the systematic error is coming from the uncertainty in the v2measurement,which is used as an estimate of the reaction plane resolution.The v2 estimate is obtained from the2-and4-particle cumulant analyses[20],which are affected in different ways by non-flow effects andflowfluctuations.For this analysis,v2was taken as the average of the two values,with half of the difference between v2f2g and v2f4g being attributed as the systematic uncertainty.The values of this uncertainty range from9%for the20%–30%centrality to18%(24%)for the 50%–60%(60%–70%)centrality class.The differences in the results from the four independent analysis methods (described below)were also considered as part of the system-atic uncertainty and were estimated to be3%for the 20%–30%and the50%–60%centrality bins and47%for the most peripheral centrality class.The contributions from all effects were added in quadrature to calculate the totalsystematic uncertainty.For the correlation between pairs of particles with the same charge it varies from 19%(28%)for the 20%–30%(50%–60%)centrality up to 55%for the 60%–70%centrality class.The correlations between oppo-site charged particles for 0%–60%centrality and for the same charge pairs for 0%–20%centrality are compatible with zero with a systematic error below 5:5Â10À5.Figure 1(a)presents the centrality dependence of the three-particle correlator,defined in Eq.(2).The correla-tions of the same charge pairs for the positive-positive and negative-negative combinations are found to be consistent within statistical uncertainties and are combined into one set of points,labeled same .The difference between the correlations of pairs with same and opposite charge indi-cates a charge dependence with respect to the reaction plane,as may be expected for the CME.To test the bias from the reaction plane reconstruction,four independent analyses were performed.The first analysis uses a cumu-lant technique [21],whereas for the three other analyses the orientation of the collision symmetry plane is estimated from the azimuthal distribution of charged particles in the TPC,and hits in the forward VZERO and ZDC detectors [22].There is a very good agreement between the results obtained with the event plane estimated from different detectors covering a wide range in pseudorapidity.This allows us to conclude that background sources due to corre-lations not related to the orientation of the reaction plane are negligible,with perhaps the exception of the peripheral collisions for the pairs of particles with opposite charge.Figure 1(b)shows the centrality dependence of the two-particle correlator h cos ð’ À’ Þi ,as defined in Eq.(3),which helps to constrain experimentally the P -even back-ground correlations.The statistical uncertainty is smaller than the symbol size.The two-particle correlations for the same and opposite charge combinations are always posi-tive and exhibit qualitatively similar centrality depen-dence,while the magnitude of the correlation is smaller for the same charged pairs.Our two-particle correlation results differ from those reported by the STARCollaboration for Au-Au collisions at ffiffiffiffiffiffiffiffis NN p ¼200GeV [8]for which negative correlations are observed for the same charged pairs.Figure 1(c)shows the h cosÁ’ cosÁ’ i and h sinÁ’ sinÁ’ i terms separately.For pairs of particles of the same charge,we observe that the h sinÁ’ sinÁ’ i correlations are larger than the h cosÁ’ cosÁ’ i ones.On the other hand,for pairs of opposite charge,the two terms are very close except for the most peripheral collisions.Further interpretation of the results presented in Fig.1(c)in terms of in-and out-of-plane correlations is complicated due to the significant nonflow contribution in h cos ð’ À’ Þi .Figure 2presents the three-particle correlator h cos ð’ þ’ À2ÉRP Þi as a function of the collision centrality com-pared to model calculations and results for RHIC energies.The statistical uncertainties are represented by the errorbars.The shaded area around the points indicates the systematic uncertainty based on the different sources described above.Also shown in Fig.2are STAR results [8].The small difference between the LHC and the RHIC data indicates little or no energy dependence for the three-particle correlator when changing from the collisionenergy of ffiffiffiffiffiffiffiffis NN p ¼0:2TeV to 2.76TeV .In Fig.2,the ALICE data are compared to the expectations from the HIJING model [23].The HIJING results for the three-particle correlations are divided by the experimentally〉)R P Ψ - 2βϕ + αϕ c o s (〈-0.50.5-3〉)βϕ-αϕ c o s (〈00.0020.0040.006centrality, %0.0020.003FIG.1(color online).(a)Centrality dependence of the correla-tor defined in Eq.(2)measured with the cumulant method and from correlations with the reaction plane estimated using the TPC,the ZDC,and the VZERO detectors.Only statistical errors are shown.The points are displaced slightly in the horizontal direction for visibility.(b)Centrality dependence of the two-particle corre-lator defined in Eq.(3)compared to the STAR data [8].The width of the solid red lines indicates the systematic uncertainty of the ALICE measurement.(c)Decomposition of the correlators into h cosÁ’ cosÁ’ i and h sinÁ’ sinÁ’ i terms.The ALICE results in (b)and (c)are obtained with the cumulant method.measured value of v 2(i.e.h cos ð’ þ’ À2’c Þi =v 2f 2g )as reported in [20]due to the absence of collective azimuthal anisotropy in this model.Since the points do not exhibit any significant difference between the correlations of pairs with same and opposite charge,they were averaged in the figure.The correlations from HIJING show a significant increase in the magnitude for very peripheral collisions.This can be attributed to correlations not related to the reaction plane orientation,in particular,from jets [8].The results from ALICE in Fig.2show a strong corre-lation for pairs with the same charge and simultaneously a very weak correlation for the pairs of opposite charge.This difference in the correlation magnitude depending on the charge combination could be interpreted as ‘‘quenching’’of the charge correlations for the case when one of the particles is emitted toward the center of the dense medium created in a heavy-ion collision [6,7].An alternative ex-planation can be provided by a recent suggestion [16]that the value of the charge-independent version of the corre-lator defined in Eq.(2)is dominated by directed flow fluctuations.The sign and the magnitude of these fluctua-tions based on a hydrodynamical model calculation for RHIC energies [16]appear to be very close to the mea-surement.Our results for charge-independent correlations are given by the shaded band in Fig.2.The thick solid line in Fig.2shows a prediction [13]for the same sign correlations due to the CME at LHC ener-gies.The model makes no prediction for the absolute magnitude of the effect and can only describe the energy dependence by taking into account the duration and time evolution of the magnetic field.It predicts a decrease of correlations by about a factor of 5from RHIC to LHC,which would significantly underestimate the observed magnitude of the same sign correlations seen at the LHC.At the same time in [7,12],it was suggested that the CME might have the same magnitude at the LHC and at RHIC energies.Figure 3shows the dependence of the three-particle correlator on the transverse momentum difference,j p T ; Àp T ; j ,the average transverse momentum,ðp T ; þp T ; Þ=2,and the pseudorapidity separation,j À j ,of the pair for the 30%-40%centrality range.The pairs of opposite charge do not show any significant dependence on the pseudorapidity difference,while there is a dependencecentrality, %〉)R P Ψ - 2βϕ + αϕ c o s (〈-0.6-0.4-0.200.20.40.6-3FIG.2(color online).The centrality dependence of the three-particle correlator defined in Eq.(2).The circles indicate the ALICE results obtained from the cumulant analysis.The stars show the STAR data from [8].The triangles represent the three-particle correlations [h cos ð’ þ’ À2’c Þi ]from HIJING [23]corrected for the experimentally measured v 2f 2g [20].Points are displaced horizontally for visibility.A model prediction for the same sign correlations incorporating the chiral magnetic effect for LHC energies [13]is shown by the solid line.The shaded band represents the centrality dependence of the charge-independent correlations.)| (GeV/c T,β - p T,α|p 〉)R P Ψ - 2βϕ + αϕc o s (〈-0.4-0.20.2-3))/2 (GeV/c T,β + p T,α(p |βη - αη = |η∆FIG.3(color online).The three-particle correlator defined in Eq.(2)as a function of (a)the transverse momentum difference,j p T ; Àp T ; j ,(b)the average transverse momentum,ðp T ; þp T ; Þ=2,and (c)the rapidity separation,j À j ,of the charged particle pair of same (closed symbols)and opposite (open symbols)sign.on j p T ; Àp T ; j (stronger)and ðp T ; þp T ; Þ=2(weaker).The correlations for pairs of particles of the same charge show no strong dependence on the p T difference,allowing one to exclude any type of short range correlations (e.g.quantum statistics correlations)as the main source of the effect.In addition,it is seen that the magnitude of the same charge correlations increases with increasing average p T of the pair.This observation is in contradiction to the initial expectations from theory [7]that the effect should originate from low p T particles.The dependence of the correlations on the j À j indicates a width of one unit in pseudor-apidity,beyond which the value of h cos ð’ þ’ À2ÉRP Þi is close to zero up to Á %1:5.Similar results were reported also at RHIC energies [8].At the moment there are no quantitative model calculations of the charge-dependent differential correlations.In summary,we have measured the charge-dependentazimuthal correlations in Pb-Pb collisions at ffiffiffiffiffiffiffiffis NN p ¼2:76TeV at the LHC using the ALICE detector.Both two-and three-particle correlations are reported.A clear signal compatible with a charge-dependent separation rela-tive to the reaction plane is observed.However,our results are not described by the only available quantitative model prediction of the CME for the LHC energy.The lack of realistic model calculations for the centrality and pair differential dependencies based on models incorporating CME and possible background contributions does not allow us to make a firm conclusion regarding the nature of the charge-dependent correlations originally observed at RHIC and now established at the LHC.The observation of a small collision energy dependence of the three-particle correlation and the simultaneous significant change in the two-particle correlations between top RHIC and LHC energies put stringent constraints on models built to interpret such correlations.Analyses of higher harmonic correlations are planned and may yield a better understanding of the com-plex charge-dependent correlations seen at LHC energies.The ALICE Collaboration would like to thank all its engi-neers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex.The ALICE Collaboration acknowledges the following fund-ing agencies for their support in building and running the ALICE detector:Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan,Armenia;ConselhoNacional de Desenvolvimento Cientı´fico e Tecnolo ´gico (CNPq),Financiadora de Estudos e Projetos (FINEP),Fundac ¸a˜o de Amparo a `Pesquisa do Estado de Sa ˜o Paulo (FAPESP);National Natural Science Foundation of China (NSFC),the Chinese Ministry of Education (CMOE),and the Ministry of Science and Technology of China (MSTC);Ministry of Education and Youth of the Czech Republic;Danish Natural Science Research Council,the Carlsberg Foundation,and the Danish National Research Foundation;The European Research Council under the EuropeanCommunity’s Seventh Framework Programme;Helsinki Institute of Physics and the Academy of Finland;French CNRS-IN2P3,the ‘‘Region Pays de Loire,’’‘‘Region Alsace,’’‘‘Region Auvergne,’’and CEA,France;German BMBF and the Helmholtz Association;General Secretariat for Research and Technology,Ministry of Development,Greece;Hungarian OTKA and National Office for Research and Technology (NKTH);Department of Atomic Energy and Department of Science and Technology of the Government of India;Istituto Nazionale di Fisica Nucleare (INFN)of Italy;MEXT Grant-in-Aid for Specially Promoted Research,Japan;Joint Institute for Nuclear Research,Dubna;National Research Foundation of Korea (NRF);CONACYT,DGAPA,Me´xico,ALFA-EC,and the HELEN Program (High-Energy Physics Latin-American–European Network);Stichting voor Fundamenteel Onderzoek der Materie (FOM)and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),Netherlands;Research Council of Norway (NFR);Polish Ministry of Science and Higher Education;National Authority forScientific Research-NASR (Autoritatea Nat ¸ionala˘pentru Cercetare S ¸tiint¸ifica ˘-ANCS);Federal Agency of Science of the Ministry of Education and Science of Russian Federation,International Science and Technology Center,Russian Academy of Sciences,Russian Federal Agency of Atomic Energy,Russian Federal Agency for Science and Innovations and CERN-INTAS;Ministry of Education of Slovakia;Department of Science and Technology,South Africa;CIEMAT,EELA,Ministerio de Educacio´n y Ciencia of Spain,Xunta de Galicia (Consellerı´a de Educacio ´n),CEADEN,Cubaenergı´a,Cuba,and IAEA (International Atomic Energy Agency);Swedish Research Council (VR)and Knut &Alice Wallenberg Foundation (KAW);Ukraine Ministry of Education and Science;United Kingdom Science and Technology Facilities Council (STFC);the United States Department of Energy,the United States National Science Foundation,the State of Texas,and the State ofOhio.[1]T.D.Lee,Phys.Rev.D 8,1226(1973);T.D.Lee andG.C.Wick,Phys.Rev.D 9,2291(1974).[2]P.D.Morley and I.A.Schmidt,Z.Phys.C 26,627(1985).[3] D.Kharzeev,R.D.Pisarski,and M.H.G.Tytgat,Phys.Rev.Lett.81,512(1998);D.Kharzeev and R.D.Pisarski,Phys.Rev.D 61,111901(2000).[4]T.Scha¨fer and E.V .Shuryak,Rev.Mod.Phys.70,323(1998).[5]S.S.Chern and J.Simons,Ann.Math.99,48(1974).[6] D.Kharzeev,Phys.Lett.B 633,260(2006);K.Fukushima, D.E.Kharzeev,and H.J.Warringa,Phys.Rev.D 78,074033(2008).[7] D.Kharzeev,L.D.McLerran,and H.J.Warringa,Nucl.Phys.A803,227(2008).[8] B.I.Abelev et al.(STAR Collaboration),Phys.Rev.Lett.103,251601(2009); B.I.Abelev et al.(STAR Collaboration),Phys.Rev.C 81,54908(2010).[9] B.Mu¨ller and A.Scha¨fer,Phys.Rev.C82,057902(2010).[10]S.Schlichting and S.Pratt,Phys.Rev.C83,014913(2011);S.Pratt,S.Schlichting,and S.Gavin,Phys.Rev.C84,024909(2011).[11] A.Bzdak,V.Koch,and J.Liao,Phys.Rev.C81,031901(2010);A.Bzdak,V.Koch,and J.Liao,Phys.Rev.C83, 014905(2011).[12] A.R.Zhitnitsky,Nucl.Phys.A853,135(2011);A.R.Zhitnitsky,Nucl.Phys.A886,17(2012).[13]V.D.Toneev and V.V oronyuk,arXiv:1012.1508.[14]S.V oloshin and Y.Zhang,Z.Phys.C70,665(1996);A.M.Poskanzer and S.A.V oloshin,Phys.Rev.C58,1671 (1998).[15]S.A.V oloshin,Phys.Rev.C70,057901(2004).[16] D.Teaney and L.Yan,Phys.Rev.C83,064904(2011).[17]K.Aamodt et al.(ALICE Collaboration),JINST3,S08002(2008).[18]K.Aamodt et al.(ALICE Collaboration),J.Phys.G30,1517(2004);K.Aamodt et al.(ALICE Collaboration), J.Phys.G32,1295(2006).[19]J.Alme et al.(ALICE Collaboration),Nucl.Instrum.Methods Phys.Res.,Sect.A622,316(2010).[20]K.Aamodt et al.(ALICE Collaboration),Phys.Rev.Lett.105,252302(2010).[21] A.Bilandzic,R.Snellings,and S.V oloshin,Phys.Rev.C83,044913(2011).[22]S.V oloshin, A.M.Poskanzer,and R.Snellings,inRelativistic Heavy Ion Physics,Landolt-Bornstein V ol.1 (Springer-Verlag,Berlin,2010),pp.554.[23]M.Gyulassy and X.N.Wang,mun.83,307(1994);X.N.Wang and M.Gyulassy,Phys.Rev.D44,3501(1991).B.Abelev,1J.Adam,2D.Adamova´,3A.M.Adare,4M.M.Aggarwal,5G.Aglieri Rinella,6A.G.Agocs,7 A.Agostinelli,8S.Aguilar Salazar,9Z.Ahammed,10N.Ahmad,11A.Ahmad Masoodi,11S.A.Ahn,12S.U.Ahn,13A.Akindinov,14D.Aleksandrov,15B.Alessandro,16R.Alfaro Molina,9A.Alici,17,18A.Alkin,19E.Almara´z Avin˜a,9J.Alme,20T.Alt,21V.Altini,22S.Altinpinar,23I.Altsybeev,24C.Andrei,25A.Andronic,26V.Anguelov,27J.Anielski,28C.Anson,29T.Anticˇic´,30F.Antinori,31P.Antonioli,17L.Aphecetche,32H.Appelsha¨user,33N.Arbor,34S.Arcelli,8A.Arend,33N.Armesto,35R.Arnaldi,16T.Aronsson,4I.C.Arsene,26 M.Arslandok,33A.Asryan,24A.Augustinus,6R.Averbeck,26T.C.Awes,36J.A¨ysto¨,37M.D.Azmi,11M.Bach,21A.Badala`,38Y.W.Baek,39,13R.Bailhache,33R.Bala,16R.Baldini Ferroli,18A.Baldisseri,40A.Baldit,39F.Baltasar Dos Santos Pedrosa,6J.Ba´n,41R.C.Baral,42R.Barbera,43F.Barile,22G.G.Barnafo¨ldi,7L.S.Barnby,44V.Barret,39J.Bartke,45M.Basile,8N.Bastid,39S.Basu,10B.Bathen,28G.Batigne,32B.Batyunya,46C.Baumann,33I.G.Bearden,47H.Beck,33I.Belikov,48F.Bellini,8R.Bellwied,49E.Belmont-Moreno,9G.Bencedi,7S.Beole,50I.Berceanu,25A.Bercuci,25Y.Berdnikov,51D.Berenyi,7 A.A.E.Bergognon,32D.Berzano,16L.Betev,6A.Bhasin,52A.K.Bhati,5J.Bhom,53L.Bianchi,50N.Bianchi,54 C.Bianchin,55J.Bielcˇı´k,2J.Bielcˇı´kova´,3A.Bilandzic,56,47S.Bjelogrlic,57F.Blanco,58F.Blanco,49D.Blau,15C.Blume,33M.Boccioli,6N.Bock,29S.Bo¨ttger,59A.Bogdanov,60H.Bøggild,47M.Bogolyubsky,61L.Boldizsa´r,7M.Bombara,62J.Book,33H.Borel,40A.Borissov,63S.Bose,64F.Bossu´,50M.Botje,56B.Boyer,65E.Braidot,66P.Braun-Munzinger,26M.Bregant,32T.Breitner,59T.A.Browning,67M.Broz,68R.Brun,6E.Bruna,50,16G.E.Bruno,22D.Budnikov,69H.Buesching,33S.Bufalino,50,16K.Bugaiev,19O.Busch,27 Z.Buthelezi,70D.Caballero Orduna,4D.Caffarri,55X.Cai,71H.Caines,4E.Calvo Villar,72P.Camerini,73 V.Canoa Roman,74G.Cara Romeo,17W.Carena,6F.Carena,6N.Carlin Filho,75F.Carminati,6A.Casanova Dı´az,54J.Castillo Castellanos,40J.F.Castillo Hernandez,26E.A.R.Casula,76V.Catanescu,25 C.Cavicchioli,6C.Ceballos Sanchez,77J.Cepila,2P.Cerello,16B.Chang,37,78S.Chapeland,6J.L.Charvet,40S.Chattopadhyay,10S.Chattopadhyay,64I.Chawla,5M.Cherney,79C.Cheshkov,6,80B.Cheynis,80V.Chibante Barroso,6D.D.Chinellato,81P.Chochula,6M.Chojnacki,57S.Choudhury,10P.Christakoglou,56 C.H.Christensen,47P.Christiansen,82T.Chujo,53S.U.Chung,83C.Cicalo,84L.Cifarelli,8,6,18F.Cindolo,17J.Cleymans,70F.Coccetti,18F.Colamaria,22D.Colella,22G.Conesa Balbastre,34Z.Conesa del Valle,6 P.Constantin,27G.Contin,73J.G.Contreras,74T.M.Cormier,63Y.Corrales Morales,50P.Cortese,85I.Corte´s Maldonado,86M.R.Cosentino,66F.Costa,6M.E.Cotallo,58E.Crescio,74P.Crochet,39E.Cruz Alaniz,9E.Cuautle,87L.Cunqueiro,54A.Dainese,55,31H.H.Dalsgaard,47A.Danu,88D.Das,64K.Das,64I.Das,65S.Dash,89A.Dash,81S.De,10G.O.V.de Barros,75A.De Caro,90,18G.de Cataldo,91J.de Cuveland,21A.De Falco,76D.De Gruttola,90H.Delagrange,32A.Deloff,92V.Demanov,69N.De Marco,16E.De´nes,7 S.De Pasquale,90A.Deppman,75G.D.Erasmo,22R.de Rooij,57M.A.Diaz Corchero,58D.Di Bari,22T.Dietel,28C.Di Giglio,22S.Di Liberto,93A.Di Mauro,6P.Di Nezza,54R.Divia`,6Ø.Djuvsland,23A.Dobrin,63,82T.Dobrowolski,92I.Domı´nguez,87B.Do¨nigus,26O.Dordic,94O.Driga,32A.K.Dubey,10A.Dubla,57L.Ducroux,80P.Dupieux,39M.R.Dutta Majumdar,10A.K.Dutta Majumdar,64D.Elia,91D.Emschermann,28。
衍生工具远期合同会计处理方法英文回答:Derivative instruments, such as forward contracts, are financial contracts whose value is derived from an underlying asset or benchmark. These instruments are commonly used for hedging purposes or for speculative trading.The accounting treatment for forward contracts depends on their classification as either a cash flow hedge or a fair value hedge.For cash flow hedges, any changes in the fair value of the forward contract are initially recognized in other comprehensive income (OCI) and later reclassified to the income statement when the hedged transaction affects the income statement. The gain or loss on the forward contract is recognized in the income statement in the same period as the hedged item.For fair value hedges, any changes in the fair value of the forward contract are recognized in the income statement. The gain or loss on the forward contract is recognized in the income statement along with the gain or loss on the hedged item.In both cases, if the forward contract is notdesignated as a hedge or does not qualify for hedge accounting, any changes in its fair value are recognized in the income statement.Furthermore, when a forward contract is initially recognized, it is measured at fair value. Subsequent measurement depends on whether the contract is designatedas a fair value hedge or a cash flow hedge. If designatedas a fair value hedge, the contract is measured at fair value with changes recognized in the income statement. If designated as a cash flow hedge, the contract is measuredat fair value with changes recognized in OCI.Overall, the accounting treatment for forward contractsinvolves recognizing changes in fair value in either the income statement or OCI, depending on the classification as a cash flow hedge or a fair value hedge.中文回答:衍生工具远期合同的会计处理方法取决于其被分类为现金流量套期保值还是公允价值套期保值。
专利名称:Chamber发明人:木村 哲也申请号:JP実願平5-57168申请日:19931022公开号:JP実開平7-26465U公开日:19950519专利内容由知识产权出版社提供专利附图:摘要:(57)< Abstract > < Objective > The roof, interior finish work the wall and the floor at the time of, applicationThe chamber which assures the improvement ofCharacteristic is offered. < Constitution > Be able to provide horizontal projection piece 6, under this projection piece 6Sedge hat tree re where engagement section 7 is providedon side and is locked to building body body 1The roof panel 3 where the edge is mounted in ru 2 and projection piece 6With, be able to provide the engaged portion 9 which is engaged in engagement section 7 on top, the waterThe wall panel 4 where it can provide flat piece 10 in lower part and horizontal piece 10It had with the floor panel 5 where the edge is mounted.申请人:松下電工株式会社地址:大阪府門真市大字門真1048番地国籍:JP代理人:宮井 暎夫更多信息请下载全文后查看。
核物理实验中的探测器技术进展在探索微观世界的奥秘、深入研究核物理现象的征程中,探测器技术的不断发展和创新始终扮演着至关重要的角色。
核物理实验旨在揭示原子核的结构、性质以及各种核反应过程,而探测器则是获取这些宝贵信息的关键工具。
近年来,随着科学技术的飞速进步,核物理实验中的探测器技术也取得了显著的进展,为核物理研究带来了前所未有的机遇和挑战。
传统的核物理探测器主要包括气体探测器、闪烁探测器和半导体探测器等。
气体探测器,如正比计数器和盖革计数器,通过测量入射粒子在气体中产生的电离效应来探测粒子。
闪烁探测器则利用闪烁体材料在受到粒子激发时发出的闪光来实现探测。
半导体探测器,如硅探测器,凭借其高分辨率和良好的能量线性响应,在核物理实验中得到了广泛应用。
然而,随着核物理研究的深入和实验要求的不断提高,传统探测器在某些方面逐渐显露出局限性。
例如,在对高能粒子的探测中,传统探测器的能量分辨率和位置分辨率可能无法满足要求;在大规模实验中,探测器的计数率和抗辐射能力也面临着严峻的考验。
为了克服这些问题,科研人员不断探索和创新,推动了新型探测器技术的发展。
一种重要的新型探测器技术是时间投影室(Time Projection Chamber,TPC)。
TPC 可以同时提供粒子的三维径迹和能量信息,具有出色的空间分辨率和能量分辨率。
它通过在充满气体的腔体中施加电场,使入射粒子电离产生的电子在电场作用下漂移,并在探测器的端面上被收集和测量。
通过分析电子的漂移时间和位置,可以重建粒子的径迹和能量。
TPC 在重离子碰撞实验、中微子实验等领域发挥了重要作用。
另一个引人注目的进展是微结构气体探测器(Micro Pattern Gas Detector,MPGD)的出现。
MPGD 结合了气体探测器和半导体探测器的优点,具有高计数率、高位置分辨率和良好的时间分辨率。
其中,气体电子倍增器(Gas Electron Multiplier,GEM)和微网格气体探测器(Micromegas)是 MPGD 的典型代表。
汽车行业术语(下)nondispersive ultraviolet氢火焰离子化检测器flame ionization ditector总碳氢化合物分析仪total hydrocarbon analyzer气相色谱仪gas chromatograph化学发光检测器chemiluminescent detector臭氧发生器ozonator底盘测功机chassis dynamometer惯性模拟系统inertia simulation system功率吸收装置device for power absorption转鼓roller空气阻力aerodynamic resistance滚动阻力rolling resistance当量惯量equivalent inertia滤纸式测试仪filter-type measuring apparatus 转速表tachometer成套分析设备analytical train组合气室stacked cell参比室reference cell滤光室filter cell干扰滤光器interferential filter加热式氢火焰离子化检测器heated flame ionization detector 氮氧化合物转化器Nox converter(No2-NO)反应室reactive cell (chamber)催化燃烧分析仪catalytic combustion analyzer碳氢化合物响应度hydrocarbon response碳数当量carbon equivalent百万分率碳parts per million carbon (ppmC) 氧干扰oxygen interference氧校正oxygen correction湿度较正系数humidity correction (kh)factor拖尾tailing五氧化二碘法iodine penta-oxide method平衡气balance gas零点气zero grade gas (air zero gas)校正气calibrating gas量距气span gas拉格朗日拟合lagrangian fit二氧化碳干扰校正corrected for CO2 extraction袋式分析bag analysis柴油机排烟测定仪器diesel smoke measuring instrument排气烟度opacity of exhaust gas烟度计opacimeter全流式烟度计full flow opacimeter取样烟度计sampling opacimeter光线有效通过长度effective path length of light ray 吸光系数light absorption coefficient峰值储存器peak hold device烟室smoke chamber引进气体incoming gas排出气体outgoing gas色温color temperature人眼的感光曲线photoptic curve of human eye 光谱反应曲线spectral response curve光源light source光束light beam直接光线direct light ray反射光线reflected light rays散射光diffused light光通量light lux中性滤波仪neutral optical filter烟度计物理反应时间physical response time of opacimeter 电气响应时间electrical response time倍频程octave热时常数thermal time-constant烟柱smoke column标定用遮光片calibrating screen示踪气体tracer gas扫气scavenge air冷却装置cooling device膨涨箱expansion tank暗度刻度obscuration scale光学试验台optical bench热电偶thermocouple气密性gas tightness阻尼室dampling chamber烟度计smokemeter光学式烟度计optical smokemeter不透光式烟度计smoke opacimeter比尔-朗伯定律beer-lambert law不透光度opacity (lgiht obscuration )(N)透光度transmittance(t)光吸收系数coefficient of light absorption (k) 光通道有效长度effective optical path length(L) 滤纸式烟度计filter type smokemeter有效长度effective length抽气量swept volume滤纸有效面积effective filter area死区容积dead volume烟度单位smoke unit(index)滤纸式烟度单位filter smoke number (FSN)内装式烟度计built-in (in-line)smokemeter外装式烟度计mounted(end-of line) smokemeter全流式烟度计full-flow smokemeter部分流式烟度计part-flow smokemeter取样探头probe排气收集系统exhaust gas collection equipment稀释空气样气收集袋sample collection bag for dilution air稀释空气取样探头sample probe for dilution air稀释排气混合气收集袋sample collection bag for dilute exhaust mixture 取样方法和设备sampling method and device全流取样法full flow sampling部分流取样法partial flow sampling定容取样法constant volume sampling (CVS) 全量袋式取样法total bag sampling比例取样法proportional smapling直接取样法direct sampling method动态或连续取样法dynamic or continuous sampling 容积式泵positive displacement pump临界流量文杜里管critical flow venturi稀释系数dilution factor稀释用空气dilution air稀释排气diluted exhaust稀释风道dilution ratio取样探管dilution tunnel取样袋sampling bag逆向清洗back flush试验方法和限值testing method and limits 试验循环test cycle行驶循环driving cycle工况mode行驶监视仪driver aid中间转速intermediate speed加权系数weighting coefficient美国烟排放物试验循环US EPA smoke emission test cycle 全负荷法full load method自由加速法free acceleraton method加载减速法lug down method稳定单速法single steady speed method道路试验法road test method滑行法coastdown密闭室测定蒸发排放物法(SHED)sealed housing ofr evaporative emission determination (SHED) 运转损失running losses热浸损失hot soak losses昼间换气损失diurnal breathing losses美国LA-4C法USEQP A-4CH test procedure美国LA-4CH法US EPA 4CH test procedure美国九工况法US EPA 9 -mode test cycle美国十三工况法US EPA 13-mde test cycle美国重型柴油机瞬态法US EPA heavy duty diesel engine transient test cycle日本四工况法Japanese 4-mode test cycle日本十工况法Japanese 10/11-mode test cycle 日本六工况法Japanese 6-mode test cycle欧洲ECE十五工况法ECE 15-mode test cycle排放限值emission limits怠速排放限值idle speed emission limits浓度排放限值emission concentration limits质量排放限值mass rate of emission limits净化purifying净化率purifying rate在用车in-use vehicle无铅汽油unleaded gasoline务化系数(DF)deterioration factor(DF) 车辆类型vehicle type道路车辆road vehicle商用车辆commercial vehicle机动车辆motor vehicle电动车辆electric vehicle摩托车motorcycle轻便摩托车moped轿车passenger car微型轿车minicar普通级轿车subcompact car中级轿车compact car中高级轿车intermediate car高级轿车limousine (pullman saloon)活顶轿车convertible saloon旅行轿车station wagon短头轿车forward control passenger car 小型轿车coupe敞蓬小轿车drop head coupe跑车sports car赛车racer (racing car)单座小客车one-seater七座小客车seven-seater越野车off-road vehicle轻型越野车light-off-road vehicle中型越野车medium off-road vehicle重型越野车heavy off -road vehicle超重型越野车extra heavy off- road vehicle 吉普车jeep硬顶吉普车hard top jeep客车bus微型客车minibus轻型客车light bus中型客车medium bus大型客车large bus客货两用小客车estate car (estate) 多用途客车multipurpose vehicle 厢式小客车closed car出租小客车taxicar城市客车urban bus大客车coach城间大客车intercity bus长途大客车long distance coach旅游客车sightseeing bus(touring bus) 铰接客车articulated bus无轨客车trolley bus双层客车double-deck bus团体客车private coach货车truck(lorry)微型货车mini-truck轻型货车light truck中型货车medium truck重型货车heavy truck公路货车highway vehicle小型货车pick-up平板货车platform truck(flat bed truck) 通用货车general -purpose vehicle短轴距货车short-wheel base truck长轴距货车long-wheelbase truck集装箱运输货车container carrier客货两用车cargo-bus厢式货车van牵引汽车towing vehicle全挂牵引汽车towing vehicle牵杆式牵引车full-trailer towing vehicle 半挂牵引车semi-trailer towing vehicle 道路列车road train客用道路列车passenger road train铰接式道路列车articulated road train双挂式道路列车double road train混合式道路列车composite road train天然气车辆natural gas vehicle(NGV)压缩天然气车辆compressed natural gas vehicle 液化天然气车辆liquid petroleum gas vehicle液化石油气车辆liquid petroleum gas vehicle双燃料车辆duel fuel vehicle单燃料车辆single fuel vehicle专用车special vehicle垃圾车dust car (refuse collector)冷藏车refrigerated van洒水车street sprinkler (street flusher) 囚车prison van殡仪车hearse售货车mobile store(mobile shop)图书馆车mobile library宣传车mobile louderspeaker商业广告车spiel truck展览汽车demonstration car博览会专用车fairground vehicle流动艺术展览车artmobile邮政车mobile post office运油车fuel tanker加油车refueller飞机牵引车aircraft tractor救护车ambulance (medical vehicle) 病院汽车clinic car医疗急救车rescue ambulanceX射线诊断车mobile-x-ray clinic防疫监测车mobile epidemic control vehicle 计划生育车mobile family -planning clinic 伤残者运送车handicapped person carrier炊事车kitchen vehicle餐车mobile canteen沐浴车mobile shower bath保温车insulated van电视转播车TV relaying vehicle电视录像车video recording vehicle摄影车mobile photographic studio电影放映车film projection vehicle邮件运输车mail carrier农用车farm vehicle种子检测车plant seeds inspection van植物保护车plant pest control vehicle计量检测车metrology inspection vehicle环境检测车mobile environment monitor畜禽防疫车mobile animal eqidemic control 交通监理车traffic control car刑事勘察车mobile crime investigation vehicle 气卸散装水泥车bulk-cement pneumatic delivery tanker气卸散装煤粉车bulk-coal powder pneumatic delivery tanker气卸散装电石粉车bulk-calcium carbide pneumatic delivery tanker 气卸散装化学粉粒车bulk-chemicals pneumatic delivery tanker食用植物油运油汽车edible oil tanker食用植物油加油车edible oil pump delivery tanker活鱼运输车life fish carrier气卸散装面粉车bulk-flour pneumatic delivery tanker吸尘车vacuum sweeper高压清洗车high-pressure sewer flushing vehicle吸污车suction -type sewer scavenger 真空吸粪车suction -type tumbrel tanker 自装卸垃圾车refuse collecting truck旋转板自装卸垃圾车compression refuse collector 航空食品装运车aircraft caterer's delivery truck 散装粮食运输车bulk-grain carrier散装饲料运输车bulk-fodder transport truck牲畜运输车livestock carrier家禽运输车poultry carrier养蜂车mobile bee-keeper原木运输车logging transporter管材运输车pole transporter车辆运输车car transporter锅炉车mobile boiler除雪车snow sweeper机场客梯车mobile aircraft landing stairs 消防车fire-fighting vehicle水罐消防车fire-extinguishing water tanker 泡沫消防车fire-extinguishing foam tanker 救火泵车fire pumper消防水罐车fire tanker泡沫灭火车foam vehicle消防指挥车fire service commanding car 云梯消防车fire-fighting truntable ladder 厢式汽车van厢式零担运输车break bulk cargo carrier罐式汽车tanker酸罐车acid tanker液化气罐车liquified gas tanker奶罐车milk tanker食品液罐车beverage tanker背罐车demountable tanker carrier装卸机械loading (unload)machine叉式装货机fork-type loading (unlaod)machine 刮板式装货机scraper type loading machine单斗式装货机single bucket loading machine带升降塔架车辆tower crane塔式超重机tower crane汽车吊车truck crane移动式起重机mobile crane固定式起重机stationary crane起重举升汽车crane/lift truck特种结构汽车special construction vehicle随车起重运输车truck with loading crane后栏板起重运输车tail-lift truck高空作业车hydraulic aerial cage(公路事故或故障车辆的)急修车breakdown truck修理车mobile workshop救险车recovery vehicle技术服务车service car现场用小车spot dolly工具车tool car故障检修车trouble car勘测工程车recording bus筑路工程用车road machine压路机road roller推土机ball dozer平路机motor grader铲运机wheeled loading shovel 轮式装载车wheeled loader轮式挖掘机wheeled excavator混凝土搅拌车concrete mixer truck焊接工程车mobile welding workshop沥青洒布车asphalt distribution truck沥青路面养护车asphalt pavement maintenance truck 沥青运输车heated bitument tanker建筑大板运输车prfab building panel transporter电信工程车telecommunicatin field service truck 工程机械运输车construction machinery transporter 仓栅式汽车storage/stake truck钻孔立柱车pole drill and erection truck油田试井车oil-well testing vehicle井架运输车derrick transporter修井车well maintenance vehicle地锚车mobile ground anchor vehicle灌注车oil well cracking acid pumping truck 照明车flood lighting vehicle后翻倾式自卸汽车rear dump truck两侧翻倾式自卸汽车side dump truck三面翻倾式自卸汽车three-way dump truck重型自卸汽车heavy duty dump truck 矿用自卸汽车mining dump truck专用自卸汽车special dump truck摆臂式自装卸汽车swept-body dump truck 车厢可卸式汽车roll-off skip loader全挂车full trailer半挂车semi-trailer特种挂车special trailer栏板货厢式挂车cargo trailer平板式挂车flat platform trailer低架式挂车low-loader trailer厢式挂车trailer van自卸式挂车dumper trailer旅居挂车caravan动物集装箱live-stock container 干货集装箱dry cargo container 保温集装箱isothermal container 框架集装箱flat rack container 散货集装箱bulk container罐式集装箱tank container冷藏集装箱refrigerated container质量mass净底盘干质量bare chassis dry mass净底盘整备质量bare chassis kerb mass底盘与驾驶室干质量chassis and cab dry mass底盘与驾驶室整备质量chassis and cab kerb mass整车交运质量complete vehicle shipping mass 整车整备质量complete vehicle kerb mass最大设计总质量maximum design total mass最大允许总质量maximum autohrozed total mass最大设计装载质量maximum design pay mass最大允许装载质量maximum autohorized pay mass厂定最大总质量manufacturer's maxumum total mass 载重量payload车辆自重kerb weight总重量gross weight轴荷axle load最大设计轴荷maximum design axle load最小设计轴荷minimum authorized axle load最大允许轴荷maximum design axle load轮胎最大设计拖挂质量maximum design tyre load最大设计拖挂质量maximum authorized tyre load最大允许拖挂质量maximum authorized towed mass汽车列车最大设计质量maximum design mass of vehicle combination汽车列车最大允许质量maximum authorized mass of vehicle combination铰接车最大设计质量maximum disgn mass of articulated vehicle铰接车最大允许质量maximum authorized amss of articulated vehicle半挂牵引车承受的最大静载荷maximum design static laod borne by semi-trailer towing vehicle 作用在挂接装置上的最大设计静载荷maximum design static laod on coupling device作用在挂接装置上的最大允许静载荷maximum authorized static load on coupling device比功率power/mass ratio比扭矩torque/maximum total mass ratio 重量利用系数factor of weight utilizaton汽车型谱chart of automotive model后驱动汽车rear drive automobile前驱动汽车front drive automobile发动机后置式客车bus with rear engine四轮驱动车辆all wheel drive automobile发动机前置式客车bus with front engine发动机底置式客车bus with underfloor engine计算机辅助设计computer aided deisgn(CAD)有限寿命设计design for finite life累积疲劳损伤原理theory of cumulative damage in fatique优化设计optimum deisgn汽车尺寸控制图sketch on layout ofr dimenshion's control of assembly 汽车总装配图automobile assembly drawing汽车总布置草图sketch for automobile layout汽车设计的技术经济分析technical -economic analysis in automobile design设计任务书design assignment系列化、通用化、标准化seriation ,universalization and standardization总布置设计calculation for layout 运动校核correction of motion 侧视轮廓side outline前视轮廓end outline顶视轮廓plan outline车长vehicle length车宽vehicle width车高vehicle height轴距wheel base轮距track前轮距track front后轮距track rear双胎间距space between twin wheels前悬front overhang后悬rear overhang离地间隙ground clearance纵向通过角ramp angle接近角approach angle离出角departure angle车架高度height of chassis above ground驾驶室后车架最大可用长度maximum usable length of chassis behind cab 车身长度body work length车厢内部最大尺寸maximum internal dimension of body货厢内长loading space length货厢有效长度loading length货厢内宽loading space width货厢有效内宽loading width货厢内高loading space height货厢有效内高loading height货台高度loading surface height车架自由长度frame free length栏板内高inside board hegiht货厢容积loading surface门高door height门宽door width车架有效长度chassis frame useful length货厢全长body length牵引杆长drawbar length牵引装置的位置position of towing attachment 牵引装置的悬伸overhang of towing atachment牵引装置的高度heigth of towing attachment牵引装置牵距distance of towing attachment牵引座前置距fifth wheel lead长度计算用牵引座前置距fifth wheel lead for calculation of length质量分配用牵引座前置距fith wheel lead for calculation of mass distribution牵引座结合面高度height of coupling face牵引装置至车辆前端的距离distance between towing device and front end of towing vehicle 牵引叉销至车辆前端的距离distance between jaw and front end of towing vehicle半挂车间隙半径rear tractor clearance radius of semi-trailer半挂车前回转半径front fitting radius of semi trailer车轮垂直行程vertical clearance of wheel车轮提升高度lift of wheel转弯半径turning circle静止半径static radius碰撞collision (crash,impact)正碰撞frontal collision (frontal impact) 侧碰撞side collision (side impact)后碰撞rear collision (rear impact)擦碰撞sidewipe collision碰撞方向collision direction碰撞角度collision angle倾斜的oblique(tilt)成角度的angled纵向的longitudinal垂直的perpendicular对中centered偏置offset重叠overlap碰撞轴线排列collision axis alignment 纯正撞pure frontal impact。
STABILITY CHAMBERSInstallation, Operation andMaintenance InstructionsGENERAL 2Inspection 2Location 2Installation 2DoorAlignment 2 Shelf Installation 2Contacts 2RemotePort 2RS485Outlet 2InternalPort 2AccessInstallation 3 DrainElectrical 3 Glycerin Well Assembly 3 OPERATION 4 MAINTENANCE 5Cleaning 5 PeriodicCleaning the humidifier 5-7Maintenance Service and8AnalysisGuideGENERALINSPECTIONWhen the equipment is received, all items should be carefully checked against the bill of lading to insure all crates and cartons have been received. All units should be inspected for concealed damage by uncrating the units immediately. If any damage is found, it should be reported to the carrier at once, and a claim should be filed with the carrier. This equipment has been inspected and tested in the manufacturing facility and has been crated in accordance with transportation rules and guidelines. Manufacturer is not responsible for freight loss or damage.LOCATIONThe refrigeration system located at the top of the cabinet requires free air access for proper operation. Allow a minimum four-inch clearance on the top, rear, and sides of the cabinet. The cabinet should also be leveled when it is placed in its permanent location. Do not stack items on top of the unit.Vibration during shipping and handling may loosen mechanical connections. Check all connections during installation. Check all wiring, piping and fasteners.CAUTION•Do not modify cabinet construction or associated equipment assemblies.•Do not remove labeling or information supplied with the unit.INSTALLATIONDoor Alignment - If for some reason the doors are not squared up on the cabinet, the doors can be adjusted. Opening the door(s) and loosening the screws that hold both the top and bottom hinges to the cabinet can accomplish this. After adjusting the door so that it is aligned correctly, tighten the screws to securely hold the hinges in place.Shelving Installation - Locate shelf clips in bag inside cabinet,install in shelf supports (4 per shelf)Remote contacts - Terminal board for dry contacts is locatedbehind the cabinet façade, on the left hand side of the control box,connect wires as per label.RS485 port - (Optional) terminal board for RS485 port is locatedbehind the cabinet façade, on the left hand side of the control box,connect wires as per label.Duplex/ or European Outlet - (Optional) is located near the top of the interior cabinet back. This is a15 amp 115 volt duplex PN 88010300 with its own power supply cord. Duplex outlet power cord is wrapped up on the back of the cabinet top. Outlet is not inter-wired thru main cabinet supply and must be plugged into a 115 volt/ or 220/240V power supply. Locate cabinet within 8 feet of the wall receptacle.Access Port - (Optional) is provided with a spring loaded cover on the right hand side of the cabinet.DRAIN INSTALLATIONThe Stability Chamber has a floor drain in the bottom ofthe cabinet. A silicone drain stopper has been placed inthis drain. The drain stopper will prevent undesirableliquids from running into the drain. The stopper can beremoved if any possible liquids flowing into this drain areacceptable to go to the floor drain.An 18” length of 1/2" I.D. drain hose is shipped insidecabinet. Attach hose to drain stub under cabinet withsupplied clamp and run to an atmospheric floor drain.May substitute longer drain hose as needed. Humidifierunits will require a drain for overflow.ELECTRICALFor electrical requirements see data information andwiring unit diagram located in parts bag, inside of thecabinet.Check the proposed external power outlet/supply to beused to ensure that the voltage, phase and currentcarrying capacity of the circuit from the electrical panelcorrespond to the requirements of the cabinet. NEVERuse an extension cord to wire any unit. Refer to the serialtag (nameplate data) for all pertinent electrical information.Observe all Warning Labels. Disconnect power supply(s) to eliminate injury from electrical shock or moving parts when servicing equipment.GLYCERIN WELL ASSEMBLYImportant: For accurate product temperature reading, the product-sensing bulb must be immersed in glycerin solution contained in the provided well.One glycerin well, along with a six-ouncecontainer of glycerin, is furnished with eachmodel. The purpose of the glycerin is tosimulate the product stored in the StabilityChamber. The glycerin temperature reflectsthe product's temperature during normaloperation.Figure 1After the unit is put into operation, remove thestopper at the top of the glycerin well. Checkto make sure that the temperature indicatingor alarm sensing bulb is positioned inside andat the bottom of the glycerin well. Add the sixounces of glycerin that has been provided intothe glycerin well. Reinstall the stopper to thetop of the glycerin well.OPERATIONThe Stability Chambers are designed for an operating range of 4°C to 70°C Temperature only, 5°C to 60°C Temperature with Humidity.These units employ a programmable controller to control the temperature, defrost, humidity and CO2 settings. The controller, which is located on the facade of the unit, is factory set. Please see the separate instructions, part number 113635, on the operation of the controller used in the Stability Chambers.The cabinets use an evaporator coil, located on top of the cabinet as the heat-removing source. Through the refrigeration process, heat is captured in the evaporator, transferred to the condensing unit on top of the cabinet, and expelled to the surrounding outside air. It is extremely important to allow a four-inch clearance on the top, rear, and sides of the unit for the refrigeration process to function properly.The cabinets utilize electrically operated heaters to warm the cabinets in the heating mode. The heating elements are located in the interior cowl. The programmable control is factory set with a cutout temperature to prevent the cabinet from exceeding its design limits.Note: The cabinets are equipped with two switches located on the façade. One is the main power ON/OFF switch for the unit. The other is a three-position switch for the battery-powered alarm. The alarm switch is placed in the middle, or OFF position, for shipment. When the Stability Chamber is put into operation, the top of the switch should be pushed in to the ON position. With the switch in the ON position, the battery will sound the alarm if the main power to the cabinet is interrupted. The switch flipped to the bottom position is used to test the battery. This test must be done with power uninterrupted to the cabinet. The alarm will sound if the battery is good. This test should be done periodically. The battery is located on the backside of the control box that is on top of the unit behind the façade.CO2 OPTIONThe Stability Chambers are offered with a CO2 dispensing and measurement system. The CO2 system is microprocessor based and controlled by a sensor based on the NDIR Single-Beam Dual-Wavelength principle. The sensor supplied with the Stability Chamber measures from 0-20% CO2 density and provides a reliable and stable reference measurement over time. Water vapor, dust, debris and most chemicals do not affect measurement accuracy; therefore, the sensor may be used in a harsh and humid environment.The CO2 option settings are controlled by the programmable controller located on the façade of the unit. Please see the default and adjustable settings in the separate instructions, part number 113635. Installation Requirements – The end user must supply two CO2 tanks and two-stage gas regulators for the CO2 input. See Figure A for hook up points. The input gas pressure must be above 4 psi as the CO2 tank switch-over valve is factory set to recognize an empty tank when the pressure drops to 4 psi. The maximum recommended input pressure should not exceed 25 psi.Figure AMAINTENANCEPERIODIC CLEANINGDisconnect power source, including optional duplex power cord if equipped, before servicing or cleaning.Beginning with the initial installation, the interior surfaces of the cabinet should be periodically wiped down with a solution of warm water and baking soda. This solution will remove any odors from spillage that has occurred. The exterior of the cabinet should also be cleaned frequently with a commercial grade of glass cleaner. Caution: Do not use an abrasive or alkaline solution.Monthly cleaning of the condenser will aid the heat transfer characteristics of the refrigeration system and increase its efficiency. Dust, dirt, and lint may accumulate on the fins of the condensing unit. This obstruction may affect the flow of air through the condenser, thereby lowering the efficiency of the system. A wire brush or a brush with stiff bristles can be used to loosen these particles that are attached to the fins so that they may be removed with a vacuum cleaner. Important: Failure to keep the condenser coil clean and clear of obstructions could result in temperature loss and damage to the compressor. All moving parts have been permanently lubricated and will generally require no maintenance.CLEANING THE HUMIDIFIERNote: The water supply should have a dedicated shutoff valve and regulator installed. Connect the water supply to the humidifier (the operating pressure range is 10-60 psi). For best results, provide a source of reverse osmosis water with a resistance of .05 to 1.0mΩ, which will reduce the scale build up and cleaning frequency. Unit is equipped for water supply with 1/8” Male Pipe Threads. The humidifier reservoir water level may be adjusted by using the adjusting thumb screw located on the float valve (see below).The humidifier is a precision built instrument that, given proper care, will provide years of dependable service. Cleaning the humidifier periodically is all that is required to insure proper operation. Depending on local water conditions, mineral solids and other matter may accumulate in various parts of the unit. These accumulations must be removed so that water flows freely for efficient operation. Failure to clean the humidifier may result in malfunction which will lead to repairs.Cleaning the Humidifier1. Disconnect the electrical plug from power source. Turn off water supply. (See Figure D)2. Unfasten the Dome Strap and remove the Dome from the humidifier assembly by lifting it from thechromed Motor Pan (Figure B).Figure CBFigureFigure D3. Lift out the Atomizing Unit that rests freely on the Reservoir.4. Clean the Atomizing Unit. Do not submerge in water.a. Slightly twist the Cylindrical Screen out of the lock position and remove.b. Remove the Impeller Cap from the Pump Tube by tapping lightly against the bottom edge of theCap with a flat object, such as a knife or file. Do not tap the face of the Impeller Cap.c. Free the three Apertures in the pump bushing of accumulated solids (Figure C). To do this,insert a pointed scraper or pipe cleaner through the open end of the Pump Tube into the three Apertures on the side of the pump bushing. You may not actually see the Apertures, but you can feel them. Gently poke and free the Apertures of any solids that may have accumulated.Scrape out waste materials along the inner walls of the Pump Tube.d. Replace the Impeller Cap on the Pump Tube and lightly tap around the edge of the Cap until itis in place. Do not tap the face of the Impeller Cap.e. Spin the Pump Tube by hand to insure that it rotates freely.f. Replace the Cylindrical Screen by twisting it into the lock position.g. Brush the Vapor Maker Comb clean by using a small wire brush or an old toothbrush. Also,clean out the Motor Pan.5. Empty and clean the Reservoir of all liquids and waste materials. Care should be taken so as not todisturb the Floats or Float Valve.6. Reassemble the humidifier by placing the Atomizing Unit on the Reservoir and the Dome on thechromed Motor Pan.7. Re-install the humidifier into its bracket as shown on Figure D.MAINTENANCE SERVICE AND ANALYSIS GUIDEREFRIGERATION SYSTEMS - ALL MODELSMALFUNCTION POSSIBLE CAUSE SOLUTIONCompressor will not start - 1. Service cord unplugged 1. Plug in service cordno hum 2. Fuse blown or removed 2. Replace fuse3.Determine reasons and correctOverloadtripped3.4. Control stuck open 4. Repair or replace5. Wiring incorrect 5. Check wiring against the diagramCompressor will not start - 1. Improperly wired 1. Check wiring against the diagramhums but trips on overload 2. Low voltage to unit 2. Determine reason and correctprotector 3. Starting capacitor defective 3. Determine reason and replace4. Relay failing to close 4. Determine reason, correct or replaceCompressor starts and runs, 1. Low voltage to unit 1. Determine reason and correctbut short cycles on overload 2. Overload defective 2. Check current, replace overload protectorprotector 3. Excessive head pressure 3. Check ventilation or restriction inrefrigeration system4. Compressor hot-return gas hot 4. Check refrigerant charge, fix leak ifnecessaryCompressor operates long 1. Short of refrigerant 1. Fix leak, add refrigerantor continuously 2. Control contact stuck 2. Repair or replace3. Evaporator coil iced 3. Determine cause, defrost manually4. Restriction in refrigeration 4. Determine location and remove restrictionsystem5. Dirty condenser 5. Clean condenserCompressor runs fine, but 1. Overload protector 1. Check wiring diagramshort cycles 2. Cold control 2. Differential too close - widenReducechargeOvercharge3.3.4. Air in system 4. Purge and recharge5. Undercharge 5. Fix leak, add refrigerantStarting capacitor open, 1. Relay contacts stuck 1. Clean contacts or replace relayshorted or blown 2. Low voltage to unit 2. Determine reason and correct3.ReplacerelayImproper3.Relay defective or burned out 1. Incorrect relay 1. Check and replace2. Voltage too high or too low 2. Determine reason and correctRefrigerated space too warm 1. Control setting too high 1. Reset control2. Refrigerant overcharge 2. Purge refrigerant3. Dirty condenser 3. Clean condenser4. Evaporator coil iced 4. Determine reason and defrost5. Not operating 5. Determine reason, replace if necessary6. Air flow to condenser or 6. Remove obstruction for free air flowevaporatorblockedStandard temperature system 1. Control setting is too low 1. Reset the controlfreezes the product 2. Control points stuck 2. Replace the controlObjectionable noise 1. Fan blade hitting fan shroud 1. Reform or cut away small section of shroud2. Tubing rattle 2. Locate and reform3. Vibrating fan blade 3. Replace fan blade4. Condenser fan motor rattles 4. Check motor bracket mounting, tighten5.Compressor suspension bolts not loosenedGeneralvibration5.on applicable models - loosen them6. Worn fan motor bearings 6. Replace fan motorPan Area 1. No cooling 1. Make sure switch is in the "on" position2. Too cold 2. Adjust temperature control - see instructionsunder pan area3. Too warm 3. Adjust temperature control - see instructionsunder pan areaFailure to Heat 1. Manual overload tripped 1. Push reset on hi-limit switch2. Incorrect setting 2. See control manual3. Alarm enabled 3. See control manualHumidity level not correct 1. Water supply interrupted 1. Check water supply2. Clean Humidifier2. Incorrect control settings 1. See control manual3. Piping not connected / sealed 1. Connect tubing2. Seal joints4. No power to humidifier 1. Check power connections for humidifier。
专八英语单词1. abstention[əbˈstenʃn] n. 弃权;节制;戒绝2. aesthetic [i:sˈθetɪk] ; [ɛsˈθɛtɪk] n./a美学的,审美的3. affluence ['æflʊəns] n.富裕4. agile [ˈædʒaɪl] [ˈædʒl] a.灵活的,轻快的5. amble [ˈæmbəl] vi.(马)缓行;从容漫步n. (马的)缓行步态;漫步6. arid [ˈærɪd] a.干旱的7. attic [ˈætɪk] n.阁楼8. audacious [ɔ:ˈdeɪʃəs] ; [ɔˈdeʃəs] a. 厚颜无耻的;大胆鲁莽的9. authentic [ɔ:ˈθentɪk] adj.真正的,可信的10. begrudging [bɪˈgrʌdʒɪŋ] a.吝惜的;勉强的;妒忌的11. betray [bɪˈtreɪ] v.出卖,背叛12. bizarre [bɪˈzɑ:(r)] adj. 奇异的;怪诞的;13. bolt [bəʊlt] n.弩箭;门闩14. bondage[ˈbɒndɪdʒ] n.奴役,束缚15. brawl [brɔ:l] v.争吵16. brink [brɪŋk] n. (峭壁的)边缘;17. buckle [ˈbʌkl] v.扣住n.皮带扣18. buoyant [ˈbɔɪənt] a.上涨的;有浮力的19. burgeon [ˈbɜ:dʒən] v. 萌芽;迅速发展20. burgeoning ['bɜ:dʒənɪŋ] a. 迅速发展的21. buzzword [ˈbʌzwɜ:d] n.流行词22. calloused [ˈkæləst] adj. 变得无情的;长满老茧的23. centrifugal [ˌsentrɪˈfju:gl] adj. 离心的24. chamber [ˈtʃeɪmbə(r)] n.房间;会所25. charcoal [ˈtʃɑ:kəʊl] n.木炭26. chivalry [ˈʃɪvəlri] n. 骑士精神(复数chivalries);绅士风度27. chorus [ˈkɔ:rəs] n.合唱团28. chronicle [ˈkrɒnɪkl] n./v. 记录,将…载入编年体29. circumspect [ˈsɜ:kəmspekt] a.谨慎的,小心的30. circumvent [ˌsɜ:kəmˈvent] v.绕过;巧妙地规避31. clutch [klʌtʃ] n.离合器32. compatriot [kəmˈpætriət] ; [kəmˈpeɪtriət] n. 同国人;同胞33. compliment [ˈkɒmplɪmənt] n/v.赞扬34. compromise [ˈkɒmprəmaɪz] n./v.危害;妥协35. consensus [kənˈsensəs] n. 一致的意见;一致同意36. console [kən'səʊl] v.安慰37. conspire [kənˈspaɪə(r)] v.共同促成;密谋38. corollary [kəˈrɒləri] n.必然的结果;推论39. corridor [ˈkɒrɪdɔ:(r)] n.走廊40. cosmos [ˈkɒzmɒs] n.宇宙41. cram [kræm] v.挤满,塞满;死记硬背,填鸭式学的42. cram school 填鸭式补习学校43. crawl [krɔ:l] v.匍匐前进44. crept [krept](creep [kri:p] 的过去式)爬行,慢慢移动45. crouch [kraʊtʃ] v.蹲伏46. cumulative [ˈkju:mjələtɪv] a. 积累的47. curl up [kə:l ʌp] 卷起48. curriculum [kəˈrɪkjələm] n.课程49. defy[di'fai] vt.公然反抗;无法做某事50. demise [dɪˈmaɪz] n. 死亡;终止51. depict [dɪˈpɪkt] vt. 描写52. deportment [dɪˈpɔ:tmənt] n. (尤指少女的)风度,举止53. deride [dɪˈraɪd] v. 嘲弄,愚弄54. devolution [ˌdi:vəˈlu:ʃn] ; [ˌdevəˈluʃn] n. (权利)移交,下放;退化、倒退55. dexterous [ˈdekstrəs] adj. 灵巧的;敏捷的;惯用右手的56. diarrhea [ˌdaɪə'rɪə]n.腹泻57. discretion [dɪˈskreʃn] n.选择的自由;谨慎;判断力58. disobedient [ˌdɪsəˈbi:diənt]a.不服从的,违背的59. docile [ˈdəʊsaɪl] ; [ˈdɑsl] a.温顺的,容易教的60. duck [dʌk] v.弯下身子,低头61. dwindle [ˈdwɪndl] v. 逐渐减少62. dynamo [ˈdaɪnəməʊ]n.发电机63. egalitarian [iˌgælɪˈteriən] adj. 平等主义的,主张平等的64. embody [ɪmˈbɒdi] vt. 体现65. enact [ɪˈnækt] ; [ɛnˈækt] vt. 颁布;制定法律66. encumber [ɪnˈkʌmbə(r)] vt. 阻塞;妨碍67. envision [ɪnˈvɪʒn] ; [ɛnˈvɪʒən]v.展望,预想68. epitomize [ɪˈpɪtəmaɪz] vt.做…摘要;典型;是…的典范69. esteem [ɪˈsti:m] vt. 尊敬;考虑;n. 尊重;尊敬70. exemplify [ɪgˈzemplɪfaɪ]v.举例说明71. explicit [ɪkˈsplɪsɪt]a.明确的,清楚的;直率的72. extravagant [ɪkˈstrævəgənt]a.过度的;浪费的,奢侈的73. exuberant [ɪgˈzju:bərənt]a.茁壮成长的,74. fealty [ˈfi:əlti] n.忠诚75. feudal [ˈfju:dl] adj. 封建的76. fickleness ['fɪklnəs] n.浮躁,变化无常77. figurehead [ˈfɪgəhed] n.傀儡78. flay [fleɪ]v.剥皮79. flush [flʌʃ]n.旺盛80. fraternity [frəˈtɜ:nəti] n. 兄弟会,博爱81. frenetic [frəˈnetɪk]a. 发狂的,狂热的82. fret [fret] v. 使烦躁使焦虑;使磨损83. fretful [ˈfretfl] adj. 烦躁不安的84. frivolous [ˈfrɪvələs] adj. 轻泛的,轻佻的85. fugitive [ˈfju:dʒətɪv]n.逃亡者86. furious [ˈfjʊəriəs] adj. 狂怒的;激烈的87. gasp [gɑ:sp]v.气喘吁吁88. gratitude [ˈgrætɪtju:d] n.感激,感谢89. grenade [grəˈneɪd]n.手榴弹90. grin [grɪn]v.露齿而笑91. grueling ['grʊəlɪŋ] adj. 累人的92. grumble [ˈgrʌmbl] vi. 抱怨93. habitat [ˈhæbɪtæt]n.栖息地94. heritage [ˈherɪtɪdʒ]n.遗产95. hilarious [hɪˈleəriəs]adj. 欢闹的;非常滑稽的;96. homogenize [həʊ'mɒdʒənaɪz]v.使类同,使一致97. hum [hʌm]v.哼唱98. imperceptibly [ˌɪmpə'septəblɪ]adv.察觉不到地99. impersonator [ɪmˈpɜ:səneɪtə(r)]n.模仿者,演员100. impetuous [ɪmˈpetʃuəs] adj. 冲动的;猛烈的;鲁莽的101. impoverish [ɪmˈpɒvərɪʃ]; [ɪmˈpɑvərɪʃ] v.贫穷102. incorporate [ɪnˈkɔ:pəreɪt]v.合并;体现103. indigenous [ɪnˈdɪdʒənəs]adj. 本土的;本国的;天生的104. indignant [ɪnˈdɪgnənt]a.愤慨的,愤怒的105. indulgence [ɪnˈdʌldʒəns] n.沉溺;放纵106. ineptitude [ɪˈneptɪtju:d] n.无能107. instinct [ˈɪnstɪŋkt]n.本能,天性108. jersey [ˈdʒɜ:zi]n. 运动衫,毛线衫109. languid [ˈlæŋgwɪd]a.倦怠的,软弱无力的110. leopard [ˈlepəd]n.美洲豹111. loop [lu:p]v./n.环,圈;使成环112. lucrative [ˈlu:krətɪv]adj. 有利可图的,赚钱的;合算的113. majestically [mə'dʒestɪklɪ]adv.庄严地,威严地114. malice [ˈmælɪs]n. 恶意;恶毒115. margin [ˈmɑ:dʒɪn] n.边缘,利润116. marijuana [ˌmærəˈwɑ:nə]n.大麻117. medieval [ˌmediˈi:vl]adj. 中世纪的118. mediocre [ˌmi:diˈəʊkə(r)]a.平庸的119. megacity ['megəˌsɪtɪ]n.大城市(人口超过1000万)120. melodramatic [ˌmelədrəˈmætɪk] n. 情节剧的121. metropolis [məˈtrɒpəlɪs]n. 首府;大都市;重要中心122. mortgage [ˈmɔ:gɪdʒ]vt. 抵押n. 抵押债款123. monochronic[mɒnəʊ'krɒnɪk]adj.一次的124. multiple [ˈmʌltɪpl]a.许多的,多重的125. municipal [mju:ˈnɪsɪpl] adj. 市政的,市的;政府的126. munificent [mju:ˈnɪfɪsənt] a.慷慨的127. on the verge [vɜ:dʒ]of...濒临....128. paramount [ˈpærəmaʊnt] a.至高无上的;最重要的129. pimp [pɪmp] n. [俚]皮条客;男妓130. plausible [ˈplɔ:zəbl]a.可信的,貌似合理的131. pompous [ˈpɑmpəs] a.高傲的,自大的132. portable [ˈpɔ:təbl]a.便携的,手提的133. prestige [preˈsti:ʒ]n. 声望,威望134. prestigious [preˈstɪdʒəs]adj. 有声望的135. profuse [prəˈfju:s] adj. 很多的,浪费的136. progeny [ˈprɒdʒəni] n. 后代,子女137. projection [prəˈdʒekʃn] n. 突出物138. prolific [prəˈlɪfɪk] adj. 多产的,多结果的139. prowess [ˈpraʊəs] n. 英勇;超凡技术;勇猛140. prudent [ˈpru:dnt] a. 谨慎的141. psycholinguistics [ˌsaɪkəʊlɪŋ'ɡwɪstɪks]n.心理语言学142. quirk [kwɜ:k] n. 怪癖,奇事143. radiator [ˈreɪdieɪtə(r)]n.散热器144. rage [reɪdʒ] n. 愤怒;vi. 大怒,发怒;145. rampart [ˈræmpɑ:t] n. 1. (城堡等周围宽口的)防御土墙2. 防御,保护146. raucous [ˈrɔ:kəs] adj. 沙哑的;刺耳的;粗声的147. reckless [ˈrekləs]a.鲁莽的148. reign [reɪn] vn. 统治;支配;统治时期149. reminisce [ˌremɪˈnɪs]vi.回忆;搭配介词about150. reminiscent [ˌremɪˈnɪsnt] adj. 怀旧的,回忆往事的;耽于回想的151. repression [rɪˈpreʃn]n. 抑制,压抑;镇压152. resurgence [rɪˈsɜ:dʒəns] adj.复苏153. revelation [ˌrevəˈleɪʃn]n.启示;揭露154. ritual [ˈrɪtʃuəl] n. 仪式;例行公事,老规矩155. ruckus [ˈrʌkəs]n.争吵156. rustic [ˈrʌstɪk] adj. 乡村的,乡下的157. sanitation [ˌsænɪˈteɪʃn]n.卫生设备,卫生环境158. satchel [ˈsætʃəl] n. 小背包;书包159. scramble [ˈskræmbl] v. 快速爬行;攀登,争夺,争抢;炒160. scrummage [ˈskrʌmɪdʒ]v. 争球161. senile [ˈsi:naɪl]a.高龄的,老龄的162. shudder [ˈʃʌdə(r)]v.发抖,颤栗163. sinew [ˈsɪnju:] n. 筋;肌腱;体力;精力164. snap [snæp] vt. 猛咬;发出尖厉声音的突然折断165. sober [ˈsəʊbə(r)]adj.清醒的;absorb [əbˈsɔ:b]v.使…全神贯注166. sobriety [səˈbraɪəti] n. 节制;清醒,冷静167. spangle [ˈspæŋgl] n.闪光的饰品;v.使发光168. spatial [ˈspeɪʃl]a. 空间的169. spout [spaʊt]v.喷出170. squat [skwɒt]a.蹲着的,矮胖的171. steadfastness [s'tedfɑ:stn'es]n.坚定不移172. stereotypical [,steriə'tipikl] adj.老一套的,陈规的173. stern [stɜ:n]a.严厉的,坚定的174. stilt [stɪlt]n.高跷175. strangle [ˈstræŋgl]v.抑制;勒死176. stroll [strəʊl]v.散步,漫步177. stubbornly ['stʌbənlɪ]adv.固执地178. suffragette [ˌsʌfrəˈdʒet] n. 女权主义者179. swig [swɪg] v/n.大口喝;180. tacit [ˈtæsɪt]a.缄默的,心照不宣的181. teeter[ˈti:tə(r)] v.步履蹒跚182. temperate [ˈtempərət]a.温和的183. tenable [ˈtenəbl] a.站的住脚的;合理的184. tenacity [tə'næsətɪ]n.固执;不屈不挠185. thwart [θwɔ:t] vt. 反对;阻碍;阻挠186. topography [təˈpɒgrəfi]n.地势,地形学187. totter [ˈtɒtə(r)]v.踉跄,蹒跚188. treacherous [ˈtretʃərəs] a.背信弃义的189. tremble [ˈtrembl]v.颤抖190. ubiquitous [ju:ˈbɪkwɪtəs] a.无处无在的,普遍的191. ultimatum [,ʌlti'meitəm] n. 最后通牒;最后结论192. unearth [ʌn’ɜ:θ] v.挖掘193. venerable [ˈvenərəbl]a.古老的;值得尊敬的194. waterfront [ˈwɔ:təfrʌnt] n. 水边;滩,海滨195. wheeze [wi:z]v.喘息,呼哧呼哧的作响196. wield [wi:ld]vt. 挥舞;手持;拥有(权利)197. willful ['wɪlfəl]a.任性的,有意的198. wistful [ˈwɪstfəl] a. 渴望的,想望的199. wrangle [ˈræŋɡəl] v. 争论,激辩,吵架200. zealous [ˈzeləs]a. 热心的,热忱的。
DRAWN BY: ARHNDS STORMCHAMBER SYSTEM DETAILSNDS SPECIALIST: 571-521-9538NDS STORMCHAMBER SYSTEM SPECIFICATIONS1.2.CHAMBERS SHALL BE NDS STORMCHAMBER .CHAMBERS SHALL BE ARCH SHAPED AND SHALL BE MANUFACTURED FROM HIGH MOLECULAR WEIGHT HIGH DENSITY POLYETHYLENE.3.CHAMBERS MEET OR EXCEED ASTM F2922 AND ASTM F2787. MEET AASHTO HS-20, HS-25 AND HL-93 LIVE LOADING PER AASHTO LRFD SECTION 12.4.MANUFACTURED NOMINAL DIMENSIONS OF START, MIDDLE AND END CHAMBERS ·SC18 3.17 FT WIDE X 18 INCHES TALL.·SC34 5 FT WIDE X 34 INCHES TALL.·SC44 6.35 FT WIDE X 44 INCHES TALL.9.THE PERFORMANCE OF NDS STORMCHAMBER ¨ IS DIRECTLY CORRELATED TO THE LOAD BEARING CAPACITY,PLASTICITY, AND PERMEABILITY OF NATIVE SOIL; FROST-HEAVE POTENTIAL; VOLUME AND LOAD-RATING OF PROJECT TRAFFIC; INSTALLATION METHODS USED; AS WELL AS THE TYPE, GRADATION, AND THICKNESS OF THE SURROUNDING AND OVERLAY ROCK.BACKFILL, HANDLING AND INSTALLATION REQUIREMENTS6.SEDIMENTRAP MANUFACTURED WITH HIGH MOLECULAR WEIGHT, HIGH DENSITY POLYETHYLENE.7.NON-WOVEN POLYPROPYLENE FILTER FABRIC TMG-4OZNWG BY TMPG OR APPROVED EQUAL8.WOVEN POLYPROPYLENE FILTER FABRIC 300HTM BY WINFAB OR APPROVED EQUAL.REQUIREMENTS FOR CONSTRUCTION EQUIPMENTPLACE THE BACKFILL MATERIAL IN 6-8 INCH LOOSE LIFTS AND COMPACT. USE MECHANICAL HAND TAMPERSOR APPROVED COMPACTING EQUIPMENT TO COMPACT ALL BACKFILL AND EMBANKMENT IMMEDIATELY ADJACENT TO EACH SIDE OF THE INSTALLATION AND OVER TOP OF THE INSTALLATION TO THE MINIMUM DEPTH SPECIFIED.PLACE BACKFILL SO THERE IS NO MORE THAN A TWO LIFT DIFFERENTIAL BETWEEN ANY OF THE CHAMBERS AT ANYTIME DURING THE BACKFILLING PROCESS (12 INCHES) .5. 2.STORMCHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE NDS STORMCHAMBER INSTALLATION GUIDE.3.STORMCHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. CONTACT NDS SPECIALIST 571-521-9538 OR LOCAL REPRESENTATIVE.4.3/4" TO 2” CLEAN, CRUSHED, WASHED, ANGULAR STONE AASHTO M43 DESIGNATION OF #3 OR #4 OR CRUSHED CONCRETE OF THE SAME SIZE. SEE ACCEPTABLE FILL MATERIAL TABLE ON PAGE 3.2.NDS RECOMMENDS 3 BACKFILL METHODS, STONESHOOTER LOCATED OFF THE CHAMBER BED, BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE AND BACKFILL FROMOUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. CONVEYORS OR EXCAVATORS SHOULD BE LOCATED SUCH THAT THEIR LOADS DO NOT INFLUENCE THE CHAMBERS SHOULD BE USED TO PLACE BACKFILL STONE.6.FOOTING OF CHAMBERS SHOULD BE CONNECTED WITH A DRYWALL SCREW WHEN OVERLAPPING AND INSTALLING.7.MINIMUM SPACING BETWEEN THE CHAMBER ROWS SC18 & SC34 = 6 INCHES, SC44 = 9 INCHES.8.INLET, OUTLET, AND INSPECTION PIPES MUST BE INSERTED A MINIMUM OF 12 INCHES (300 mm) INTO CHAMBER.9.STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.IN HOT WEATHER CONDITIONS, IF POSSIBLE, STORE ALL CHAMBERS AND BACKFILL STONE IN A SHADED AREA UNTIL THEY ARE READY TO BE INSTALLED. OUR RECOMMENDATION IS THAT THE SYSTEM BE LAID OUT AND ALL PIPES CONNECTED THE DAY PRIOR TO BACKFILLING WITH STONE. WHEN TEMPERATURES ARE ABOVE 85°F,BACKFILLING SHOULD BE RESTRICTED TO COOLER MORNING PERIODS ONLY.5.10.NO WHEEL LOADS SHOULD BE APPLIED OVER THE SYSTEM. ONCE THE MINIMUM STONE HAS BEEN PLACED OVER THE CROWN OF THE CHAMBERS, ONLY SMALL WALK BEHIND VIBRATORY COMPACTIONEQUIPMENT CAN BE USED UNTIL A 12 INCHES OF COVER IS ACHIEVED. LIGHTWEIGHT TRACKED DOZERS WITH A MAXIMUM GROUND PRESSURE OF 1100 PSF ARE PERMITTED OVER THE STRUCTURE.ONCE 18"(457mm) OF COMPACTED MATERIAL IS OVER THE CHAMBERS, HIGHWAY VEHICLES OF HS-20 AND HS-25 CAN BE OPERATED OVER THE STRUCTURES.3.11.PERIMETER STONE MUST BE BROUGHT UP EVENLY WITH CHAMBER ROWS. PERIMETER MUST BE FULLY BACKFILLED WITH STONE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL.12.SC44SC34SC18IMPROPER LIFT HEIGHTS IMPROPER PERIMETERBACKFILL5.MINIMUM COVER FOR SC18 AND SC34 IS 18 INCHES, MINIMUM COVER FOR SC44 IS 22 INCHES .1.NO CONSTRUCTION EQUIPMENT ALLOWED ON TOP OF THE CHAMBER SYSTEM UNTIL MINIMUM STONE COVER REQUIREMENTS HAVE BEEN MET, 6-INCH FOR SC-18 AND SC-34 AND 12-INCH FOR SC-44, ONLY THEN SHOULD A SKID STEER OR SMALL DOZER (D4) BE ALLOWED ON TOP.DOZERS MUST SPREAD STONE WORKING IN A DIRECTION PARALLEL WITH THE CHAMBER ROWS; NOT WORKING ACROSS THE CHAMBER ROWS. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH"METHOD ARE NOT COVERED UNDER THE STORMCHAMBER STANDARD WARRANTY.4.6.A FRONT END LOADER CAN BE OPERATED OVER THE STRUCTURES AS LONG AS THE MAXIMUM WHEEL LOAD DOES NOT EXCEED 16000 POUNDS. COMPACTING EQUIPMENT CAN BE OPERATED OVER THE STRUCTURES AS LONG AS THE DYNAMIC FORCE FROM THE DRUM DOES NOT EXCEED 20000 POUNDS AND THE GROSS VEHICLE WEIGHT DOES NOT EXCEED 12000 POUNDS.NDS STORMCHAMBERSPROPER IMPROPERNO MORE THAN 12"(305mm)BETWEEN LIFTS.1.THIS DOCUMENT IS NOT A SUBSTITUTE FOR THE INSTALLATION GUIDE.BACKFILL METHODSPROJECT NAME : PROJECT LOCATION :PROJECT NAME PROJECT LOCATIONTYPICAL FRONT VIEW 5' SECTION (TYP)10"(254mm) PVC LATERAL CONNECTOR PIPE BETWEEN INFLOW AND ADJACENT START UNITS PREFERRED INFLOWLOCATION UP TO36"(914mm)O.D.PIPE OR PER ENGINEER'S PLANCOMPACTED SOIL TO 95%STANDARD PROCTORPAVEMENT AND BASE (IF REQUIRED)12"(305mm)MIN.(TYP)WOVEN GEOTEXTILE (SC-WFF-75) UNDER INFLOW ROW AND ADJACENT OVERFLOW UNIT9" (229mm)MIN. SPACING (TYP)AASHTO #3 OR #4 (3/4" - 2")ANGULAR, CRUSHED,WASHED STONE (IGNEOUS RECOMMENDED)NON-WOVEN FILTER FABRIC #SC-NWFF-500NON-WOVEN #SC-NWFF-500WOVEN GEOTEXTILE (SC-WFF-75)START CHAMBER CUTAWAYCENTER RISER OVER SEDIMENTRAP™10"(254mm) PVC CLEANOUT RISER PIPE UNDERLYING SEDIMENTRAP™CAST IRON FRAME AND LID AT FINISHED GRADE (SC-FL-10)WRAP INFLOW ROW OF CHAMBERS WITH NON-WOVEN #SC-NWFF-500PREFERRED INFLOW LOCATION UP TO 36"(914mm) O.D. PIPE OR PER ENGINEER'S PLANWEIRWOVEN GEOTEXTILE (SC-WFF-75) UNDER INFLOW ROW ANDADJACENT OVERFLOW UNIT(SC-ST)(SC-3020P)30" DIA. X 20" L (MIN.)CORRUGATED HDPE PIPEBITUMINOUS PAVEMENTTYPICAL SIDE VIEWCAST IRON FRAME ANDLID (SC-FL-10) AT FINISHED GRADE10"(254mm) PVC CLEANOUT RISER PIPE.24" (607mm) STORMCHAMBERSEDIMENTRAP™ (SC-ST)60"(1524mm)x60"(1524mm)30"(762mm) DIA. X 20" (508mm) H HDPE PIPE (SC-3020P)30"(762mm) DIA. X20"(508mm) HHDPE PIPE (SC-3020P)SOIL BACKFILL BITUMINOUS PAVEMENTWOVEN GEOTEXTILE (SC-WFF-75)UNDER INFLOW ROWINSERT PIPE MIN. 6"(152mm)INTO CHAMBERCENTER RISER OVERSEDIMENTRAP™AASHTO #3 OR #4(3/4" - 2") ANGULAR,CRUSHED, WASHED STONE (IGNEOUS RECOMMENDED)PAVEMENT BASE 6" (152m m )M I N .**MINIMUM COVER IS FROM BOTTOM OF FLEXIBLEPAVEMENT OR TO THE TOP OF RIGID PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLESMAY OCCUR, ADDITIONAL 6" COVER MAY BE REQUIRED.NON-WOVEN FILTER FABRIC,#SC-NWFF-500 SEPARATION BETWEEN STONE AND SOIL BACKFILLWRAP INFLOW ROW OFCHAMBERS WITH NON-WOVEN #SC-NWFF-50024"(610mm) STORMCHAMBER SEDIMENTRAP™ (SC-ST)44"(1118m m )FOR TRAFFIC APPLICATIONS USE 12"-18"(300mm-450mm) DIAMETER WIDE AND 8" THICK CONCRETECOLLAR OR AS SPECIFIEDUP TO 36"(914mm)O.D.INFLOW PIPE OR PERENGINEER'S PLAN12"(305mm) MIN.9"(229mm) MIN.22"(559m m )M I N .**8 F T M A X .9"(225mm) MIN. SPACINGCHAMBER WALL TOWALL(TYP)TYPICAL PLAN VIEWPREFERRED OUT FALL LOCATIONUP TO 36"(914mm) O.D. PIPE(FOR CONTROLLED RELEASE ONLY)PREFERRED INFLOW LOCATION UP TO 36"(914mm) O.D. PIPESMMEWOVEN STABILIZATION GEOTEXTILE UNDER INFLOW ROW #SC-WFF-7510" PVC LATERAL CONNECTOR PIPE BETWEEN INFLOWAND ADJACENT START UNITSS M M E S M M E S M M EMM M M 12"(305MM)MIN TYP.AASHTO #3 OR #4 (3/4" - 2") ANGULAR,CRUSHED, WASHED STONE (IGNEOUS RECOMMENDED)ALIGN SEDIMENTRAP WITH CAST IRON FRAME AND LIDALIGN SEDIMENTRAP WITH CAST IRON FRAME AND LIDSEDIMENTRAP™INSTALL NON-WOVEN STABILIZATIONGEOTEXTILE #SC-NWFF-500AT ALL STONE/SOIL INTERFACESWRAP INFLOW ROW OF CHAMBERS WITHNON-WOVEN #SC-NWFF-50085.25"C -C M I N .7.5 FT (89-1/2"){2273mm}7.3 FT (87-1/2"){2223mm}7.5 FT (89-1/2"){2273mm}6.9 FT (82.25"){2089mm} 6.25 FT (75"){1905mm}6.9 FT (82.25"){2089mm}DOWNSTREAM ENDNOTES:WEIRUPSTREAM ENDPARTIALLY OPENCLOSEDOPENCLOSEDOPENSEMCUTOUT GUIDE FOR 10"(254mm)OR SMALLER PVC PIPESMEDELIVERY LENGTHS ELEVATION VIEWPLAN VIEWOPENRECOMMENDED LOCATION FOR 10"(254mm)PVC RISER PIPEUPSTREAM ENDDOWNSTREAMENDINSTALLED LENGTHS ELEVATION VIEW1.START CHAMBERS (CLOSED AT THE SIDE PORTAL END) ARE PLACED AT THE INFLOW END OF THE ROWS.2.BEGIN PLACEMENTS WITH START CHAMBERS AND END ROWS WITH END CHAMBERS.3.PLACE FIRST RIB OF THE NEXT CHAMBER IN THE ROWOVER THE LAST RIB OF THE PREVIOUS CHAMBER WITH SCREWS.START CHAMBERMIDDLE CHAMBEREND CHAMBERSC-44105 DIMENSIONS68-3/4"(1746m m )O U T E R W A L L T O O U T E R W A L L76-1/4"(1937m m )O V E R A L L44"Ø T Y P .WEIGHT: 120 LBS EA.14"(356m m )(DIMENSIONS MAY VARY SLIGHTLY)26"(660m m )CLOSED CHAMBER LENGTH7.46FT (89-1/2") {2273mm}REMOVE SHIPPINGSTRIP PRIOR TO INSTALLATONREMOVE SHIPPINGSTRIP PRIOR TO INSTALLATON12"(305mm)PERIMETER STONECHAMBER PART START MIDDLE ENDWIDTH (IN)(MM)HEIGHT (IN)(MM)WEIGHT (LBS)ACTUAL LENGTH (IN)(MM)INSTALLED LENGTH (IN)(MM) CHAMBER VOLUME (CF)(CM)INSTALLED STORAGEVOLUME(CF)(CM)76.25"(1937)44"(1118)12012012089.5"(2273)82.25"(2089)75"(1905)102.4(2.89)93.4(2.64)CLOSED12089.5"(2273)111.4(3.15)182.3(5.16)152.2(4.30)238.1(6.74)12"(305mm) ABOVE AND 9"(229mm) BELOW CHAMBER, 9"(229mm) CHAMBER SPACING,12"(305mm) PERIMETER STONE AND 40% POROSITY76.25"(1937)76.25"(1937)76.25"(1937)44"(1118)44"(1118)44"(1118)89.5"(2273)89.5"(2273)87.5"(2223)82.25"(2089)102.4(2.89)182.3(5.16)DRAWN BY: ARHMATERIAL LISTQTY SC-44105 STORMCHAMBERLAYOUTMEETS OR EXCEEDS ASTM F2922 AND ASTM F2787.MEETS AASHTO HS-20, HS-25 AND HL-93 LIVE LOADING PER AASHTO LRFD SECTION 12PROJECT #DESCRIPTIONCHAMBERS AND ACCESSORIES:START CHAMBER MIDDLE CHAMBER END CHAMBER CLOSED CHAMBERSEDIMENTRAP™NON-WOVEN GEOTEXTILEWOVEN STABILIZATION GEOTEXTILE30"Ø X 20"H HDPE PIPE FOR SEDIMENTRAP™10" CAST IRON FRAME AND LIDMATERIALS BY OTHERS:10"(254mm) DIAMETER RISER / LATERAL PIPE IN-PLACE EXCAVATION (NO BULKING FACTOR)STONE BACKFILL1/4" X 1-1/2" NUT AND BOLT3" SCREWSSTOCK CODE SC-44105-S-O SC-44105-M-O SC-44105-E-O SC-44105-C-O SC-ST SC-NWFF-500SC-WFF-75SC-3020P SC-FL-10OTHERS OTHERS OTHERS OTHERS OTHERSUNITSEACH EACH EACH EACH EACH ROLLS ROLLS EACH EACHEACH CU YD CU YD EACH EACHDRAWING# 44105-DT REV. EDATE 11-10-2022DRAWN BY: ARHMATERIAL LOCATIONFILL MATERIAL FOR LAYER '4' STARTS FROM THE TOP OF THE '3' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHEDGRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THIS LAYER.FILL MATERIAL FOR LAYER '3' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('2' LAYER) TO 18" [457mm] ABOVE THE TOP OF THE CHAMBER.NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THIS LAYER.EMBEDMENT STONE SURROUNDING THE CHAMBERS FROM THE FOUNTAINSTONE ('1' LAYER) TO THE '3' LAYER ABOVE.FOUNDATION STONE BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF CHAMBER.DESCRIPTIONGRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, 35% FINES. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION 34 -2 INCH [19-51mm]CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION 34 -2 INCH [19-51mm]AASHTO MATERIAL CLASSIFICATIONCOMPACTION/DENSITY REQUIREMENT PREPARE PER ENGINEER'S PLANS.PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL ANDPREPARATION REQUIREMENTS.BEGIN COMPACTION AFTER 12" [305mm] OF MATERIAL OVER THE CHAMBERS IS PACT ADDITIONAL LAYERS IN 6" [152 mm]LIFTS TO A MIN. 95% STANDARD PROCTOR DENSITY, ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs. [53kN]. DYNAMIC FORCE NOT TO EXCEED 20,000lbs [89kN].90% T99.PLATE COMPACTOR OR ROLL TO ACHIEVEA 95% STANDARD PROCTOR DENSITY.T99 AASHTO.ACCEPTABLE FILL MATERIALS: NDS STORMCHAMBER SYSTEMSAASHTO M145A-1, A-2-4, A-3ORAASHTO M43#3; 357, 4, 467, 5, 56, 57,6,67,68, 7, 78, 8, 89, 9, 10AASHTO M43 - #3, 4AASHTO M43 - #3, 4INSPECTION AND MAINTENANCE OF STORMCHAMBER SEDIMENTRAP ROWSTORMCHAMBER™ WITH SEDIMENTRAP™ ROW IS DESIGNED FOR EASE OF INSPECTION AND REDUCED LONG-TERM MAINTENANCE COST MONITORING T.S.S. BUILDUP IN A SEDIMENTRAP™ CAN BE DONE WITHOUT THE NEED FOR A THIRD PARTY AS THE TRAP SITS DIRECTLY BELOW THE OBSERVATION PORT. A CAMERA WITH LIGHT AND/OR LONG MEASURING STICK CAN SUCCESSFULLY INSPECT AND DETERMINE WHEN MAINTENANCE IS NEEDED. AS NEEDED, SEDIMENT REMOVAL WITH A VACUUM TRUCK REQUIRES LITTLE OR NO WATER JETTING AS WITH OTHER COMPETING SYSTEMS.INSPECTION AND MAINTENANCE SCHEDULETHE QUANTITY AND LOCATION OF INSPECTION PORTS VARY BY SITE. PLEASE REFER TO THE SITE PLAN AND LAYOUT TO CONFIRM INSPECTION PORT LOCATIONS. NEW INSTALLATIONS SHOULD BE INSPECTED QUARTERLY AND AFTER EACH LARGE STORM EVENT TO SEE HOW IT PERFORMS. IT IS RECOMMENDED THAT A LOGBOOK BE MAINTAINED SHOWING THE DEPTH OF WATER IN THE STORMCHAMBER AT EACH OBSERVATION IN ORDER TO DETERMINE THE RATE AT WHICH THE STORMCHAMBER SYSTEM DEWATERS AFTER RUNOFF PRODUCING STORM EVENTS. ONCE THE PERFORMANCECHARACTERISTICS OF THE STORMCHAMBER HAVE BEEN VERIFIED, THE MONITORING SCHEDULE CAN BE REDUCED TO AN ANNUAL BASIS, UNLESS THE PERFORMANCE DATA SUGGESTS THAT A MORE FREQUENT SCHEDULE IS REQUIRED.SEDIMENT SHOULD BE SERVICED WHEN DEPOSITS APPROACH WITHIN 6 INCHES FROM THE TOP OF THE SEDIMENTRAP OR CHAMBER BOTTOM.1: MAINTENANCE WITH SEDIMENTRAP - VACUUM TRUCK METHODREMOVE LID FROM INSPECTION PORTS. MEASURE THE DEPTH OF SEDIMENT BUILD-UP IN THE SEDIMENTRAPS.IF SEDIMENT BUILD-UP IN THE SEDIMENTRAP IS WITHIN 6 INCHES FROM THE TOP OF THE SEDIMENTRAP OR CHAMBER BOTTOM THEN PROCEED TO MAINTENANCE STEPS BELOW. IF SEDIMENT BUILD-UP IS LESS THAN6 INCHES, LOG THE RESULTS AND PLACE THE LIDS BACK ON.·INSERT VACUUM TUBE THROUGH 10 INCH CLEAN OUT RISER.·VACUUM TUBE WILL NEED TO REACH THE BOTTOM DEPTH OF SEDIMENTRAP (TYP. 7-10 FEET BELOW FINISHED GRADE).·REMOVE SEDIMENT USING VACUUM TRUCK/EQUIPMENT UNTIL NO FURTHER SEDIMENT IS BEING REMOVED.·INSPECT SEDIMENT BUILD-UP AGAIN TO ENSURE PROPER CLEANOUT.2: MAINTENANCE WITHOUT SEDIMENTRAP - WATER JET METHODREMOVE LID FROM INSPECTION PORTS. MEASURE THE DEPTH OF SEDIMENT BUILD-UP ON THE UNDERLYING WOVEN FABRIC UNDER THE CHAMBERS. IF SEDIMENT BUILD-UP ON THE BOTTOM IS GREATER THAN 3 INCHES THEN PROCEED TO MAINTENANCE STEPS BELOW. IF SEDIMENT BUILD-UP IS LESS THAN 3 INCHES, LOG THE RESULTS AND PLACE THE LIDS BACK ON.·REMOVE SEDIMENT FROM SEDIMENT ROW USING A HIGH PRESSURE WATER JET SYSTEM.·PREFERRED EQUIPMENT REQUIRED SHOULD HAVE A FIXED FLOOR CLEANING NOZZLE (REAR FACING) WITHA SPREAD OF AROUND 45 INCHES.·APPLY AS MANY PASSES IN THE ROW UNTIL THE BACKFLUSH WATER IS CLEAN.·VACUUM AREAS UNDER INSPECTION PORTS AND OUT OF ANY MANHOLES.12344' SECTION (TYP) 10"(254mm)PVC LATERAL CONNECTOR PIPE BETWEEN INFLOW ANDADJACENT START UNITSPREFERRED INFLOW LOCATION UP TO30"(762mm) PIPE OR PER ENGINEER'S PLANCOMPACTED SOIL TO 95% STANDARDPROCTOR PAVEMENT AND BASE (IF REQUIRED)WOVEN GEOTEXTILE (SC-WFF-75) UNDER INFLOW ROW ANDADJACENT OVERFLOW UNITAASHTO #3 OR #4 (3/4" - 2")ANGULAR, CRUSHED, WASHED STONE (IGNEOUS RECOMMENDED)12SIDE PORTAL INFLOW LOCATION UP TO10"(254mm) PIPE OR PER ENGINEER'S PLAN3412"(305mm) MIN. (TYP.)MIN. SPACING 6"(152mm) FOR SC34 ,SC18 &MIN. SPACING 9"(305mm) FOR SC44NON-WOVEN FILTER FABRIC #SC-NWFF-500 OR APPROVED EQUALANY SOIL/ROCK MATERIALS, NATIVE SOILS OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.NDS STORMCHAMBER SYSTEM DETAILSNDS SPECIALIST: 571-521-9538PROJECT NAME : PROJECT LOCATION :MAINTENANCE WITH SEDIMENTRAPS USING VACUUM TRUCK MAINTENANCE WITHOUT SEDIMENTRAPS USING WATER JETWOVEN GEOTEXTILE (SC-WFF-75)WOVEN GEOTEXTILE (SC-WFF-75)。
英语专八重点单词abstention[əbˈstenʃn]n.弃权;节制;戒绝aesthetic[i:sˈθetɪk]n./a美学的,审美的affluence['æflʊəns]n.富裕agile[ˈædʒaɪl] a.灵活的,轻快的amble[ˈæmbəl]vi.(马)缓行;从容漫步;n.(马的)缓行步态;漫步arid[ˈærɪd] a.干旱的attic[ˈætɪk]n.阁楼audacious[ɔ:ˈdeɪʃəs] a.厚颜无耻的;大胆鲁莽的authentic[ɔ:ˈθentɪk]adj.真正的,可信的begrudging[bɪˈgrʌdʒɪŋ] a.吝惜的;勉强的;妒忌的betray[bɪˈtreɪ]v.出卖,背叛bizarre[bɪˈzɑ:(r)]adj.奇异的;怪诞的bolt[bəʊlt]n.弩箭;门闩bondage[ˈbɒndɪdʒ]n.奴役,束缚brawl[brɔ: l]v.争吵brink[brɪŋk]n.(峭壁的)边缘;buckle[ˈbʌkl]v.扣住;n.皮带扣buoyant[ˈbɔɪənt] a.上涨的;有浮力的burgeon[ˈbɜ:dʒən]v.萌芽;迅速发展burgeoning['bɜ:dʒənɪŋ] a.迅速发展的buzzword[ˈbʌzwɜ:d]n.流行词calloused[ˈkæləst]adj.变得无情的;长满老茧的centrifugal[ˌsentrɪˈfju:gl]adj.离心的chamber[ˈtʃeɪmbə(r)]n.房间;会所charcoal[ˈtʃɑ:kəʊl]n.木炭chivalry[ˈʃɪvəlri]n.骑士精神(复数chivalries);绅士风度chorus[ˈkɔ:rəs]n.合唱团chronicle[ˈkrɒnɪkl]n./v.记录,将……载入编年体circumspect[ˈsɜ:kəmspekt] a.谨慎的,小心的circumvent[ˌsɜ:kəmˈvent]v.绕过;巧妙地规避clutch[klʌtʃ]n.离合器compatriot[kəmˈpætriət]n.同国人;同胞compliment[ˈkɒmplɪmənt]n/v.赞扬compromise[ˈkɒmprəmaɪz]n./v.危害;妥协consensus[kənˈsensəs]n.一致的意见;一致同意console[kən'səʊl]v.安慰conspire[kənˈspaɪə(r)]v.共同促成;密谋corollary[kəˈrɒləri]n.必然的结果;推论corridor[ˈkɒrɪdɔ:(r)]n.走廊cosmos[ˈkɒzmɒs]n.宇宙cram[kræm]v.挤满,塞满;死记硬背,填鸭式学的cram school填鸭式补习学校crawl[krɔ: l]v.匍匐前进crept[krept](creep的过去式)爬行,慢慢移动crouch[kraʊtʃ]v.蹲伏cumulative[ˈkju:mjələtɪv] a.积累的curl up[kə:l ʌp]卷起curriculum[kəˈrɪkjələm]n.课程defy[di'fai]vt.公然反抗;无法做某事demise[dɪˈmaɪz]n.死亡;终止depict[dɪˈpɪkt]vt.描写deportment[dɪˈpɔ:tmənt]n.(尤指少女的)风度,举止deride[dɪˈraɪd]v.嘲弄,愚弄devolution[ˌdi:vəˈlu:ʃn]n.(权利)移交,下放;退化,倒退dexterous[ˈdekstrəs]adj.灵巧的;敏捷的;惯用右手的diarrhea[ˌdaɪə'rɪə] n.腹泻discretion[dɪˈskreʃn]n.选择的自由;谨慎;判断力disobedient[ˌdɪsəˈbi:diənt] a.不服从的,违背的docile[ˈdəʊsaɪl] a.温顺的,容易教的duck[dʌk]v.弯下身子,低头dwindle[ˈdwɪndl]v.逐渐减少dynamo[ˈdaɪnəməʊ] n.发电机egalitarian[iˌgælɪˈteriən]adj.平等主义的,主张平等的embody[ɪmˈbɒdi]vt.体现enact[ɪˈnækt]vt.颁布;制定法律encumber[ɪnˈkʌmbə(r)]vt.阻塞;妨碍envision[ɪnˈvɪʒn]v.展望,预想epitomize[ɪˈpɪtəmaɪz]vt.做……摘要;典型;是……的典范esteem[ɪˈsti:m]vt.尊敬;考虑;n.尊重;尊敬exemplify[ɪgˈzemplɪfaɪ]v.举例说明explicit[ɪkˈsplɪsɪt] a.明确的,清楚的;直率的extravagant[ɪkˈstrævəgənt] a.过度的;浪费的,奢侈的exuberant[ɪgˈzju:bərənt] a.茁壮成长的fealty[ˈfi:əlti]n.忠诚feudal[ˈfju:dl]adj.封建的fickleness['fɪklnəs]n.浮躁,变化无常figurehead[ˈfɪgəhed]n.傀儡flay[fleɪ]v.剥皮flush[flʌʃ]n.旺盛fraternity[frəˈtɜ:nəti]n.兄弟会,博爱frenetic[frəˈnetɪk] a.发狂的,狂热的fret[fret]v.使烦躁使焦虑;使磨损fretful[ˈfretfl]adj.烦躁不安的frivolous[ˈfrɪvələs]adj.轻泛的,轻佻的fugitive[ˈfju:dʒətɪv]n.逃亡者furious[ˈfjʊəriəs]adj.狂怒的;激烈的gasp[gɑ:sp]v.气喘吁吁gratitude[ˈgrætɪtju:d]n.感激,感谢grenade[grəˈneɪd]n.手榴弹grin[grɪn]v.露齿而笑grueling['grʊəlɪŋ]adj.累人的grumble[ˈgrʌmbl]vi.抱怨habitat[ˈhæbɪtæt]n.栖息地heritage[ˈherɪtɪdʒ]n.遗产hilarious[hɪˈleəriəs]adj.欢闹的;非常滑稽的;homogenize[həʊ'mɒdʒənaɪz]v.使类同,使一致hum[hʌm]v.哼唱imperceptibly[ˌɪmpə'septəblɪ]adv.察觉不到地impersonator[ɪmˈpɜ:səneɪtə(r)]n.模仿者,演员impetuous[ɪmˈpetʃuəs]adj.冲动的;猛烈的;鲁莽的impoverish[ɪmˈpɒvərɪʃ]v.贫穷incorporate[ɪnˈkɔ:pəreɪt]v.合并;体现indigenous[ɪnˈdɪdʒənəs]adj.本土的;本国的;天生的indignant[ɪnˈdɪgnənt] a.愤慨的,愤怒的indulgence[ɪnˈdʌldʒəns]n.沉溺;放纵ineptitude[ɪˈneptɪtju:d]n.无能instinct[ˈɪnstɪŋkt] n.本能,天性jersey[ˈdʒɜ:zi]n.运动衫,毛线衫languid[ˈlæŋgwɪd] a.倦怠的,软弱无力的leopard[ˈlepəd]n.美洲豹loop[lu:p]v./n.环,圈;使成环lucrative[ˈlu:krətɪv]adj.有利可图的,赚钱的;合算的majestically[mə'dʒestɪklɪ]adv.庄严地,威严地malice[ˈmælɪs]n.恶意;恶毒margin[ˈmɑ:dʒɪn]n.边缘,利润marijuana[ˌmærəˈwɑ:nə]n.大麻medieval[ˌmediˈi:vl]adj.中世纪的mediocre[ˌmi:diˈəʊkə(r)] a.平庸的megacity['megəˌsɪtɪ]n.大城市(人口超过1000万)melodramatic[ˌmelədrəˈmætɪk]n.情节剧的metropolis[məˈtrɒpəlɪs]n.首府;大都市;重要中心mortgage[ˈmɔ:gɪdʒ]vt.抵押;n.抵押债款monochronic[mɒnəʊ'krɒnɪk]adj.一次的multiple[ˈmʌltɪpl] a.许多的,多重的municipal[mju:ˈnɪsɪpl]adj.市政的,市的;政府的munificent[mju:ˈnɪfɪsənt] a.慷慨的on the verge of…濒临……paramount[ˈpærəmaʊnt] a.至高无上的;最重要的pimp[pɪmp]n.[俚]皮条客;男妓plausible[ˈplɔ:zəbl] a.可信的,貌似合理的pompous[ˈpɑmpəs] a.高傲的,自大的portable[ˈpɔ:təbl] a.便携的,手提的prestige[preˈsti:ʒ]n.声望,威望prestigious[preˈstɪdʒəs]adj.有声望的profuse[prəˈfju:s]adj.很多的,浪费的progeny[ˈprɒdʒəni]n.后代,子女projection[prəˈdʒekʃn]n.突出物prolific[prəˈlɪfɪk]adj.多产的,多结果的prowess[ˈpraʊəs]n.英勇;超凡技术;勇猛prudent[ˈpru:dnt] a.谨慎的psycholinguistics[ˌsaɪkəʊlɪŋ'ɡwɪstɪks]n.心理语言学quirk[kwɜ:k]n.怪癖,奇事radiator[ˈreɪdieɪtə(r)]n.散热器rage[reɪdʒ]n.愤怒;vi.大怒,发怒rampart[ˈræmpɑ:t]n.(城堡等周围宽口的)防御土墙;防御,保护raucous[ˈrɔ:kəs]adj.沙哑的;刺耳的;粗声的reckless[ˈrekləs] a.鲁莽的reign[reɪn]vn.统治;支配;统治时期reminisce[ˌremɪˈnɪs]vi.回忆(搭配介词about)reminiscent[ˌremɪˈnɪsnt]adj.怀旧的,回忆往事的;耽于回想的repression[rɪˈpreʃn]n.抑制,压抑;镇压resurgence[rɪˈsɜ:dʒəns]adj.复苏revelation[ˌrevəˈleɪʃn]n.启示;揭露ritual[ˈrɪtʃuəl]n.仪式;例行公事,老规矩ruckus[ˈrʌkəs]n.争吵rustic[ˈrʌstɪk]adj.乡村的,乡下的sanitation[ˌsænɪˈteɪʃn]n.卫生设备,卫生环境satchel[ˈsætʃəl]n.小背包;书包scramble[ˈskræmbl]v.快速爬行;攀登,争夺,争抢;炒scrummage[ˈskrʌmɪdʒ]v.争球senile[ˈsi:naɪl] a.高龄的,老龄的shudder[ˈʃʌdə(r)]v.发抖,颤栗sinew[ˈsɪnju:]n.筋;肌腱;体力;精力snap[snæp]vt.猛咬;发出尖厉声音的突然折断sober[ˈsəʊbə(r)]adj.清醒的absorb[əbˈsɔ:b]v.使……全神贯注sobriety[səˈbraɪəti]n.节制;清醒,冷静spangle[ˈspæŋgl]n.闪光的饰品;v.使发光spatial[ˈspeɪʃl] a.空间的spout[spaʊt]v.喷出squat[skwɒt] a.蹲着的,矮胖的steadfastness[s'tedfɑ:stn'es]n.坚定不移stereotypical[,steriə'tipikl]adj.老一套的,陈规的stern[stɜ:n] a.严厉的,坚定的stilt[stɪlt]n.高跷strangle[ˈstræŋgl]v.抑制;勒死stroll[strəʊl]v.散步,漫步stubbornly['stʌbənlɪ]adv.固执地suffragette[ˌsʌfrəˈdʒet]n.女权主义者swig[swɪg]v/n.大口喝tacit[ˈtæsɪt] a.缄默的,心照不宣的teeter[ˈti:tə(r)]v.步履蹒跚temperate[ˈtempərət] a.温和的tenable[ˈtenəbl] a.站的住脚的;合理的tenacity[tə'næsətɪ]n.固执;不屈不挠thwart[θwɔ:t]vt.反对;阻碍;阻挠topography[təˈpɒgrəfi]n.地势,地形学totter[ˈtɒtə(r)]v.踉跄,蹒跚treacherous[ˈtretʃərəs] a.背信弃义的tremble[ˈtrembl]v.颤抖ubiquitous[ju:ˈbɪkwɪtəs] a.无处无在的,普遍的ultimatum[,ʌlti'meitəm]n.最后通牒;最后结论unearth[ʌn’ɜ:θ]v.挖掘venerable[ˈvenərəbl] a.古老的;值得尊敬的waterfront[ˈwɔ:təfrʌnt]n.水边;滩,海滨wheeze[wi:z]v.喘息,呼哧呼哧的作响wield[wi:ld]vt.挥舞;手持;拥有(权利)willful['wɪlfəl] a.任性的,有意的wistful[ˈwɪstfəl] a.渴望的,想望的wrangle[ˈræŋɡəl]v.争论,激辩,吵架zealous[ˈzeləs] a.热心的,热忱的。
TOFr 在STAR 实验中的标定*2004-04-27收稿,2004-08-26收修改稿 *国家自然科学基金(10275060)资助1)E -mail:wujian@us .c n阮丽娟 伍健1)董昕 邵明 陈宏芳 汪晓莲 李澄 黄胜利(中国科学技术大学近代物理系 合肥 230026)摘要 基于多气隙电阻板室(MRPC)的STAR 飞行时间探测器的一个板条的原型(TOFr)参加了2003年STAR 实验的质子-质子对撞和氘-金对撞的物理运行.利用STAR 实验中原有的赝顶点位置探测器(pVPD)和时间投影室(TPC),结合TOFr 的时间及幅度信号,并考虑TOFr 每个探测单元的尺寸,对影响时间分辨的各种因素进行了修正,实现了对TOFr 的标定.实验数据给出的TOFr 的本征时间分辨为85ps,在两倍标准方差下,其对P /K 及K/p 分辨的动量分别达到了1.6GeV/c 和3.0GeV/c ,大大提高了STAR 探测器的粒子鉴别能力.关键词 TOFr 时间分辨 探测效率 标定1 引言STAR 是美国布鲁克海文国家实验室相对论重离子对撞机(RHIC)上的4个实验之一.为了加强实验对末态粒子的鉴别能力,实验组计划增加飞行时间探测器作为其粒子鉴别的重要手段,以扩展其只有的时间投影室(TPC)对粒子鉴别的动量范围.中国科学技术大学近代物理系高能组通过合作承担了基于多气隙电阻板室(MRPC)的飞行时间探测器的预研及建造工作,并取得了一系列的结果[1)4].2002年秋,我们与美国RICE 大学共同建造的一个飞行时间探测器板条原型(TOFr)在AGS 的测试束测试后[5]安装在STAR 上,被置于TPC 的外围,取代了一个中央触发探测器(C TB)单元,在方位角5上只占P /30,覆盖的赝快度范围是0至-1之间.该原型是将来整个飞行时间探测器的1/120大小,接收度则是TPC 的0.3%.该原型参加了随后的质子-质子对撞和氘-金对撞的物理运行.本文着重介绍对整个TOFr 的标定方法及结果.2 相关实验装置与TOFr 进行标定相关的STAR 的子探测器主要有TPC [6]和赝顶点位置探测器(pVPD)[7].TPC 呈长4m 、半径2m 的圆桶状,是STAR 的最主要探测器,磁场在其中间分布均匀,可以提供带电粒子的动量和d E /d x 信息,另外,通过对所有带电粒子的径迹的拟合,可以得到对撞顶点的坐标以及每条径迹在磁场中的长度.由于整个STAR 的触发信号时间晃动较大,这就要求对TOFr 进行标定时要有一个较为精确的参考起始时间,这个参考时间是由pVPD 提供的.pVPD 分为东、西两个部分,距离对撞中心5.4m,每端很靠近束流放置3个塑料闪烁体和1cm 厚的铅层及匹配的3个光电倍增管,以探测重离子对撞时前向的光子,用以确定对撞点沿束流线方向的位置.pVPD 可以覆盖赝快度4.43)4.94之间的19%的立体角,由于不同类型的核核碰撞的末态多重数有很大差别,pVPD 两端的计数并不总都是3个,比如,对于质子-质子对撞,基本上每边只有一个计数.TOFr 标定的终止(STOP)时间信号自然是由其中的MRPC 的读出单元提供.结合上述信息,第29卷第2期2005年2月高能物理与核物理HIGH ENERGY PHYSICS AND NUCLE AR PHYSICSVol.29,No.2Feb.,2005157)161就可以获取MRPC的本征时间分辨并对不同粒子进行鉴别.由于TOFr的接收度很小,正常的STAR触发下其有计数的可能极小,因此,特别为TOFr确定了一套特殊的触发条件,即:当pVPD每边至少各有一个计数的同时,TOFr至少有一个计数时就进行触发取数,通过这样的触发条件最后得到的p+p和d +Au的事例数分别为300万和620万.3标定方法为了获得比较纯的粒子样本对TOFr进行标定,利用TPC对低动量P的优越的鉴别性能,首先在上述触发事例中选取了动量介于0.3)0.6GeV/c的P 介子,然后利用此样本对TOFr进行相关的标定工作.3.1参考起始时间T0的计算利用下式对T0进行计算:T0=2E$T E+2W$T W-(N E-N W)V Z/cN E+N W,其中E和W分别代表pVPD的东端和西端;$T为由pVPD记录下来的相对于整个STAR触发的时间信号;N E和N W分别是西端和东端着火的闪烁体的总计数;V Z是重建出的事例对撞顶点的Z坐标值.如前所述,由于p+p和d+Au对撞的末态多重数都很低,平均而言,d+Au实验中,金核出射方向(即东端)上的pVPD的3个PMT都有信号输出,而氘核出射的方向上只有一个PMT能给出信号;在p+p实验中,则每边只能给出一个信号.这样,两种不同的对撞给出的pVPD的总时间分辨是不同的,其中d+ Au是85ps,而p+p为140ps.图1中给出了p+p的情况.3.2飞行时间的计算此处带电粒子的飞行时间是指粒子从对撞点到达TOFr中MRPC的某个读出单元的击中点之间的时间.它实际上就是MRPC的击中单元的STOP信号与上述T0之间的时间差.这里面要考虑读出电缆的延时,同时要考虑时幅修正.图2给出了一个读出单元的时幅修正的关系,修正方法与文献[1]中是一致的,都是采用多项式拟合的方法.由于要求的时间测量精度较高,这样粒子击中读出条的位置造成的时间晃动也需要加以考虑.TOFr的每个MRPC是1@6型的读出条结构,条间相图1质子-质子对撞中pVPD的参考起始时间分辨图2第三个MRPC模块的第三个读出条的时幅关系图3MRPC的读出条上z方向不同位置的时间修正距3mm,每个读出条的尺寸是30mm@60mm.在TOFr中排列时,读出条的长端是沿着整个STAR探测器的z轴方向的,信号的读出端在+z方向,这样,带电粒子在读出条上不同的击中位置给出的时间信号就有先有后,需要加以修正.图3给出了沿158高能物理与核物理(HEP&NP)第29卷着读出条不同位置的击中所对应的时间修正值.从图中可以看出,在离读出端较远的地方,相对于读出端的时间修正基本是不断增加的,但在离端部15mm 范围内由于读出条宽度的影响使时间修正的变化很小.而在读出端附近,由于宽度的尺度已大于长度方向的尺度,宽度方向的影响已大于长度方向的影响,而使修正值有上翘.经过上述修正后,就可以得到MRPC 的整体的时间分辨的分布情况.图4和图5分别给出了p+p 和d+Au 对撞中MRPC 的时间分辨情况,其中包含了参考起始时间的晃动.由于p+p 实验的起始时间晃动较大,使得其总的时间晃动差于d+Au 实验的值.图4 质子-质子对撞中MRPC的总时间分辨图5 氘-金对撞中MRPC 的总的时间分辨3.3 探测效率为了了解整个TOFr 在STAR 运行中的探测效率,首先利用TPC 挑选出一个事例样本,要求其中的每个粒子的径迹都必须是击中数大于15的所谓的主径迹(primary track),径迹重建的顶点的z 方向的范围必须在正负50cm 之间.而且每条径迹在磁场中向外延拓后都必须进入TOFr 探测器的覆盖范围.这时再考察TOFr 上MRPC 的读出条的信号情况,凡是在离上述延拓点一个读出条的范围内存在超过给定阈值的信号,都认为TOFr 与TPC 存在匹配信号,由此可以定义出TOFr 的探测效率为匹配信号数与总样本数之比.不同动量范围的探测效率如图6所示.需要指出的是,由于在事例顶点和延拓点之间存在着气体及相关的支撑材料,上述效率实际上包含了材料吸收等因素,特别是对低动量端,由于吸收系数大,TOFr 的实际效率比图中显示的要高,扣除吸收因素后,探测效率高于95%.图6 未扣除粒子吸收效应的不同横动量的TOFr 的探测效率图7 TOFr 的电流与其计数和对撞机亮度的关系3.4 噪声水平及漏电流在RHIC 运行间隙,还对TOFr 的72路读出进行159第2期阮丽娟等:TOFr 在S TAR 实验中的标定了噪声测量,结果表明,最高的噪声率为12Hz,而绝大多数读出道的噪声率在8Hz左右.而整个TOFr (共28个MRPC模块)的高压被分为4个高压总线,即A+,A-,B+,B-.图7显示了这4路高压的总的电流与TOFr计数及RHIC亮度的关系.从图中可以看出,在每次对撞机发生对撞并维持亮度的初期,由于亮度较高以及相对的不稳定,使得TOFr的工作电流较大,随后随着系统的趋于稳定,TOFr的总电流也趋于稳定并维持在几十nA的较小值,每个MRPC模块所对应的电流基本上在1)2nA之间.而在没有对撞束情况下的测试结果则是0)1nA之间.4粒子鉴别通过对上面P粒子样本的修正过程,相关的修正参数被记录下来并建立了数据库.这样就可以对其他未知的粒子进行对应的飞行时间的修正,进一步结合TPC给出的动量信息和径迹长度信息,可以计算对应的粒子的质量的平方,从而最终确定粒子类型而完成对粒子的鉴别.图8给出了动量范围在1.2)1.4GeV/c的所有粒子的质量平方的分布.图中可以清晰的分辨出P,K和质子所对应的峰值.结果表明,在粒子质量平方分布图上,保证被鉴别的两种粒子的峰位分开两倍标准偏差(粒子质量平方的分布宽度)的情况下,P/K的分辨可以达到1.6Ge V/ c,而K/p的分辨则可以达到3GeV/c的水平,较原先仅靠依赖TPC进行分辨的0.8GeV/c和1.6Ge V/c的图8 1.2) 1.4GeV/c之间的粒子的质量平方分布值有了显著的提高.5结论由中国科学技术大学参与合作研制的TOFr参加了STAR的物理运行,结果表明该飞行时间探测器的运行是稳定可靠的.扣除材料吸收效应的探测效率高于95%.扣除起始时间晃动后的探测器本征时间分辨要好于85ps.该探测器极大的扩展了STAR实验的粒子鉴别的动量范围.在工作中,STAR-TOF组的同事给予许多的帮助.本运行工作是和RIC E大学的同事一起进行的,在此一并表示感谢.参考文献(References)1LI Cheng,WU Jian,CHEN Hong-Fang et al.Hi gh Energy Phys.and Nucl.Phys.,2001,25(9):933)936(in Chinese)(李澄,伍健,陈宏芳等.高能物理与核物理,2001,25(9):933) 936)2LI Cheng,WU Jian,WANG Xiao-Lian et al.Nuclear Science and Tech-ni ques,2002,13(1):6)103CHEN Hong-Fang,LI Cheng,WANG Xiao-Lian et al.Hi gh Energy Phys.and Nucl.Phys.,2002,26(3):201)206(in Chinese)(陈宏芳,李澄,汪晓莲等.高能物理与核物理,2002,26(3): 201)2064SHAO Ming,R UAN L-i Juan,CHEN Hong-Fang et al.Nucl.Instrum.M ethods.,2002,A492:344)3505SHAO M i ng,CHEN Hong-Fang,LI Cheng et al.High Energy Phys.and Nucl.Phys.,2004,28(7):733(i n Chinese)(邵明,陈宏芳,李澄等.高能物理与核物理,2004,28(7):733)6Anderson M et al.Nucl.Instrum.M ethods.,2003,A499:6597Llope W J et al.Nucl.Instrum.Methods.,2004,A522:252)273160高能物理与核物理(HEP&NP)第29卷C alibration of TOFr in the STAR Experiment*RUAN L -i Juan WU Jia n 1) DONG Xin SHAO M ing CHEN Hong -FangWANG Xiao -Lian LI Cheng HUANG Sheng -Li(Dep art ment of Modern Physics,Uni versity of S cien ce an d Techn ology of Chin a,Hefei 230026,Ch ina)Abstract A tray of Time of Flight detec tor based on MRPC technology took part in the physics run of STAR both in p+p and d+Au collisions in 2003.Togethe r with the information from the Time Projection Cha mber(TPC)and the pseudo -Ve rtex Position De tector (pVPD)of the S TAR e xperi ment,c orrections are done to calibra te the ne w prototype TOF.The intrinsic ti me resolution of TOFr reaches 85ps and it extends the P /K and K/p separation up to 1.6Ge V/c and 3.0Ge V/c respectively.Key words TOFr,time resolution,detec tion efficiency,calibrationReceived 27April 2004,Revi sed 26Augus t 2004*Supported by National Natural Science Foundation of Chi na(10275060)1)E -mail:wujian@us 161第2期阮丽娟等:TOFr 在S TAR 实验中的标定。
第31卷第2期2007年2月高能物理与核物理HIGH ENERGY PHYSICS AND NUCLEAR PHYSICSVol.31,No.2Feb.,2007基于GEM探测器的时间投影室TPC的讨论*李玉兰1;1)康克军1李金1,2来永芳1,31(清华大学工程物理系北京100084)2(中国科学院高能物理研究所北京100049)3(防化指挥学院北京102205)摘要自20世纪90年代以来,GEM探测器以其高电子倍增、高空间分辨和高计数率等优势在粒子物理和辐射成像等领域得到了广泛和深入的研究,具有广阔的应用前景.如果将GEM作为读出探测器应用在时间投影室TPC系统上,和传统的读出方式比较起来,既有许多优点也有许多挑战.目前世界上有许多机构正在研究将此方案用于将来的大型正负电子对撞机ILC.本文论述了这些研究课题的概况,讨论了TPC的各项关键性能指标与GEM探测器的关系及存在的问题.关键词TPC(时间投影室)GEM(气体电子倍增器)径迹重建读出1引言TPC(Time Projection Chamber,时间投影室)是一种气体漂移探测器,它由桶状的漂移区和具有位置灵敏功能的端盖读出探测器组成,内部存满工作气体并加有平行于桶轴向(z)的电场和磁场.当带电粒子穿过漂移区时,会在径迹上产生电子–离子对,电子在电场的作用下,向端盖读出探测器漂移,并在该处得到雪崩放大并产生具有位置、幅度、时间等信息的输出.这样带电粒子的径迹在r-φ平面的位置可由端盖探测器给出,z方向的信息可由电子漂移时间给出,实现了径迹的三维重建.平行于电场方向的磁场一方面可以使我们测量入射粒子的动量,同时还抑制了电子漂移过程中的横向扩散,提高了径迹的空间重建能力.正是由于TPC能够精确地测出粒子在漂移区域的三维径迹和d E/d x值,具有很高的粒子识别能力,许多大型高能粒子实验都采用其作为中心径迹探测器,比较著名的有LEP实验的ALEPH,DELPHI,BNL的STAR,LHC的ALICE等等.这些TPC都以多丝正比室MWPC(Multi-wire Proportional Chamber),作为读出探测器[1—4].在MWPC中,阳极丝附近的电场强度很大,电子的雪崩放大只发生在丝的附近,随后在离丝很近的阳极读出盘(pad)上感应出信号.但这种读出方法有一些不可避免的缺点,如:空间分辨率与径迹和丝的夹角有关联;由于在丝的附近电场和磁场不再平行,电子会沿E×B的方向扩散,最终造成了空间分辨率的劣化等.最近几年,粒子物理学界正在筹划建造下一个大型高能正负电子对撞机(International Linear Col-lider,ILC),它的物理目标对探测器提出了许多更高的要求,必须探索提高目前探测器性能的办法. TPC已被提议作为ILC系统的中心径迹探测器的候选者之一,同时MPGD(Micro Pattern Gas Detector,微结构气体探测器)也因其优于MWPC的性能而作为TPC读出探测器的优选方案[5],其中最具代表性的就是GEM(Gas Electron Multiplier,气体电子倍增器)探测器.GEM[6]探测器一般由二至三层GEM膜组成. GEM膜实际上是厚度为50µm左右的、双面覆铜的Kapton膜通过平版照相和化学刻蚀的方法刻蚀出许多小孔.当在上下两层金属层上加上一定的电压(300—400V)时,小孔中会形成很强的电场.在漂移区电离产生的电子会被沿电力线方向进到小孔中,得到雪崩放大,电子进一步传导,随后被后续的读出电路2006–04–23收稿*国家自然科学基金(10575063)资助1)E-mail:yulanli@223—227224高能物理与核物理(HEP&NP)第31卷读出.图1是用GEM读出的TPC概念性示意图.关于探测器的结构,工作原理和性能可参考文献[6,7].图1以GEM为端部读出的TPC示意图作为MPGD的一种,GEM来读出TPC比MWPC具有许多优势:它本身就是二维结构,且在二维读出平面中各向同性;它的自身结构在100µm级,接近系统要求的空间分辨率;E×B效应很小,甚至可以忽略;由于阳极盘(pad)读出的是GEM雪崩放大时直接产生的电子信号,信号宽度很窄(∼20ns),所以在电子漂移方向有很好的径迹分辨能力;同时GEM本身的结构使其具有很高的抑制正离子反馈的能力;且不需拉丝,系统更加坚固结实.但用GEM读出TPC毕竟是一个全新的技术,它的上述看似显而易见的优点能否真正在TPC中得到发挥,必须经过仔细地研究和论证,需要给出定量答案的课题有:(1)GEM的增益及所能达到的探测效率、能量分辨率;(2)空间分辨率、最佳读出pad的设计;(3)强磁场对空间分辨率及GEM探测器中电荷传输的影响;(4)探测器寿命;(5)正离子反馈的抑制;(6)最佳工作气体的确定.目前国际上有许多科研机构都在研究将GEM探测器作为TPC的读出,虽然部分回答了以上问题,但是最终验证GEM是否适合做TPC的读出,能否在未来直线对撞机ILC的实验探测器得到应用,还有待进一步的研究.2不加磁场时,GEM读出TPC时的基本性能不加磁场时,GEM作为TPC读出探测器时,仍具有其单独工作时的性能指标[8],如探测效率、能量分辨率等.德国Karlsruhe大学和CERN的研究结果证实了这一点.他们所建造的原型样机长25cm,直径20cm.采用一灵敏面积为10cm×10cm的双层的GEM膜读出[9].该原型机首先在CERN的p/π±束流下进行了无磁场情况下的测试.图2显示了单行读出盘时,探测效率与GEM有效增益的关系.可以看出有效增益达到3000时效率曲线达到坪区(峰值效率为99.3±0.1%),此时对于10cm长的径迹,d E/d x的分辨率就能达到σE/E=20%.不难看出,可以找到同时适用于TPC和GEM工作的气体.而且,不同气体的探测效率都不低.图2不同气体组分下,单行读出时,探测效率与增益的关系3空间分辨率及其与漂移距离、磁场强度的关系衡量一个TPC系统好坏的一个主要指标就是其对带电粒子径迹的三维重建能力,即它的空间分辨能力.它与系统所采用的工作气体组分、漂移距离的长短、磁场的大小、信号读出盘(pad)的设计、读出电子学的性能等都有关系.Kappler S等[9]对此进行了详细的研究.他们所采用的读出盘的大小为1.27mm×12.5mm,采用专为STAR TPC设计的ASIC电路.图3(a)和(b)分别表示了空间分辨率与漂移距离、径迹倾斜度的关系.随着漂移距离的增加,空间分辨率下降,且x方向分辨率与径迹的夹角有关.该原型机随后又在德国DESY5T 的磁场下进行了测试[10].在0—5T的磁场下,电子的漂移速度、横向扩展都与理论计算值很好地符合.图4(a)显示了不同磁场下单行空间分辨率与漂移距离的关系.从此可以看出,在磁场较弱时,空间分辨率只随着漂移距离的增大而变坏;而在强磁场时,空间分辨率随着漂移距离的增大而变小,这是由于在强磁场下,当漂移距离很小时,电子束团非常窄以至于在读出面击中的读出盘数太少,无法利用电荷分配法来精确定位.空间分辨率的最佳值在100µm左右.第2期李玉兰等:基于GEM 探测器的时间投影室TPC 的讨论225图3工作气体为Ar-CH 4(95:5)时,单行读出空间分辨率与(a)漂移距离、(b)径迹倾斜度的关系其中x 方向对应于读出盘1.27mm 间距的方向,z 方向对应于时间轴方向,径迹平行于读出平面,相对于读出盘长边方向倾斜.图4不同磁场下,原型机空间分辨率与漂移距离的关系(a)CERN 原型机测试结果;(b)加拿大原型机测试结果.加拿大几所大学也建造了基于GEM 读出的TPC 模型,并在最大5.3T 的磁场下,用宇宙射线对其径迹重建能力进行了研究[11].当工作气体为Ar-CH 4(95:5)时,不同磁场下,分辨率如图4(b)所示.同样可以看出,空间分辨率随着磁场的增强明显改进.当磁场强度大于1T 时,达到了预期的100µm 的分辨能力,且与漂移距离无太大的关系.该实验测试一直进行到5.3T,并没有发现分辨率有明显的改进.这与Kappler S 的结果[9]相吻合.当磁场强度达到一定的强度时,再一味增加磁场强度并不能明显改善空间分辨能力,需要与读出pad 的设计统一考虑.4读出盘(pad)的设计读出pad 的设计直接影响着TPC 在端盖平面内的二维空间分辨能力.一方面好的空间定位精度要求读出pad 越小越好,但太小的pad 会使读出通道多到无法承受的量级,同时还会导致输出信号信噪比太小,反而降低其定位精度;另一方面pad 尺寸太大时,会出现上述文献[10]所得的实验结果,即电子束团覆盖的读出pad 数太少,无法利用电荷分配法来精确定位,尤其是当磁场较强、电子漂移时的横向扩散很小时.在这方面不同研究机构的结果有所不符.Geron-imo G D[12]和Yu B[13]等人认为“Z ”字形的pad 设计可以促进电子在不同pad 上的扩散和电荷重心法的应用,并提高空间分辨力.在pad 径向、切向间距分别为5mm 和2mm 的情况下,实现了200µm 的空间分辨率.而另外一些研究则认为长方形的pad 设计最好[9,10],他们采用了1.27mm ×12.5mm 的设计;Karlen D 等[11]则采用外圈2.5mm ×5mm 、内圈2mm ×6mm的设计,也都实现了100—200µm 的分辨能力.另外为了增大电子束团在读出pad 上的扩散,Dixit M S 等[14]提出了一种在读出阳极面上覆盖一层阻性膜的方法,可以将空间分辨率压至100µm 以下.5磁场对GEM 探测器中电荷传输影响的研究我们知道,在TPC 探测器上加有平行于电场即轴向方向的磁场,端盖读出探测器也处在该磁场中,并且ˆB的方向垂直于GEM 膜.由于电子在电磁场中的漂移方向由下面Langevin 公式决定:υdrift ∝ˆE+ωτ(ˆE ׈B )+ω2τ2(ˆE •ˆB )ˆB226高能物理与核物理(HEP&NP)第31卷式中ˆE和ˆB分别表示电场和磁场的单位向量,ω= eB/m为电子的迴转频率,τ为电子在气体中两次碰撞时间的平均值.可以看出随着磁场强度的增强,平行于ˆB的项所起的作用将越来越大.这样会使得有些电子沿磁场方向而非电场方向运动.在GEM读出探测器中,由于GEM孔附近电场和磁场不再平行,造成电子不能聚拢到GEM孔中并进而雪崩放大,使得d E/d x分辨率的下降.为了研究这个问题,在不同的磁场强度下,Killenberg M等人[15]监测了三层GEM 探测器各个电极在55Fe源的照射下的电流情况,如图5所示.结果表明,随着磁场的增强由于电子逸出效率的增大,阳极电流增大了近2倍;而电子的收集效率只下降了几个百分点,收集到的初始电离的电子数仍能保证足够的统计涨落,并不会影响d E/d x的测量精度.图5不同磁场下,阳极电流和电子从阳极前最后一层GEM层逸出的效率的测量值电子收集效率和增益值由以上曲线计算而得.6正离子反馈在TPC中,总有部分正离子从端部读出探测器(电子在此得到雪崩放大)漂移到漂移区,这些正离子的数目与到达读出盘的电子数之比称为正离子反馈率,它必须尽量小,以免漂移区的正离子堆积太多,影响随后到来的测量粒子所产生的有用径迹的测量.在以前的TPC中,一般都在丝室前加一层门控栅网(gating grid),以抑制正离子的反馈.如果束团之间时间间隔很短(将来的ILC就是这种情况),由于无法采用门控的方式,要求读出探测器有很强的抑制正离子反馈能力.GEM探测器本身的结构决定了其有这方面的优势.图6是一个三层GEM探测器在不同磁场强度下,正离子反馈率的测量值都小于1%,且随着磁场强度的增加而有所下降[16].图6不同磁场强度下,三层GEM探测器正离子反馈的测量值7结论虽然用GEM读出TPC的研究工作刚刚开始几年,但是初步的实验结果已证明GEM可以很好地在强磁场、高束流通量的情况下工作,且能达到所期待的100µm的空间分辨率.目前国际上已有一套基于GEM的TPC(LEGS)在实际运行,另外还有若干实验性的原型机.但是还有许多问题有待研究,如最佳气体工作气体选择、耐受的正离子反馈、是否需要加门控栅极等等.如何发挥GEM探测器时间响应快的特点,使TPC能适应高计数率的要求.当然GEM端部读出与TPC室体结合起来组成一个完整的TPC探测器,还有许多工程、技术问题必须克服,如读出电子学、机械对准等,尚需大量深入细致的工作.第2期李玉兰等:基于GEM探测器的时间投影室TPC的讨论227参考文献(References)1Buskulic D,Casper D,Bonis I D et al.Nucl.Instrum.Meth-ods,1995,A360:4812Brand C,Cairanti G,Charpentier P et al.IEEE Tran.Nucl.Scie.,1989,36(1):1223Anderson M,Bieser F,Bossingham R et al.Nucl.Instrum.Methods,2003,A499:6794Bachler J,Bracinik J,Fischer H G et al.Nucl.Instrum.Methods,1998,A419:5115Wienemann P.IEEE Tran.Nucl.Scie.,2004,51(4):1497 6Sauli F.Nucl.Instrum.Methods,1997,A386:5317LI J,LAI Y F,CHENG J P et al.Nucl.Scie.and Tech., 2005,16:2258B¨u ttner C,Cape´a ns M,Dominik W et al.Nucl.Instrum.Methods,1998,A409:799Kappler S,Bieser F,Kaminski J et al.IEEE Tran.Nucl.Scie.,2004,51(3):103910Kaminski J,Ball M,Bieser F et al.Nucl.Instrum.Methods, 2004,A535:20111Karlen D,Poffenberger P,Rosenbaum G et al.http:// phys01compuvicca:8080/karlen/talks/tpc/PID27281pdf 12Geronimo G D,Fried J,O’Connor P et al.IEEE Tran.Nucl.Scie.,2004,51(4):131213YU B,Radeka V,Smith G C et al.IEEE Tran.Nucl.Scie., 2003,50(4):83614Dixit M S,Dubeau J,Martin J P et al.Nucl.Instrum.Methods,2004,A18:72115Killenberg M,Lotzr S,Mnich J et al.http://www-flcdesyde/lcnotes/notes/LC-DET-2004-003pdf16Sauli F,Ropelewski L,Everaerts P.http://gddwebcernch/ GDD/publicationsres/ion feedbackpdfThe Discussion on Time Projection Chamber(TPC)Based uponGEM Detector*LI Yu-Lan1;1)KANG Ke-Jun1LI Jin1,2LAI Yong-Fang1,31(Department of Engineering Physics,Tsinghua University,Beijing100084,China)2(Institute of High Energy Physics,CAS,Beijing100049,China)3(Institute of Chemical Defense,Beijing102205,China)Abstract Since its invention in1990s,GEM has drawed great attention and wide studies in thefield of particle physics and radiation imaging because of its high gain,high position resolution and high cout-rate capbility,many applications have been proposed,especially for the readout of pared with traditional readout detector, mainly MWPC(Multi-wire proportional chamber),GEM has many advantages and also a lot of challenges.Many institutes are carrying comprehensive R&D of TPC based on GEM readout in order to evaluate whether it can meet the unprecedented requirement of future ILC.This paper reviews their recent result.Key words time projection chamber(TPC),gas electron multiplier(GEM),track reconstruction,readoutReceived23April2006*Supported by National Natural Science Foundation of China(10575063)1)E-mail:yulanli@。
关于电影学的英文专业术语爱好英语又想学电影学的妹纸汉纸们大叔们萝莉们都来看看哦,走过路过不要错过唉。
以下是一些电影学的英语专业术语附加电影名词解释:documentary (film) 记录片,文献片filmdom 电影界literary film 文艺片musicals 音乐片comedy 喜剧片tragedy 悲剧片dracula movie 恐怖片sowordsmen film 武侠片detective film 侦探片ethical film 伦理片affectional film 爱情片erotic film 黄色片western movies 西部片film d’avant-garde 前卫片serial 系列片trailer 预告片cartoon (film) 卡通片,动画片footage 影片长度full-length film, feature film 长片short(film) 短片colour film 彩色片 (美作:color film)silent film 默片,无声片dubbed film 配音复制的影片,译制片silent cinema, silent films 无声电影sound motion picture, talkie 有声电影cinemascope, CinemaScope 西涅玛斯科普型立体声宽银幕电影,变形镜头式宽银幕电影cinerama, Cinerama 西涅拉玛型立体声宽银幕电影,全景电影title 片名original version 原著dialogue 对白subtitles, subtitling 字幕credits, credit titles 对原作者及其他有贡献者的谢启和姓名telefilm 电视片演员actorscast 阵容film star, movie star 电影明星star, lead 主角double, stand-in 替身演员stunt man 特技替身演员extra, walker-on 临时演员character actor 性格演员regular player 基本演员extra 特别客串film star 电影明星film actor 男电影明星film actress 女电影明星support 配角util 跑龙套工作人员techniciansadapter 改编scenarist, scriptwriter 脚本作者dialogue writer 对白作者production manager 制片人producer 制片主任film director 导演assistant director 副导演,助理导演cameraman, set photographer 摄影师assistant cameraman 摄影助理property manager, propsman 道具员art director 布景师 (美作:set decorator)stagehand 化装师lighting engineer 灯光师film cutter 剪辑师sound engineer, recording director 录音师script girl, continuity girl 场记员scenario writer, scenarist 剧作家distributor 发行人Board of Censors 审查署shooting schedule 摄制计划censor’s certificate 审查级别release 准予上映banned film 禁映影片A-certificate A级(儿童不宜)U-certificate U级X-certificate X级(成人级)direction 导演 production 制片 adaptation 改编scenario, screenplay, script 编剧 scene 场景 exterior 外景lighting 灯光 shooting 摄制 to shoot 拍摄dissolve 渐隐,化入,化出 fade-out 淡出 fade-in 淡入special effects 特技 slow motion 慢镜头 editing, cutting 剪接montage 剪辑recording, sound recording 录音sound effects 音响效果mix, mixing 混录dubbing 配音postsynchronization 后期录音合成studio 制片厂,摄影棚(motion)film studio 电影制片厂set, stage, floor 场地properties, props 道具dolly 移动式摄影小车spotlight 聚光灯clapper boards 拍板microphone 麦克风,话筒boom 长杆话筒scenery 布景电影摄制filming shooting camera 摄影机shooting angle 拍摄角度high angle shot 俯拍long shot 远景full shot 全景close-up, close shot 特写,近景medium shot 中景background 背景three-quarter shot 双人近景pan 摇镜头frame, picture 镜头still 静止double exposure 两次曝光superimposition 叠印exposure meter 曝光表printing 洗印影片类型films typesfilm, motion picture 影片,电影 (美作:movie) newsreel 新闻片,纪录片放映projectionreel, spool (影片的)卷,本sound track 音带,声带showing, screening, projection 放映projector 放映机projection booth, projection room 放映室panoramic screen 宽银幕film industry 电影工业cinematograph 电影摄影机, 电影放映机cinema, pictures 电影院 (美作:movie theater)first-run cinema 首轮影院second-run cinema 二轮影院art theatre 艺术影院continuous performance cinema 循环场电影院film society 电影协会,电影俱乐部 (美作:film club)film library 电影资料馆premiere 首映式film festival 电影节电影制片工业 technology of motion picture production 电影工业 motion picture industry电影建筑 film architecyure感光胶片厂 photographic film factory电影制片厂 film studio外景基地 location site外景场地 location电影洗印厂 film laboratory黑白电影 black-and-white film无声电影 silent film有声电影 sound film,talkie立体声电影 stereophonic film彩色电影 color film全景电影 cinerama电视电影 telecine电影预告片 trailer外文发行拷贝 foreign version release print幻灯片 slide电影字幕 film title镜头 lens shot cut画幅 frame画幅频率 frame frequency磁转胶 tape to film transfer胶转磁 film to tape transfer摄影 photography曝光 exposure曝光容度 exposure latitude滤光器 filter电影摄影 motion pictures photography,cinematography焦点 focus焦距 focal length景深 depth of fild取景器 finder升降车dolly-crane 改变摄影机拍摄机位一边进行空间移动拍摄的辅助器材移动车 dolly焦点虚 out of focus抖动 flutter声话不同步 out of sync一步成像照相机 instant photography camera航空照相机 aerial camera水下照相机 underwater camera自动曝光式照相机auto-exposure camera,electric eye camera自动调焦式照相机 automatic focusing camera快门 shutter快门时间 shutter speed摄影光源 photographic light source强光灯 photoflood lamp卤钨灯 tungsten halogen lamp汞灯 mercury lamp荧光灯 fluorescent钠灯 sodium lamp氙灯 xenon lamp闪光灯 flash lamp弧光灯 arc lamp反光器 reflector落地灯 floor lamp聚光灯 lens Spotlight回光灯 reflector Spotlight散光灯 flood lamp追光灯 follow Spotlight双排丝灯 twin-filament lamp充电 charging蓄电池 storage battery发电车 power vehicle挡光装置 lighting accessories摄影棚 stage ,sound etagere摄影棚工作天桥 catwalk单轨 single rail fixed on catwalk工作走廊 corridor安全走道 exit corridor地面电缆槽 floor cable trough摄影棚排风装置 stage ventilation system棚外照明天桥 platform outside the stage电影录音 motion picture sound recording 光学录音 photography soundrecording磁性录音 magnetic sound recording激光录音 laser sound recording单声道录音 monophonic recording多声道录音 multitrack recording录音棚 sound studio解说室narration room announcer’s booth 观察窗 observation window录音机械室 recording machine room混响室 reverberation chamber电影立体声 stereo sound in film矩阵立体声 matricx stereo失真 distortion音轨 sound track声轨 sound track数字录音机 digital audio recorder遥控 remote control编码 encode先期录音 prescoring pre-recording同期录音 synchronization recording后期配音 post-scoring post-synchronization 语音录音 dialogue recording音乐录音 music recording效果声录音 sound effects recording解说录音 narration recording混合录音 sound mixing缩混(并轨并道)mixdown混合声底 mixedsound negative音乐声底 music negative混合声正 mixed sound positive非同步声迹 control track涂磁拷贝 magnetic striped print涂磁条 magnetic striping调音台 mixing console, sound console外景调音台 portable console ,mixer对白调音台 dialogue mixer音乐调音台 music mixer混合调音台 re-recording console预混 pre-mixing配音 dubbing传声放大器 level diagram传声放大器 microphone amplifier多轨录音机 multiple recording磁性还音机 magnetic soundreproducer放声机 reproducer采样 (取样抽样)sampling采样定理 sampling theorem数字磁带录音机 PCM recording,digital audio tape recording 声场 sound field混响 reverberation混响声 reverberant sound人工混响 artificial reverberation自然混响 natural reverberation电影胶片 motion picture film片基 film base安全片基 safety film base黑白胶片 black-and-white film黑白负片 black-and-white film黑白正片 black-and-white positive film正色片 orthochromatic film黑白翻正片black-and-white duplicating positive film 黑白反转片black-and-white reversal彩色电影正片 color positivefilm彩色电影负片 color negative film大型彩色广告片 large-size color positive material彩色反转片 color reversal film照相胶卷 photography rollfilm照相纸 photographic paper印相纸 printing paper生胶片 raw stock合成摄影 composite photography发行拷贝 release printe影片库 film library电影特技特技电影 special effects cinematography特技摄影棚 special effects stage逐格摄影 single frame filming搭景 set construction布景构成类型 type of setting布景构成特点 features of setting电影化妆电影化妆 film make-up化妆颜料 cosmetic color for makeup粉底霜 foundation cream睫毛油 mascara化妆饼 makeup powder眼影粉 eye shadow眼线液 eye liner唇膏 lip stick指甲油 nail polish胭脂 rouge染发剂 hair dye化妆眉笔 eyebrowse pencil化妆程序 basic makeup procedures 画腮红 paiting cheek rouge画眼影 applying eye shadow画鼻侧影 drawing nose profile画高光 paiting highlights画眉眼 drawing eyebrows画眼线 lining eyelids涂口红 applying lip paints画阴影 paiting shadows扑粉定妆 powdering人造伤疤 scar effect人造血 theatrical blood人造汗 sweate effects、人造泪 tears effects做脏法 dirt effects假胡须 false beard假眉毛 false eyebrows美术电影镜头设计稿 storyboard layout动画 animated drawing一动画 first in-between animated drawing校对 check片头字幕 main and credit titles片中字幕 subtitle片尾字幕 end title译制片字幕 dubbed film title完成样片 edited daily print完成双片 cutting copy电影名词解释(中英文对照):ABERRATION 像差摄影影头因制作不精密,或人为的损害,不能将一点所发出的所有光线聚焦于底片感光膜上的同一位置,使影像变形,或失焦模糊不清。
© 2010 UTC Fire & Security. All rights reserved. 1 / 4 P/N 3100669 • REV 2 • ISS 05AUG10102 Series Triliptical TMStackable BeaconLighting System Installation SheetDescription / OperationThe Edwards Triliptical Stackable Beacon Lighting System is a unique audible-visual signaling device that can contain up to 5 light modules and either a single or multiple tone module in a single "stack."All components of the Triliptical Stackable Beacon Lighting System are UL and cUL listed subassemblies. The units,when assembled, are UL and cUL listed for indoor and outdoor applications. The enclosures are NEMA 3R, 4X, and IP65 rated.The optically designed lenses are available in five colors. See “Specifications” on page 3. Each lens module contains aremovable cover to allow for easy relamping. The lens module cover features a molded-in gasket for weather tight reliability. The unit's bases are available in three models. Two models feature shorter bases that are used when a lower profile is desired: one for surface mounting and one for pendant mounting. The other model features a larger base with a terminal block for use with an optional horn assembly. The larger base also functions as a junction box.A pipe mount kit, Cat. No. 102PMF (sold separately) and one of three extension pipes (sold separately) allows the status indicator to be raised above the mounting surface for increased visibility. It can be used with either the Cat. No. 102TBS or Cat. No. 102PMBS mounting bases.PLC CompatibilityThe electrical input characteristics for PLC compatible signals are listed in Table 3. Signals with these characteristics may be directly connected to PLC output cards that do not exceed these input characteristics.InstallationInstallation must be in accordance with the latest edition of the National Electrical Code and other governing standards and codes for standard installation.WARNINGS: To prevent electrical shock, do not connect power until instructed to do so.To prevent abrasion of wiring insulation, ensure that wire passage holes are adequately protected.1. If using the 102PMF mounting kit, perform the following:NOTE: All references below are to Figure 4.a. Using the supplied gasket (D) as a guide, mark thefour mounting holes and the center clearance hole on an appropriate surface. b. Punch the four mounting holes. Punch the wiringclearance hole in the mounting surface to besufficiently larger than that in the gasket to ensure the wiring insulation is protected from abrasion by the gasket (without interfering with the mounting screw holes), or provide other appropriate wire insulation abrasion protection as needed. c. Screw the pipe extension (purchased separately) intothe mounting flange. d. Ground the flange by pulling the ground wire throughthe mounting surface clearance hole and center hole of the gasket. Connect earth ground to the bottom of the base mount flange using the ground screw (G) and wire retention terminal cup washer (H). e. Pull the remaining field wiring through centerclearance hole of mounting surface, center hole of the gasket, pipe mount flange and extension pipe. f.Align the mounting gasket (D) and flange (A) on the panel. Secure using (4) #10-24 x 1" (25 mm) pan head screws (B), (4) external tooth #10 star washers (E) and (4) #10-24 hex nuts (F).g. Mount the base as instructed below.2. Mount the base using one of the following methods:NOTE:For indoor applications, the base may be panel mounted or conduit mounted. For NEMA3R, 4X, and outdoor applications, it is recommended that the unit be conduit mounted vertically facing up using either the Cat. No. 102TBS or Cat. No. 102PMBS base.a. Cat. No. 102TBS Install base on 3/4" (19 mm)conduit (not supplied). Pull field wiring throughconduit entrance hole.b. Cat. No. 102PMBS Install base on 3/4" (19 mm)conduit (not supplied). Pull field wiring throughconduit entrance hole.c. Cat. No. 102DMBS Using the supplied mountinggasket as a template, punch the four mounting holes.Punch the wiring clearance hole in the mountingsurface to be sufficiently larger than that in the gasketto ensure the wiring insulation is protected fromabrasion by the gasket (without interfering with themounting screw holes), or provide other appropriatewire insulation abrasion protection as needed. Mountthe base to the surface using the (2) screws(supplied).3. Connect field wiring.a. Cat. No. 102TBS Connect field wiring to the terminalblock as shown in Figure 1.b. Cat. No. 102PMBS or Cat. No. 102DMBS Usingwire nuts, connect 18" (457 mm) wire leads to fieldwiring. The six wire leads are marked as follows:Neutral, 1 Bottom, 2, 3, 4 & 5. 1 Bottom denotes thelead for the bottom-most signal in the stack.c. If using the optional Cat. No. 102SIGST single tonemodule or Cat No. 102SIGMT multi-tone module,connect additional field wiring to the terminal blockmounted on the signal assembly as shown in Figure2.NOTE: The tone module may be wired to sound independently or in conjunction with a light signal.(1) To sound tone module independently, connect toseparate hot lead.(2) To sound tone module with a particular light,connect horn hot terminal to selected lightterminal on Cat. 102TBS terminal block.4. Assemble the stackable beacon lighting system (Figure 3).a. Pull the captive key in the lens module into the "out"position.b. Place the first lens module on top of the base.c. Push in the captive key to secure the lens module. WARNING: To prevent leakage, ensure the magnifier ring on the lens cover and the magnifier ring on the lens module are aligned (Figure 3).d. Insert the appropriate light source into board groovesat bottom of lens module, ensuring that the fourprongs on the PC board are aligned with the pluglocated in the back of the lens assembly.NOTE:When using LED light sources, ensure that the color of the LED light source and the lens assembly match.e. Place the lens assembly cover on the front of the lensmodule and secure using two captive screws.f. Repeat steps a through e for any remaining modules(up to 5).g. Once the last module has been assembled, place thecap on top and secure the cap with the captive screw.WARNING: To prevent electrical shock, disconnect power to all modules. Wait 5 minutes for stored energy in strobe modules to dissipate before working on unit.5. Apply power to the unit and verify proper operation.MaintenanceLight Source Replacement1. Loosen captive screws and remove cover of affected lensmodule.2. Remove the light source assembly from the lens module.3. Install new light source assembly ensuring that the fourprongs on the PC board are aligned with the plug located in the back of the lens module.WARNING: To prevent leakage, ensure the magnifier ring on the lens cover and the magnifier ring on the lens module are aligned (Figure 3).4. Replace lens cover and secure using two captive screws. CleaningThe lens surfaces should be periodically dusted and cleaned with a dry soft clean cloth to maintain optimum light visibility. If necessary, the outside of the lens may be cleaned with water and a mild detergent on a well rung-out, soft, clean cloth.Figure 1: Wiring Cat. No. 102TBS2 / 4 P/N 3100669 • REV 2 • ISS 05AUG10P/N 3100669 • REV 2 • ISS 05AUG10 3 / 4Figure 2: Wiring Cat. No. 102SIG*TFigure 3: Assembling the stackable status indicator (Cat. No.102TBS shown for illustration purposes only)Figure 4: Optional 102PMF Mounting Kit AssemblySpecificationsVoltage 24 VDC (-G1) 120 VAC (-N5) Current Base Units 102TBS 102DMBS 102PMBSTone Module 102SIGMT 102SIGST Light Modules 102LS-SINH 102LS-SIN 102LS-FINH 102LS-FIN 102LS-ST 102LS-SLED 102LS-FLED 1.75 A* 1.75 A* 1.75 A* 0.05 A 0.05 A 0.32 A 0.32 A 0.32 A 0.32 A 0.30 A 0.062 A 0.062 A 0.60 A* 0.60 A* 0.60 A* 0.07 A 0.07 A 0.11 A 0.08 A 0.11 A 0.08 A 0.30 A 0.022 A 0.022 A Replacement Lamp 102LS-SINH 102LS-SIN 102LS-FINH 102LS-FIN50LMP-9WH** Ind. Trade 303 50LMP-9WH** Ind. Trade 30350LMP-12WH 50LMP-10W 50LMP-12WH 50LMP-10W*Currents shown are for a stackable indicator with 5 light modules. **A non-halogen lamp, Ind. Trade 303, may be used in place of the halogen lamp.Table 1: Lamp Life (Hours)Light SourceCalculated*Projected** 102LS-SINH-G1 12,000 -- 102LS-SINH-N5 20,000-- 102LS-SIN-G1 10,000 -- 102LS-SIN-N5 2,500-- 102LS-FINH-G1 12,000 15,000 102LS-FINH-N5 20,000 25,000 102LS-FIN-G1 10,000 12,500 102LS-FIN-N5 2,500 3,000102LS-ST-G1 102LS-ST-N5 3,000*** --102LS-SLED 102LS-FLED100,000 --*At nominal operating voltage.**Projected lamp life based on manufacturer’s calculated lamp life @ 65 fpm and 50% duty cycle.***Strobe tube life @ operating power to 75% efficiency. Table 2: Part numbersCatalog Number Description102TBS-G1102TBS-N5 Pipe mount base, for use with optional horn assembly 102DMBS-G1 102DMBS-N5Direct mount baseCatalog Number Description102PMBS-G1102PMBS-N5Pipe mount base102PMF Optional pipe mounting flange102SIGST-G1102SIGST-N5Single tone module. Requires 102TBS base.102SIGMT-G1102SIGMT-N5Multi-tone module. Requires 102TBS base. 102LM-* Lensmodule102LS-SINH-G1 102LS-SINH-N5 Light module, steady-on, 9W halogen Light module, steady-on, 12W halogen102LS-SIN-G1102LS-SIN-N5Light module, steady-on, 10W incandescent102LS-FINH-G1 102LS-FINH-N5 Light module, flashing, 9W halogen Light module, flashing 12W halogen102LS-FIN-G1 102LS-FIN-N5 Light module, flashing, 10W incandescentCatalog Number Description102LS-ST-G1102LS-ST-N5Light module, 3 Joule strobe102LS-SLED**-G1102LS-SLED**-N5Light module, steady-on LED102LS-FLED**-G1102LS-FLED**-N5Light module, flashing LED102MP-4102MP-10102MP-15Optional Extension Pipe, 4 in.Optional Extension Pipe, 10 in.Optional Extension Pipe, 15 in.*Signifies lens module color (A – amber/orange, B – blue, C – clear, G– green, R – red, Y – yellow)**Signifies lens and LED module color (A – amber/orange, B – blue, G– green, R – red). NOTE: LED light sources must be used with thecorresponding color lens module (e.g., a blue LED light source, 102LS-SLEDB-G1, must be used with a blue lens, 102LM-B).Table 3: PLC CompatibilityCatalog number Operating voltage Max. off state leakagecurrentContinuous on current Surge (inrush/duration)102SIGST-G1 24 VDC 5 mA 50 mA 0.24 A / 0.2 mS102SIGST-N5 120 VAC 60 Hz 5 mA 70 mA 0.35 A / 0.5 mS102SIGMT-G1 24 VDC 5 mA 50 mA 0.24 A / 0.2 mS102SIGMT-N5 120 VAC 60 Hz 5 mA 70 mA 0.35 A / 0.5 mS102LS-SIN-G1 24 VDC 25 mA 32 mA 0.36 A / 1 mS102LS-SIN-N5 120 VAC 60 Hz 25 mA 80 mA 0.15 A / 8 mS102LS-SINH-G1 24 VDC 25 mA 320 mA 0.36 A / 1 mS102LS-SINH-N5 120 VAC 60 Hz 25 mA 110 mA 0.15 A / 8 mS102LS-FIN-G1 24 VDC 25 mA 32 mA 1.4 A / 100 mS102LS-FIN-N5 120 VAC 60 Hz 25 mA 80 mA 0.3 A / 8 mS102LS-FINH-G1 24 VDC 25 mA 320 mA 1.2 / 100 mS102LS-FINH-N5 120 VAC 60 Hz 25 mA 110 mA 1.15 A / 8 mS102LS-ST-G1 24 VDC 1.5 mA 300 mA 0.33 A / 1 mS102LS-ST-N5 120 VAC 60 Hz 5 mA 120 mA 50 A / 1 mS102LS-SLED( )-G1 24 VDC 5 mA 65 mA 0.07 A / 1 mS102LS-SLED( )-N5 120 VAC 60 Hz 5 mA 25 mA 0.09 A / 8 mS102LS-FLED( )-G1 24 VDC 5 mA 65 mA 0.07 A / 1 mS102LS-FLED( )-N5 120 VAC 60 Hz 5 mA 25 mA 0.09 A / 8 mS Regulatory informationEdwards Signaling Edwards, A Division of UTC Fire & SecurityAmericas Corporation, Inc.8985 Town Center Parkway, Bradenton, FL34202, USAContact informationFor contact information, see .4 / 4 P/N 3100669 • REV 2 • ISS 05AUG10。
船舶与海洋工程专业专业英语词汇1、A类a faired set of lines 经过光顺的一组型线 abaft 朝向船尾absence 不存在accommodation 居住(舱室)acquisition cost 购置(获取)成本activate 作动adopt 采用aegis 保护,庇护aerostatic 空气静力学的after perpendicular (a. p. )艉柱ahead and astern 正车和倒车 air cushion vehicle 气垫船aircraft carrier 航空母舰airfoil 气翼,翼剖面,机面,方向舵airfoil 气翼,机翼alignment chock 组装校准用垫楔(或填料)allowance 公差,余(裕)量,加工裕量,补贴 American Bureau of Shipping (美国)船级社amidships 舯amidships 在舯部amphibious 两栖的angle of attack 攻角angle plate 角钢 anticipated loads encountered at sea在海上遭遇到的预期载荷antiroll fins 减摇鳍 appendage 附体appendage 附件,附体 appendage 附体artisan 技工 assembly line 装配(流水)线athwart ships 朝 (船)横向 at-sea replenishment 海上补给axiomatic 理所当然的,公理化的2、B类back up member 焊接垫板 backing structure 垫衬结构Bar 型材,材bar keel 棒龙骨,方龙骨,矩形龙骨barge 驳船 base line 基线base, base line 基线basic design 基本设计batten 压条,板条 be in short supply 供应短缺、俏销beam 船身最大宽,横梁beam 船宽,梁bench work 钳工 bevel 折角bid 投标 bidder 投标人(者)bilge 舭,舱底bilge 舭bilge keel 舭龙骨 bilge radius 舭半径bills of material 材料(细目)单 blast 喷丸(除锈)block coefficient 方形系数block coefficient 方形系数Board of Trade (英国)贸易厅 body plan 横剖面图body section 横剖图 Bonjean curve 邦戎曲线boom 吊杆 boundary layer 边界层bow line 前体纵剖线 bow thruster 艏侧推器bow wave 艏波boyant 浮力的bracket 轴支架,支架breadth extreme 最大宽,计算宽breadth moulded 型宽breakbulk 件杂货buckle 屈曲budget 预算,作预算buffer area 缓冲区building basin 船台 bulb plate 球头扁钢bulbous bow 球状船艏bulbous bow 球鼻艏bulk oil carrier 散装油轮bulk carrier 散装货船bulk carrier 散装货船 buoyancy 浮力buoyancy 浮力Bureau Veritas (法国)船级社burning machine 烧割机 butt weld 对缝焊接buttock 后体纵剖线by convention 按照惯例,按约定3、C类camber 梁拱capacity plan 舱容图capsize 倾覆capsizing moment 倾覆力矩captured-air-bubble vehicle 束缚气泡减阻船cargo capacity 载货量,货舱容量,舱容cargo cubic 货舱舱容,载货容积cargo handling 货物装卸 cargo owner 货主carpenter 木匠 carriage of grain cargoes 谷类货物输运机cascading of waves upon…海浪跌落于… casualty 事故,死伤,灾难catamaran 双体船categorize 分类centroid 形心,重心,质心,矩心 chine 舭,舷,脊chock 木楔 circumscribe 外接,外切circumsection 外切Coast Guard cuttle(美国)海岸警备队快艇commercial ship 营利用船commissary spaces 补给库舱室,粮食库common carrier 通用运输船compartment 舱室 concave 凹,凹的,拱conceive 设想,想象concept design 概念设计configuration 构形,配置configuration安排,构型,配置conspicuous 显著的,值得注意的containerized 集装箱化 contract design 合同设计contract design 合同设计 contracted scale 缩尺core box 型芯 corrosion 锈蚀,腐蚀couple 力矩,力偶crest (of wave) 波峰crew quarters 船员居住舱 Critical Path Method (CPM) 关键路径法cross section 横剖面 cross sectional area 横剖面面积cross-channel automobile ferries 横越海峡客车渡轮crucial element 重要因素cruiser stern 巡洋舰尾cruissing range 航程curvature 曲率curves of form 各船型曲线cushion of air 气垫4、D类damage stability 破损稳性 damp out 阻息,逐渐降低dead load 恒(静)载荷 deadweight 总载重量(吨)deballast 卸除压载(压舱)deck line at side 甲板边线deck camber 甲板梁拱deck wetness 甲板淹湿 deckhouse 舱面室,甲板室declivity 坡度,斜度 deep V hull 深V型船体deformation 变形 delivery 交船Department of Trade (英国)贸易部 deposit metallic plating 镀上金属镀层depth moulded 型深depth 船深depth 船深 design spiral 螺旋式设计destroyer 驱逐舰detail design 详细设计deviation 偏离,偏差 devious 曲折的diagram 图,原理图,设计图,流程图 dimension 尺度,元,维displacement 排水量distributed load 分布载荷division 站,划分,分隔do work 做功dock 泊靠draft 吃水draftsman 绘图员 drag 阻力Drainage 排(泄)水draught(=draft) 吃水,草图,设计图,牵引力drawing office 绘图室 dredge 挖泥船drift 飘移,偏航drilling rig 钻架 dry dock 干船坞5、E类eddy 旋涡electrohydraulic 电动液压的electroplater 电镀工 elevations 高度,高程,船型线图的侧面图、立视图,纵剖线图 enclosed fabrication shop 封闭式装配车间end on 端对准 endurance 续航力endurance 续航性 entrance 进流段 erection (船体)组装erection 装配,安装 expedient 权宜之计extrapolate 外插f. p. = forward perpendicular 艏柱fair 光顺 fair 光顺fastening 坚固件,紧固法fatigue 疲劳 feasibility study 可行性研究 fender 护舷ferry 渡轮,渡口,渡运航线ferry 轮渡(载运) fillet weld connection 贴角焊连接fine fast ship 纤细(细长)高速船 fine form 瘦长(细长)船形Flank 侧面, 侧翼, 侧攻flanking rudders 侧翼舵flare 外飘,外张flat of keel 平板龙骨fleets of vessels 船队 flexural 挠曲的float 浮动时间 floating drydock 浮船坞 flood 进水,泛滥floodable length curve 可浸长度曲线 flow pattern 流型,流线谱flow of materials 物流 flush 平贴,磨光forging 锻件,锻造 form coefficient 船形系数forming operation 成型加工forward/after perpendicular 艏/艉柱forward/after shoulder 前/后肩 foundry casting 翻砂铸造 foundryman 铸造翻砂工 frame 船肋骨,框架,桁架frame 框架 freeboard 干舷freeboard 干舷freeboard 干舷freeboard deck 干舷甲板 freight rate 运费率fresh water 淡水 frictional resistance 摩擦阻力Froude number 傅汝德数full form 丰满船形full form ship 丰满船型 fullness 丰满度funnel 烟囱galley (船舰,飞机的)厨房Gantt Chart 施工进度表 general arrangement 总布置general arrangement 总布置 Germanischer Lloyd (德国)劳埃德船级社girder 桁,梁gradient 梯度grating 格栅 Green Book (船级社)绿皮书 (登录快速远洋船)ground level building site 平地建造场 group technology 成组建造技术grouting 填缝、灌浆 guided-missile cruiser 导弹巡洋舰habitability 适居性half breadth plan 半宽图handling equipment 装卸设备 hard chine 尖舭headroom 净空高度heave 垂荡 heel 横倾heel 柱脚,踵材,底基,倾斜 hog 中拱hogging 中拱 hold 船舱hole 水流深凹处homogeneous cylinder 均质柱状体hopper barge (自动)倾卸驳 hostile sea 凶险的波浪hostile sea 汹涌波浪 hull block 船体垫块,船体支座 hull form 船形hull form 船形 HVAC (=heating, ventilating and cooling) 取暖,通风与冷却hydraulic mechanism 液压机构 hydrodynamic 水动力学的hydrofoil 水翼hydrostatic 水静力的icebreaker 破冰船icebreaker 破冰船identified as Essential Changes 标记作“必备变更项” immerse 浸入immerse 浸没impact load 冲击载荷imperial unit 英制单位impression 模槽,型腔,印痕,印象in strake 内列板 in way of…在…处inboard profile 纵剖面图 In-depth analysis 深入研究initial stability at small angle of inclination小倾角初稳性insulation 绝缘,隔离Intact stability 完整稳性Intergovernmental Maritime Consultative Organization 国际海事质询组织Intergovernmental Maritime Consultative Organization (IMCO) 国际政府间海事质询组织International Association of Classification Society (IACS) 国际船级社联合会International Convention for the Safety of Life at Sea (ICSOLAS) 海上生命安全性国际公约International Towing Tank Conference 国际船模试验水池会议intersection 交点,交叉,横断(切)intervening deck 居中甲板introduces a bill 提出一项议案 issue periodically 定期发布(公布) iterative process 选代过程jack 千斤顶 janitorial 勤杂工,房屋照管者joggle 折曲,榫接,弯合 joiner 安装工joiner 细木工(匠)joinery 细木工keel laying 开始船舶建造(原意为“铺设龙骨架”) Kips (= kilo-pounds) 千磅laborer 力工Land borne 陆基的,装在陆地的 landing craft 登陆艇large tank and sphere 大型油罐和球罐launch 发射,下水launching equipment(向水中)投放设备launching way (船舶)下水滑道 LCC(Large Crude Carrier)大型原油轮(载重10~20万吨)lead time 设计至投产、定货至交货的时间 legislation 立法length between perpendicular 两柱间长leveler 调平器,矫平机,矫直机life saving appliance 救生设备 life-cycle cost 生命周期成本lift fan 升力风扇lift offsets 量取型值Light ship weight 空船重量 lighter 港驳船likely 多半,可能line 型线liner 定期航班船liner trade 定期班轮营运业lines plan 型线图liquefied gas carrier 液化气运输船list 倾斜, 表living and utility spaces 居住与公用舱室Lloyd’s Machinery Certificate (LMC) 劳埃德(船舶)机械证书Lloyd’s Register of Shipping (英国)劳埃德船级社Lloyds Rules 劳埃德(船级社)规范LNG containment 液化天然气容器Load Line Regulation 载重线公约、规范load waterline 载重水线load waterplane 载重水线面loft floor 放样台full scale 全尺度loftman 放样工loftman 放样工longitudinal 纵向的longitudinal 纵向的,纵梁longitudinal prismatic coefficient 纵向棱形系数machinery vendor 机械(主机)卖方magnet gantry 磁力式龙门吊maiden voyage 处女航main shafting 主轴系major ship 大型船舶maneuverability 操纵性maritime 海事的,海运的,靠海的,沿海的mark out 划线,划记号marshal 调度mast 桅杆maximum beam amidships 舯最大宽member 部件merchant ship 商船metacenter 稳心metacentric height 稳心高metal plate bath 金属板电镀槽metal worker 金属工metric unit 公制单位midbody (船)中体middle line plane 中线面midship area coefficient 舯横剖面系数midship section 舯横剖面midship section coefficient 舯横剖面系数mill shape 轧钢厂型材module assembly 模块式组装mold loft floor (型线)放样间地板molded lines 型线molder 造型工mould loft 放样间moulded line 型线multihull vessel 多体船Multi-ship program 多种船型建造规划nautical mile 海里naval architect 造船师naval architecture 造船工程naval ship 军船naval architecture 造船学nearuniversal gear 准万向齿轮network flow 网络流程neutral equilibrium 中性平衡normal 法向,法向的,正交的normal force 法向力normal operating condition 常规(正常)运作工况notch 开槽,开凹口Off the shelf 成品的,畅销的,流行的off-center loading 偏移中心的装载offsets 型值offshore drilling 离岸钻井oil-rig 钻油架operational requirement 军事行动需求,运作要求orient 取向,定方位,调整orthogonal 正交的,矩形的out strake 外列板outboard profile 侧视图outfit 舾装outfitter 舾装工outfitting 舾装overall stability 总体稳性overhang 外悬overstocking 存货过剩owner’s staff 船东的雇(职)员paint priming 涂底漆Panama Canal 巴拿马运河panel line system 板材生产线系统parallel middle body 平行中体patternmaker 木模工payload 有效载荷permanent body 永久性组织机构perpendicular(船艏、艉)柱,垂直的,正交的pillar 支柱pin 钉,销pin jig 限位胎架pintle 销,枢轴pipe fitter 管装工pipe laying barge (海底) 铺管驳船piping 管路pitch 纵摇plan views 设计图planing hull 滑行船体pleasure ship 游乐用船Plimsoll line 普林索尔载重线polar-exploration craft 极地考察船Polaris (submarine) 北极星级(潜艇)port 左舷portable gate 移动式(可移动)闸门positive righting arm 扶正力臂power and lighting system 动力与照明系统preliminary design 初步设计preliminary/concept design 初步/概念设计pressure vessel 压力容器principal dimensions 主尺度prism 棱柱体prismatic coefficient 棱形系数procurement 采购,获得Program Evaluation and Review Technique 规划评估与复核法quartering sea 尾斜浪, 从船斜后方来的浪quay(横)码头,停泊所racking 倾斜,变形,船体扭转变形radiography X射线照相术,X射线探伤rake 倾角,倾斜ram pressure 速压头,冲压,全压力rectangle 矩形reenlistment 重征服役Registo Italiano Navale (意大利)船级社remedial action 补救措施reserve buoyancy 储备浮力reserve buoyancy 储备浮力residuary resistance 剩余阻力resultant 合力resultant 合力retract 收进revolving crane 旋转式(鹤)吊,转臂吊(车)Reynolds number 雷诺数rigger 索具装配工rigid side walls 刚性侧壁rise of floor 底升risk 保险对象,保险金额rivering warfare vessel 内河舰艇rivet 铆接,铆钉roll 横摇rolled angle butt (轧制)角钢焊接头roll-on/roll-off(RO-RO) 滚装rough sea 汹涌的波浪round of beam 梁拱rounded gunwale 修园的舷边rubber tile 橡皮瓦rudder post 舵柱rudder 舵rudder rate 舵率rudder stock 舵杆run 去流段Sag 中垂sagging 中垂scale 缩尺,尺度,尺scale model 缩尺船模scantling 材积sea keeping performance 耐波性能seasickness 晕船seaworthiness 适航性section 剖面,横剖面sections (铁、钢)型材,轧材self-induced 自身诱导的semi finished item 半精加工件semisubmersible drilling rig 半潜式钻井架set course 设定的航线set course 设定航线shaft bossing 轴包套shaft bracket 轴支架shear 剪切,剪力sheer aft 艉舷弧sheer forward 艏舷弧sheer drawing 剖面图sheer plane 纵剖面sheer profile 纵剖线sheer profile 纵剖图sheer(甲板)舷弧sheet metal work 钣金工,冷作工shell plating 船壳板shell 船壳板ship fitter 船舶装配工ship fitter 船体安装工ship fitter 舰船装配工ship form 船型ship Hydrodynamics 水动力学ship owner 船东shipping line 船运航线shipway (造)船台shipwright 船体装配工,造船工人shipyard 船厂shipyard 船厂shipyard schedule chart 船厂施工进度图shoring 支撑,支柱shoulder 船肩sideways 朝侧向six degrees of freedom 六自由度sizable 相当大的skirt(气垫船)围裙slamming 砰击,拍击slice 一部分,薄片sloping shipway 有坡度船台,滑道soft chine 圆舭spare part 备件specially prepared form 专门(特殊)加工的模板spectrum 谱speed-to-length ratio 速长比stability 稳性stable equilibrium 稳定平衡standard 规章starboard 右舷static equilibrium 静平衡statically determinant 静定的statistical 统计学(上)的steel marking 钢板划线steering gear 操纵装置steering gear 操纵装置,舵机stem 船艏stem contour 艏柱型线stern 艉stern frame 艉构架,艉框架stern wave 艉波stiffen 加劲,加强stiffener 肋骨strain 应变strake 船体列板stringent safety regulations 严格的安全规章structural alignment 结构校准,组合,组装strut 支柱,支撑构形subassembly (局部)分部装配subdivision 分舱sublet 转包,分包,转租submersible 潜器suction cup 吸盘Suez Canal Tonnage 苏伊士运河吨位限制summer load water line 夏季载重水线super cavitating propeller超空泡螺旋桨superintendent 监督管理人,总段长,车间主任superstructure 上层建筑supertanker 超级油轮supervision of the Society’s surveyor 船级社验船师的监造surface piercing 穿透水面的surface preparation and coating 表面加工处理与喷涂surge 纵荡surmount 顶上覆盖,越过survivability 生存力SWATCH(Small Waterplane Area Twin Hull) 小水线面双体船sway 横荡switchboard 控制台,开关板tabular freeboard 列成表格的干舷值tacker 定位搭焊工talking paper 讨论文件tangential viscous force 切向粘性力tanker 油轮tanker 油轮tantamount 等值的,相当的taper 弄细,变尖tee T形构件,三通管template 样板tensile stress 拉(张)应力The Register of Shipping of the People’s Republic of China 中国船舶检验局The Titanic 泰克尼克号(巨型邮轮)there is more shape to the shell 船壳板的形状较复杂titanic 巨大的to be craft oriented 与行业有关的,适应于行业性的to run the waterlines 绘制水线toed towards amidships 趾部朝向船舯ton gross=gross ton 长吨=1. 016公吨tonnage 吨位torque 扭矩torsio 扭转的trade 工种, 贸易trailer type transporter 拖车式载运车transfer sideways 横向移动transom (stern) 方尾transverse 横向的transverse bulkhead plating 横隔舱壁板transverse section 横剖面transverse stability 横稳性trawling 拖网trial 实船试验trim 纵倾trim 纵倾trim by the stern/bow 艉/艏倾trimaran 三体船trough 波谷tugboat 拖船tumble home(船侧)内倾Type A ship A类船U form U型U. S. Coast Guard 美国海岸警卫队ULCC(Ultra Large Crude Carrier)超级大型原油轮(载重量>40万吨)ultrasonic 超声波的\underwriter (海运)保险商undock 使船出坞upright position 正浮位置V shaped V型的ventilation and air conditioning diagram 通风与空调敷设设计图vertical prismatic coefficient 垂向棱形系数vertical prismatic coefficient 垂向棱形系数vicinity 邻近,附近villain 坏人,罪魁viscosity 粘性VLCC(Very Large Crude Carrier)巨型(原)油轮(载重量>20万吨)V-sectionV型剖面wash 下洗 ,艉流water line 水线waterborne 浮于水上的,水基的waterplane 水线面waterplane area coefficient 水线面积系数watertight integrity 水密完整性wave pattern 波型wavemaking resistance 兴波阻力weather deck 露天甲板weld inspection 焊缝检测welder 焊工weldment 焊件,焊接装配wetted surface 湿面积wing shaft 侧轴yacht 快艇yard issue 船厂开工任务发布书yaw 艏摇yaw 艏摇,摇艏。
INTRODUCTIONThe PMP Series peristaltic metering pump system is designed to dispense a variety of cleaning and sanitizing chemicals. Positive, accurate metering of liquids can be triggered manually or by a process control signal.The PMP Series offer variable speed output or fixed speed output with a choice of programmable limit-timer or repeating cycle timer. PMP is built with Knight’s field proven, long-life peristaltic pumps. Moisture sensitive motor and controllers are enclosed in a corrosion resistant, watertight, powder coated case that stands up well for indoor and outdoor applications.KEY FEATURES / BENEFITS∙ Auto-Start or Optional Manual Button Activation∙ Watertight, Secure Locking Enclosure∙ Long-Life Peristaltic Pumps∙ Water Resistant Case w/―D‖ Shaped Silicone Gasket∙ Long Lasting Squeeze Tube∙ Fixed or Variable Pump Speed∙ Wide Range of Flow Rates∙ Microprocessor, Push Button Programming Available∙ Pumps Up to 30 PSI∙ Self Priming, Easy to Service∙ Pump Lockout OptionAPPLICATIONSFOOD & BEVERAGE PROCESSING PLANTS: CIP/COP, Grease Traps, Sewage TreatmentDAIRY:Pipeline Cleaning/Sanitizing, Teat Dip Chemical, Wash Pen Chemical InjectionINDUSTRIAL:General Cleaning, Machinery Lubrication, Cooling Towers, BoilersTRANSPORTATION:Car Wash StationsPMP-800 SeriesPMP-900 Series Remote ActivatorCAUTION: Wear protective clothing and eyewear when dispensing chemicals or other materials. Observe safety handling instructions (MSDS) of chemical mfrs. CAUTION: To avoid severe or fatal shock, always disconnect main power when servicing the unit.CAUTION: When installing any equipment, ensure that all national and localsafety, electrical, and plumbing codes are met.RECOMMENDED OPERATING PARAMETERSNOTES:The duty cycles and maximum pump run time specified above can be exceeded, however in doing so the life of the squeeze tube, roller block and motor will be reduced.Fixed speed (AC drive) pumps have a thermal cut-out that will stop the pump if it overheats. The duty cycle of the pump and ambient temperature contribute greatly to the overall run time capability, regardless of the maximum allowable time that can be set on the circuit board (if so equipped). If the thermal cut-out activates to stop the pump, the pump must cool down before it can resume normal operation.SPECIFICATIONS∙ Enclosure: Powder coated stainless steel.∙ Pump Drive: Shaded pole AC or variable DC.∙ Squeeze Tube: Material available for most chemical applications.∙ Control: Limiting timer or repeating cycle timer.∙ Power Supply: 115VAC/60HZ, 230VAC/60HZ, 230VAC/50HZ∙ Dimensions: PMP-500: 9.3‖H x 5.8‖W x 5‖D (23.6cm x 14.7cm x 12.7cm)PMP-800: 9.3‖H x 5.8‖W x 5‖D (23.6cm x 14.7cm x 12.7cm)PMP-900: 13.6‖H x 8‖W x 7.5‖D (34.5cm x 20.3cm x 19.1cm)THEORY OF OPERATIONThe PMP Peristaltic Metering Pump can be operated as a stand-alone pump without any circuitry or is available with a choice of control options for starting and stopping, or controlling the speed of the pump.∙ Basic models (no circuitry) and variable speed models will run the pump for as long as the power switch is turned on. See the notes in the ―Specifications‖ section above for details on the max run time.∙ Time controlled models, detailed below, are available with either a KTM-600 limiting timer or CT-600 cycle timer. KTM-600—This pump ―Limit Timer‖ control is designed to control the run time of the pump with the press of a button or input of a signal from a powered switch or remote controller. The water proof control cabinet is normally mounted near the delivery point for the chemical, convenient for operators. Typical delivery points include Gerry cans, buckets, floor scrubbers, portable foamers or other receptacles. For applications where remote triggers such as a CIP or Conductivity control signal are used, the controller can be installed close to the signal source. The signal-input circuit accepts input voltages from 14-240 VAC. The KTM-600 board also has a ―Relay Mode‖ feature that allows the pump to run from a 14 – 240V signal (for as long as the signal is present) or while the push button is held down. Using the relay mode with the push button is well suited for manual feed applications.CT-600—This pump ―Cycle Timer‖ triggers a continuous On-Off feed cycle anytime power is applied to the power input. For continuous chemical applications such as conveyor or track lubrication, the CT-600 Cycle Timer will feed from 0-12 minutes of ON time, with an OFF time from 0-63 minutes.INSTALLATION(1) Check voltage of installation with a voltmeter and compare with voltage inputs of pump unit before mounting.Application of incorrect voltage will permanently damage unit and is not covered under warranty.(2) Mount unit on wall or shelf in a convenient location near both injection point and chemical supply. Do not mountunit in direct path of steam. This can short circuit and permanently damage your system.(3) Install power leads. Most systems include a power cord for easy connection. Variable speed systems have aninternal transformer which steps down the incoming voltage. Rigid or flexible conduit should be used to ensure safety and continued operation without shorts. The green ground wire must be applied to ground. Failure to do so will void warranty.(4) 500 Series: Install poly tubing between the discharge (right) tube side of the peristaltic pump and the injectionpoint. Use tie wraps to secure flow tubing to squeeze tube. Bulkhead fittings and in-line injection fittings can be provided for various installations.800/900 Series: Install braided tubing between the discharge (right) tube side of the peristaltic pump and the injection point. Use the provided stainless steel hose clamps and barb fittings to secure braided tubing tosqueeze tube.(5) 500 Series: Install poly tubing between the suction (left) tube side and the PVC product pickup tube provided.Use tie wraps to secure flow tubing to squeeze tube. Be sure to draw the tubing through the end of the pickup tube.800/900 Series: Install braided tubing between the suction (left) tube side and the barb fitting on the PVC pickup tube provided. Use the provided stainless steel hose clamps and barb fittings to secure braided tubing tosqueeze tube.(6) Some units are equipped with an optional prime switch which can be used to fill the suction and discharge tubingconnected to the pump. Depending on the model, the pump will either run as long as the prime switch is depressed, or will trigger a timed injection set on the control circuit board (if so equipped). MAINTENANCEThe PMP Series of Metering Pumps require a minimal amount of maintenance to achieve optimal performance. Periodically check the squeeze tube for cracks, deterioration, or swelling. The squeeze tube will typically need to be replaced about every 6 months (chemical compatibility and duty cycle can cause this interval to vary).Applying lube to the squeeze tube once a month will extend the life of the tube, minimize wear on other contacting parts, and promote smoother pump operation. Use Knight Tube Lube (P/N 7506621) or an equivalent silicone-based lubricant.(1) Remove the faceplate of the pump.(2) Apply a thin bead of Tube Lube to the inner surface (the side that the rollers contact) of the squeeze tubebetween the 9 o’clock and 3 o’clock positions. Avoid getting lube near the pinch points where the bottom of the faceplate grips the tube.(3) Put the faceplate back on the pump.(4) Activate the pump under normal operation — the lubricant will be evenly distributed as the pump rotates.MODELS WITH KTM-600Pump Run Time: (max run time is 12 minutes and 42 seconds)(1) Locate the dip-switch pack on the circuit board — set switch #6 to SIGNAL, set switch #7 to RUN TIME and setswitch #8 to PROGRAM MODE.(2) Using a measuring cup or beaker, press Start switch and release when pump starts. Let the pump run untildesired amount of chemical is dispensed then press Start switch again to stop. The run time is now programmed.Repeat step if new volume is required.(3) Set mode switch #8 to RUN MODE.Delay Time: (max delay time is 12 minutes and 42 seconds)(1) Locate the dip-switch pack on the circuit board — set switch #6 to SIGNAL, set switch #7 to DELAY TIME andset switch #8 to PROGRAM MODE.(2) Press Start switch and release when the LED begins flashing. When the desired delay time has passed, pressthe Start switch again. The delay time is now programmed. Repeat step if new delay time is required.(3) Set mode switch #8 to RUN MODE.Lock-Out Time: (max lock-out time is 31 minutes)This feature defeats consecutive dispensing of product for a pre-determined interval. Select a combination of switches 1 – 5 to program total lock-out time.Example: For 10 minute lock-out, set switches #2 and #4 to ON with all other switches OFF.For maximum lock-out (31 min) set all switches ON.For no lock-out, set all switches OFF.OPERATIONManual activation: Press the Start button for 1 full second. The unit will begin counting down the delay time (if used) and will then run the pump for the amount of time programmed. Once the lock-out time expires (if used) the pump will be ready to restart.Signal activation:When the signal input on the circuit board receives a 14-240VAC trigger signal for at least 5 seconds, the delay time (if used) will begin counting down. Then the pump will run for the amount of time programmed. Once the lock-out time expires (if used) the pump will be ready to restart.Relay Mode: Set switch #6 to RELAY. The pump will activate for as long as an external trigger signal is present, or for as long as the manual button is depressed. All other board functions (such as delay time and lock-out time) are by -passed in relay mode.DISABLING THE START BUTTONThere is a jumper marked ―JP1‖ on the circuit board that can be used to prevent manual activation in certain applications, or to allow manual activation by remote push-button only. This jumper only affects the on-board start button. A remote start button, or trigger signal, can always be used to activate the pump.∙ When the jumper is ON, the on-board start button is functional.∙ When the jumper OFF, the on-board start button is disabled.PRIMING(1) Locate the dip-switch pack on the circuit board and set switch #6 to RELAY.(2) Press and hold the Start button until the chemical line is fully primed, then release the button.(3) Set switch #6 to SIGNAL (unless you intend to use relay mode).VARIABLE SPEED MODELSThe output of any variable speed pump can be changed by adjusting the speed control knob (or potentiometer) clockwise to increase output or counter-clockwise to decrease output. The pump will run for as long as the main power is turned on, the only exception being models with optional signal input.Optional Signal InputPMP 500 and 800 models have an optional signal input feature. This allows the pump to be powered up by the main power source, but only run when the signal is applied to the circuit board. The signal input feature is particularly useful for CIP and other control interface applications.The signal input circuitry will accept any signal voltage in the range of 14 – 240V. Check the signal voltage with a meter before connecting to the circuit board. To activate the signal input feature, remove the jumper marked ―JP1‖ from the circuit board.∙ JP1 OFF: Pump will only run while the external signal is present (main power is assumed to be on).∙ JP1 ON: Pump will run for as long as main power is applied (external signal not needed).PrimingPMP 500 and 800 models have a prime switch on the circuit board. Pressing the prime button while the main power is on will run the pump at full speed. PMP 900 models do not have a prime switch.MODELS WITH CT-600∙ Maximum ON time is 12 minutes and 42 seconds.∙ Maximum OFF time is 63 minutes.OperationThe CT-600 circuit board is a cycle timer that controls a pump by alternating between ―on‖ time and ―off‖ time repeatedly while power is applied. The board has the option to have the pump operate as soon as power is applied (―on‖ first) or after the ―off‖ interval has expired (―off‖ first).Choosing On-first / Off-firstPower should be off when changing this setting. Switch #7 is used to set on-first/off-first operation. Which setting you choose will be based on your application requirements and how you wish for the pump to operate.∙ When set to ―ON FIRST‖, the pump will begin running for the on-time immediately on power up.∙ When set to ―OFF FIRST‖, the pump will start counting down the off-time before running the pump.Setting “OFF” TimePower should be off when changing this setting. The off time is set by selecting a combination of switches 1 – 6. All switches that are turned ON will be added up to determine the total off time. For example, if you wish to set a 20 minute off time, set switches #3 and #5 to ON with all other switches OFF.∙ For maximum off time (63 min) set all switches ON.∙ The off time resets and begins counting down again the next time the pump runs.PrimingThe pump can be primed manually while the off time is counting down (LED flashing). Ensure that the power is on, then press and hold the START button to prime the pump. The pump will run for as long as the button is pressed.A remote prime switch can be connected to the START terminals on the circuit board if desired. This may be helpful in applications where the pump is not easily accessible.Setting “ON” Time(1) Ensure that power is on. Be aware that the pump may run briefly — this is normal as the pumps are tested at thefactory during final QC inspection.(2) Locate the dip-switch pack on the circuit board — set switch #8 to PROGRAM.(3) Using a measuring cup or beaker, press Start switch and release when pump starts. Let the pump run untildesired amount of chemical is dispensed then press Start switch again to stop. The on time is now programmed.(4) Set mode switch #8 to RUN MODE.Start Button DisableThere is a jumper marked ―JP1‖ on the circuit board that can be used to prevent manual activation (priming) if desired, or to allow manual activation by remote push-button only. This jumper only affects the on-board start switch.A remote start button, can always be used to activate the pump.∙ Jumper ON: the on-board start button is functional.∙ Jumper OFF: the on-board start button is disabled.0900381 Rev: G (10/12) Page 11 of 12DISCLAIMERKnight LLC does not accept responsibility for the mishandling, misuse, or non-performance of the described items when used for purposes other than those specified in the instructions. For hazardous materials information consult label, MSDS, or Knight LLC. Knight products are not for use in potentially explosive environments. Any use of our equipment in such an environment is at the risk of the user, Knight does not accept any liability in such circumstances.WARRANTYAll Knight controls and pump systems are warranted against defects in material and workmanship for a period of ONE year. All electronic control boards have a TWO year warranty. Warranty applies only to the replacement or repair of such parts when returned to factory with a Knight Return Authorization (KRA) number, freight prepaid, and found to be defective upon factory authorized inspection. Bearings and pump seals or rubber and synthetic rubber parts such as ―O‖ rings, diaphragms, squeeze tubing, and gaskets are considered expendable and are not covered under warranty. Warranty does not cover liability resulting from performance of this equipment nor the labor to replace this equipment. Product abuse or misuse voids warranty.World Headquarters 20531 Crescent Bay Drive Lake Forest, CA 92630 Tel: 949.595.4800Fax: 949.595.4801 USA Toll FreeTel: 800.854.3764Fax: 800.752.9518CanadaTel: 905.542.2333Fax: 905.542.1536AustraliaTel: 61.2.9725.2588Fax: 61.2.9725.2025UKTel: 44.1293.615.570Fax: 44.1293.615.585North EuropeTel: 31.53.428.5800Fax: 31.53.428.5809South EuropeTel: 34.93.487.1015Fax: 34.93.215.2019North Asia PacificTel: 82.2.3481.6683Fax: 82.2.3482.5742Southeast AsiaTel: 65.9170.0984Fax: 65.6489.6723Page 12 of 12 0900381 Rev: G (10/12)。
a r X i v :n u c l -e x /0211014v 1 15 N o v 2002The Forward Time Projection Chamber (FTPC)inSTARK.H.Ackermann 5,F.Bieser 4,F.P.Brady 2,D.Cebra 2,J.E.Draper 2,V .Eckardt 5,T.Eggert 5,H.Fessler 5,K.J.Foley 1,V .Ghazikhanian 3,T.J.Hallman 1,M.Heffner 2,H.H¨u mmler 5,J.Klay 2,S.R.Klein 4,A.Lebedev 1,M.J.LeVine 1,T.Ljubicic 1,G.Lo Curto 5,R.S.Longacre 1,M.Oldenburg 5,HG.Ritter 4,J.L.Romero 2,N.Schmitz 5,A.Sch¨u ttauf 5,J.Seyboth 5,P.Seyboth 5,M.Vidal 5,C.Whitten Jr.3,E.Yamamoto 31BrookhavenNational Laboratory,Upton,New York 11973,USA 2University of California,Davis,California 95616,USA3University of California,Los Angeles,California 90095,USA4Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA5Max-Planck-Institut f¨u r Physik,80805M¨u nchen,Germany1IntroductionThe Forward Time Projection Cham-bers (FTPC)were constructed to ex-tend the acceptance of the STAR ex-periment [1].They cover the pseu-dorapidity range of 2.5<|η|<4.0on both sides of STAR and measure momenta and production rates of posi-tively and negatively charged particles as well as neutral strange particles.Also,due to the high multiplicity,ap-proximately 1000charged particles ina central Au+Au collision,event-by-event observables like p T ,fluctua-tions of charged particle multiplicity and collective flow anisotropies can be studied.The increased acceptance improves the general event character-ization in STAR and allows the study of asymmetric systems like p+A col-lisions.The design and construction was carried out by the group from MPI Munich with contributions from LBNL Berkeley,BNL Brookhaven,UC Davis,UCLA Los Angeles,and MEPhI Moscow [1,2].2Detector Design2.1Conceptual DesignThe FTPC concept was determined mainly by two considerations:Firstly by the high particle density with tracks under small angles with respect to the beam direction and secondly by the restricted available space inside the TPC[3],where the FTPCs are located. In Fig.1thefinal design is shown. It is a cylindrical structure,75cm in diameter and120cm long,with a ra-dial driftfield and readout chambers located in5rings on the outer cylinder surface.Each ring has two padrows and is subdivided azimuthally into 6readout chambers.The radial drift configuration was chosen to improve the two-track separation in the region close to the beam pipe where the par-ticle density is highest.Thefield cage is formed by the inner HV-electrode, a thin metalized plastic tube,and the outer cylinder wall at ground poten-tial.Thefield region at both ends is closed by a planar structure of con-centric rings,made of thin aluminum pipes.The front end electronics(FEE), which amplifies,shapes,and digitizes the signals,is mounted on the back of the readout chambers.Each particle trajectory is sampled up to10times. The ionization electrons are drifted to the anode sense wires and induced signals on the adjacent cathode sur-face are read out by9600pads(each 1.6×20mm2).The above design has some unusual and new features for a TPC:•The electrons drift in a radial elec-tricalfield perpendicular to thesolenoidal magneticfield.•Curved readout chambers are used to keep the radialfield as ideal aspossible.•A two-track separation of1-2mm is expected,which is an order of mag-nitude better than in all previously built TPCs with pad readout.To meet these requirements a R+D pro-gram was initiated,including the se-lection of the most suitable gas mix-ture,the development of the fabrica-tion technology for the curved readoutchambers,and the optimization of thewire and pad geometry for the readoutchambers.2.2Selection of Gas MixtureDue to the short drift length of only23cm a cool gas mixture with CO2orDME can be used.It has a low diffusioncoefficient for electrons and a smallLorentz angle[4].After extensivemeasurements an Ar/CO2(50%/50%)mixture was selected which is non-flammable,shows no or little ageingeffect in comparison to hydrocarbonsand is chemically less agressive thana mixture with DME.Fig.2showsthe measurements of drift time,clus-ter sizes,deflection angle due to theLorentz force in the magneticfield andtwo track resolution for the Ar/CO2gas mixture[1].2.3Readout ChambersIn a conventional TPC the anode(am-plification)wires are orthogonal toFig.1.Schematic diagram of an FTPC for the STAR experimentthe axial direction of the pads.This is impossible in the case of a curved readout chamber.The wires can not be parallel to the pads and therefore to the cylinder axis either,because focusing effects then lead to periodic shifts in the position measurement. This is demonstrated infig.3.How-ever,if two or more wires cross the pad under a small angle this effect al-ready vanishes.For the FTPC design an angle of17.40was chosen resulting in three wires crossing each pad for the selected pad-wire geometry.The anode wires arefirst glued on theflat pad plate with conductive epoxy.Af-terwards the plate is bent between3 rollers to thefinal curvature without breaking the wires.A complete read-out chamber with2padrows is shown infig.4.With only1.5mm distance between the anode wires and the pad plane the spread of the signal(the so-called Pad Response Function)is of similar narrow width.This together with the low electron diffusion and the radial drift principle results in the required2-track separation of about1 mm as can be seen infig.5.2.4Readout ElectronicsThe two FTPCs have19,200chan-nels of electronics,capable of measur-ing the charge drifting to the readout chambers in short time samples.The drift time of about50µs for the23cm maximum drift length is subdivided into256time bins.Because of the slow drift gas and the resulting long dura-tion of the collection of the electron cloud from a track crossing a shaping time of350ns is used.The sampling102030405010203012345671020300.20.40.60.811.2102030FTPC: Ar-CO 2(50%) in E →⊥B →(V c =10kV, B=5kG, L pad =2cm)a) Drift time: T d (µs)r (cm)b) Deflection angle: Ψd (deg)r (cm)c) Cluster widths:σtim (µs) (solid)(τshp =0.20µs)σpad (mm) (dash)(σprf =0.6mm)r (cm)d) Two-track resolution (3σ):σr (mm) (solid)σφ(mm) (dash)r (cm)123456789102030Fig.2.Electron cluster properties as a function of the radial position of the track hit in the FTPC.(a)drift time;(b)deflection angle;(c)cluster widths in time (µs,solid line)and pad (mm,dashed line)directions;(d)two-track resolution (3σ)in the radial (solid line)and azimuthal (dashed line)directions.rate is 5MHz.The design of the front end electronics closely follows that of the central TPC [5].Each pad is read out by a low-noise STAR preampli-fier/shaper (SAS),which sends signals to a switched capacitor array/ADC chip (SCA/ADC).Four of these chip sets,handling 64channels,are mounted on a small FEE card,which is posi-tioned directly on the detector,paral-lel to the readout chambers.Fifteen FEE cards are read out by a readout board,which sends the signals via a 1.2Gbit/s fiber-optic link to the data acquisition system.The readout board also controls the FEE cards,utilising signals from the clock and trigger dis-tribution system,and the slow controlFig.4.Photograph of a FTPC readout chamber.The bending radius is305mm and each of the two padrows has160pads.Fig.3.Measured position of a laser beam for two crossing angles between the an-ode wires and the pad axis.For0o(top) systematic shifts due to the wire structure are observed,which disappear for9o angle (bottom).links.For maintaining the proper oper-ating temperature the FEE and readout boards are water cooled using a leak-12345010203040r [ cm ]λφ[mm]Fig. 5.Measured2-track resolution in the prototype RTPC(data points)and ex-pected reolution in the FTPC(line)as a function of the radial distance r from the beam axis.less,low pressure circulation system [9].The FTPCs are remotely operated through a VME based supervision sys-tem.Data logging and visualisation are performed by a software package de-veloped within the EPICS mainframe [10].2.5Laser Calibration SystemA laser calibration system serves the following primary purposes:•Provides straight ionized tracks of known position to infer corrections for spatial distortions caused by me-chanical or driftfield imperfections.•Helps to calibrate the drift velocity in the non-uniform radial driftfield.•Tests the detector independent of collider operation.The design of this system,similar to the STAR-TPC laser system[6],uses a frequency quadrupled Nd:YAG laser to provide a UV(266nm)beam.The beam is expanded to30mm,split and transported via mirrors to the two FTPC detectors.Remote angle con-trol of two mirrors in each path plus a CCD readout maintains precise steer-ing of the two beams to the detectors. At the detector the beam is subdivided with pickoff mirrors into3,8mm beams which pass into the gas volume through fused silica windows.Each of these beams are further split with smaller pickoff mirrors into5,1mm beams,producing a total of15fidu-cial,ionizing beams distributed in the active volume.3Simulation and Reconstruction of Experimental DataThefirst step in the reconstruction of tracks is to calculate the track points (clusterfinding)from the charge distri-bution measured by the readout elec-tronics.In a second step(trackfinding),these track points are grouped to tracks. Using the magneticfield map,the up to ten position measurements per track are then used tofit the momentum. 3.1Cluster FindingThe reconstruction of track points is done by the FTPC clusterfinding pro-gram[7].It is optimized to deal with high track densities while minimiz-ing the use of computing time.The program reads in the electronic signal data from the data acquisition sys-tem,looks for areas of nonzero charge (cluster),deconvolutes clusters andfits the point coordinates.The transforma-tion from pad position and drift time into cartesian coordinates includes the correction of distortions introduced by the magneticfield.For a typical central Au+Au collision with1000particles in both FTPCs and an occupancy of 25%in the inner region the program needs about2seconds on a930MHz Intel PentiumII processor.3.2Track ReconstructionThe second step in the analysis of FTPC data is the reconstruction of the particle tracks and their momenta. The FTPC track reconstruction code is based on an algorithm developed for fast online reconstruction[8].It is a conventional track-following algo-rithm optimized for minimum use of computing power.In this code all po-sition calculations are done in a trans-formed coordinate system in which points appear on a straight line if theyFig.6.Reconstructed tracks in the FTPCsfrom a Au+Au collision at√s NN=200GeV simulated withthree different models.Fig.8.Distributions of the temperature pa-rameter T reconstructed event-by-event inthe FTPCs for three different event gener-ators.follow the p-¯p distribution and char-acterise the baryon stopping in the re-action.Fig.8shows histograms of theeffective temperature as determinedevent-by-event.Such measurementswill be used to study and search forfluctuations of event properties and toselect special event classes.5SummaryBased on the prototype measurementsand simulations one expects to obtaina position resolution of100µm,a two-Fig.9.One FTPC installed inside the STAR detector track-separation of1mm,a momentumresolution between12and15%,andan overall reconstruction efficiency be-tween70and80%.A summary of the main characteris-tics of the FTPCs is given in table1.The completed and tested FTPCs havebeen installed in the STAR experimentforfirst data taking during summer andfall of2001.One of them can be seenmounted inside the STAR detector inFig.9.Table1FTPC parametersPARAMETER V ALUErows per TPC10pads per sector2×160outer radius30.5cmacceptance2.5<|η|<4.0(2.0o<θ<9.3o) drift electricalfield240-1400V/cm(radial)Gasgas mixture Ar(50%)-CO2(50%) trans.diffusion D T100-130µm/√long.diffusion D L100-130µm/√Lorentz angle4deg.(at0.5T)Readout#of pads19200pad pitch 1.9mmanodewire–pad gap 1.5mmSCA time bin size218nsReferences[1] F.Bieser et al.,The Forward TimeProjection Chamber for the STARDetector,MPI PhE/98-3,1998 [2] A.Sch¨u ttauf et al.,A Forward TPCfor STAR,Nucl.Phys.A661(1999)677c[3]H.Wieman et al.,STAR TPC atRHIC,IEEE Trans.Nucl.Sci.44(1997)671[4]X.Bittl et al.,Diffusion and DriftStudies of Ar-DME/CO2/CH4GasMixtures for a radial TPC in the E×BField,Nucl.Instr.Meth.A398(1997)249[5]S.Klein et al.,Front-End Electronicsfor the STAR TPC,IEEE Trans.Nucl.Sci.43(1996)1768[6]M.Alyushin et al.,Laser CalibarationSystem for STAR TPC,IEEENucl.Sc.Symp.Conference Record96CH35974(1996),Proceedings of the9th ViennaConference on Intrumentation,Nucl.Instr.Meth.in print[7]H.H¨u mmler,Doctorate Thesis,Technical University,M¨u nchen,Germany,2000,MPI PhE/2001-042001,H.H¨u mmler,Simulationand Reconstruction of Data from theSTAR FTPC,STAR Note SN0429(2000)[8]P.Yepes,A fast track patternrecognition,Nucl.Instr.Meth.A380(1996)582M.Oldenburg,Doctorate Thesis,Technical University,M¨u nchen,Germany,2001,in preparation [9]M.Bosteels,Cern internal report,CERN/LHCC/99-33(1999)[10]A.J.Kozubal et al.,ICALEPS89Proceedings,288,(Vancouver,1989)。