高三六调 理数 正文
- 格式:pdf
- 大小:666.41 KB
- 文档页数:4
一、选择题(每小题5分,共60分)1.已知集合{}210,,M =,{}M x ,x y |y N ∈==2,则集合=N M ( )A .{}0B .{}10,C .{}21,D .{}20, 【答案】D 【解析】 试题分析:{}0,1,2M =,{}{}|2,0,2,4N y y x x M ∴==∈=,所以=N M {}20,。
考点:集合的交集运算。
2.已知向量()()2,1,,2a b x ==-,若//a b ,则a b +等于( ) A .()3,1- B .()3,1- C .()2,1 D .()2,1-- 【答案】D考点:向量的坐标运算。
3.若命题P :1≤∈∀cosx ,R x ,则P ⌝:( ) A .100>∈∃x cos ,R x B .1,>∈∀x cos R x C .1,00≥∈∃x cos R xD .1,≥∈∀x cos R x【答案】A 【解析】试题分析:命题P :1≤∈∀cosx ,R x ,则P ⌝100>∈∃x cos ,R x。
考点:1。
命题的否定;2.全称命题与特称命题。
4.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A 与灯塔B的距离为()A.a km B。
2a kmC.2a km D. 3a km【答案】D考点:解三角形的实际应用5.某程序框图如图所示,若输出的S = 57,则判断框内应为()A.k>5? B.k>4?C.k>7? D.k>6?【答案】B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S 的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.程序在运行过程中各变量值变化如下表:故退出循环的条件应为4k >. 考点:程序框图. 6.过点()a ,a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>aD .3-<a 或231<<a 【答案】D考点:圆的切线方程. 7。
高中数学学习材料鼎尚图文*整理制作2014-2015学年度第二学期六调考试高三数学答案(理科)一、选择题 DCCCD DADDB AA二、填空题 13. 0 14.-1 15.2116. 3三、解答题17.所以1a 的取值范围为()()+∞-,33,919.解:(1)如图以点C 为原点建立空间直角坐标系C xyz -,不妨设1CA =,(0)CB t t =>,PE CB μ=,则(0,0,0)C , (1,0,0)A ,(0,,0)B t ,13(,0,)22P ,13(,,)22E t μ,由AM ANAE APλ==,得 13(1,,)22M t λλμλ-,13(1,0,)22N λλ-,(0,,0)MN t λμ=-,0(0,0,1)n =是平面ABC 的一个法向量,且00n MN ⋅=,故0n MN ⊥,又∵MN ⊄平面ABC ,即知//MN 平面ABC ,又∵B ,C ,M ,N 四点共面,∴////MN BC PE ;(2)(0,,0)MN t λμ=-,13(1,,)22CM t λλμλ=-,设平面CMN 的法向量1111(,,)n x y z =,则10n MN ⋅=,10n CM ⋅=,可取12(1,0,)3n λλ-=,又∵0(0,0,1)n =是平面ABC 的一个法向量,由0101|||cos |||||n n n n θ⋅=⋅,以及45θ=可得222||232(2)13λλλλ-=-+,即22440λλ+-=,解得31λ=-(负值舍去),故31λ=-.20.解 :(Ⅰ)连结QF ,根据题意,|QP|=|QF|,则|QE|+|QF|=|QE|+|QP|=4||23EF >=, 故动点Q 的轨迹Γ是以E ,F 为焦点,长轴长为4的椭圆. 2分设其方程为22221(0)x x a b a b+=>>,可知2a =,223c a b =-=,则1b =, 3分所以点Q 的轨迹Γ的方程为为2214x y +=. 4分(Ⅱ)设直线l 的方程为m kx y +=,),(11y x A ,),(22y x B由⎪⎩⎪⎨⎧=++=1422y x m kx y 可得0)1(48)41(222=-+++m kmx x k , 由韦达定理有:⎪⎪⎩⎪⎪⎨⎧+-=+-=+222122141)1(4418k m x x k km x x 且0)41(1622>-+=∆m k 6分 ∵21,,k k k 构成等比数列,∴212k k k ==2121))((x x m kx m kx ++,即:0)(221=++m x x km 由韦达定理代入化简得:412=k .∵ 0>k ,∴21=k8分此时0)2(162>-=∆m ,即)2,2(-∈m .又由A O B 、、三点不共线得0m ≠ 从而(2,0)(0,2)m ∈-.故d AB S ⋅=||2122121||||121km x x k +⋅-+=||4)(2121221m x x x x ⋅-+=||22m m ⋅-= 10分 又22221212144x x y y +=+= 则 =+21S S )(422222121y x y x +++⋅π)24343(42221++⋅=x x π2]2)[(16321221ππ+-+⋅=x x x x 45π=为定值. 12分 ∴S S S 21+⋅=45π||212m m ⋅-5π4≥当且仅当1m =±时等号成立.综上:S S S 21+⋅+∞∈),45[π14分 21. (Ⅰ)函数的定义域为(0,)+∞,∵1()ln x f x x ax-=-, ∴22211(1)11()()x ax a x axa f x ax x ax x-⨯---'=-==-, 若0a <,因0x >,所以10x a->,故()0f x '<,函数()f x 在(0,)+∞上单调递减; 若0a >,当1(0,)x a∈时,()0f x '>,函数()f x 单调递增;当1(,)x a∈+∞时,()0f x '<,函数()f x 单调递减. 综上,若0a <,函数()f x 的单调减区间为(0,)+∞;若0a >,()f x 的单调增区间为1(0,)a ,单调减区间为1(,)a+∞.(Ⅱ)1a =时,11()ln 1ln x f x x x x x-=-=--,由(Ⅰ)可知,1()1ln f x x x=--在(0,1)上单调递增,在(1,)+∞上单调递减, 故在1[,1]2上单调递增,在[1,2]上单调递减,所以函数()f x 在1[,2]2上的最大值为1(1)1ln101f =--=; 而11()12ln1ln 222f =--=-+;11(2)1ln 2ln 222f =--=-, 113(2)()ln 2(1ln 2)2ln 2 1.520.70.10222f f -=---+=->-⨯=>,所以1(2)()2f f >,故函数()f x 在1[,2]2上的最小值为1()1ln 22f =-+. (Ⅲ)由(Ⅱ)可知,函数1()1ln f x x x=--在(0,1)上单调递增,在(1,)+∞上单调递减, 故函数()f x 在(0,)+∞上的最大值为(1)11ln10f =--=,即()0f x ≤. 故有11ln 0x x --≤恒成立,所以11ln x x -≤,故12ln 1x x-≤+, 即21ln e x x x+≤. 23. 解:(1)由3143x t y t =+⎧⎨=+⎩得11333344x t x y y t-⎧=⎪--⎪⇒=⎨-⎪=⎪⎩所以直线l 的普通方程为:4350x y -+=,………………………2分由22cos 2cos a a ρθρρθ=⇒= 又222,cos x y x ρρθ=+=所以,圆C 的标准方程为222()x a y a -+=,………………………5分(2)因为直线l 与圆C 恒有公共点, 所以22454(3)a a +≤+-,…………7分两边平方得2940250,(95)(5)0a a a a --≥∴+-≥所以a 的取值范围是559a a ≤-≥或.……………………………………………10分。
2016-2017学年河北省衡水中学高三(上)六调数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i2.已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0 B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0 D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<03.已知已知f(x)是奇函数,且f(2﹣x)=f(x),当x∈[2,3]时,f(x)=log2(x﹣1),则f()=()A.log27﹣log23 B.log23﹣log27 C.log23﹣2 D.2﹣log234.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M,N两点,若,则k的取值范围是()A.B.C.D.5.如图,若n=4时,则输出的结果为()A.B.C.D.6.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为,则该几何体的侧视图可能是()A.B.C.D.7.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.8.已知x,y满足约束条件,则z=2x﹣3y的最小值为()A.﹣6 B.﹣4 C.﹣3 D.﹣29.已知向量,满足||=1,||=2,﹣=(,),则|+2|=()A.B.C. D.10.若数列{a n}满足a1=1,且对于任意的n∈N*都有a n=a n+n+1,则+1等于()A.B.C.D.11.如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是()A.()B.(1,2)C.(,1)D.(2,3)12.已知函数,若关于x的方程f2(x)﹣mf(x)+m﹣1=0恰好有4个不相等的实数根,则实数m的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.如图,利用随机模拟的方法可以估计图中由曲线与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的增均匀随机数,a=rand (),b=rand ();②产生N个点(x,y),并统计满足条件的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为.(保留小数点后三位)14.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为π,弦长等于9米的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积与实际面积的差为.15.已知{a n}满足,类比课本中推导等比数列前n项和公式的方法,可求得=.16.已知三棱锥O﹣ABC,∠BOC=90°,OA⊥平面BOC,其中AB=,AC=,O,A,B,C四点均在球S的表面上,则球S的表面积为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)如图,在△ABC中,∠B=30°,AC=2,D是边AB上一点.(1)求△ABC面积的最大值;(2)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=2,,PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.(Ⅰ)求证:AD⊥PB;(Ⅱ)在线段PA上是否存在一点M,使二面角M﹣BC﹣D的大小为,若存在,求的值;若不存在,请说明理由.19.(12分)某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表:(1)试估计该校高三学生本次月考的平均分;(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在[110,130)中的学生数为ξ,求:①在三次抽取过程中至少有两次连续抽中成绩在[110,130)中的概率;②ξ的分布列和数学期望.(注:本小题结果用分数表示)20.(12分)已知抛物线C:x2=2py(p>0)的焦点为F,过抛物线上一点P作抛物线C的切线l交x轴于点D,交y轴于点Q,当|FD|=2时,∠PFD=60°.(1)判断△PFQ的形状,并求抛物线C的方程;(2)若A,B两点在抛物线C上,且满足,其中点M(2,2),若抛物线C上存在异于A、B的点H,使得经过A、B、H三点的圆和抛物线在点H处有相同的切线,求点H的坐标.21.(12分)设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为(t为参数,0≤α<π),射线与曲线C1交于(不包括极点O)三点A,B,C.(1)求证:;(2)当时,B,C两点在曲线C2上,求m与α的值.[选修4-5:不等式选讲]23.已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数x,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.2016-2017学年河北省衡水中学高三(上)六调数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.2.已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p是()A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0 B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0 D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0【考点】命题的否定.【分析】由题意,命题p是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项【解答】解:命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0是一个全称命题,其否定是一个特称命题,故¬p:∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0.故选:C.【点评】本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律.3.已知已知f(x)是奇函数,且f(2﹣x)=f(x),当x∈[2,3]时,f(x)=log2(x﹣1),则f()=()A.log27﹣log23 B.log23﹣log27 C.log23﹣2 D.2﹣log23【考点】函数的周期性;函数奇偶性的性质;函数的图象.【分析】由f(x)是奇函数,且f(2﹣x)=f(x),可知f(4+x)=f(x),于是f()=f(4)=﹣f(2)=log23﹣2,从而可得答案.【解答】解:∵f(x)是奇函数,且f(2﹣x)=f(x),∴f(2+x)=f(﹣x)=﹣f(x),∴f(4+x)=f(x),即f(x)是以4为周期的函数;∴f()=f(4);又f(2﹣x)=f(x),∴f(﹣2)=f(4)=f();又当x∈[2,3]时,f(x)=log2(x﹣1),f(x)是奇函数,∴f(﹣2)=﹣f(2)=log23﹣2,∴f()=log23﹣2.故选C.【点评】本题考查函数的周期性与奇偶性,求得f()=﹣f(2)是关键,也是难点,考查综合分析与转化的能力,属于中档题.4.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M,N两点,若,则k的取值范围是()A.B.C.D.【考点】直线和圆的方程的应用.【分析】直线与圆相交,有两个公共点,设弦长为L,弦心距为d,半径为r,则可构建直角三角形,从而将问题仍然转化为点线距离问题.【解答】解:圆(x﹣2)2+(y﹣3)2=4的圆心为(2,3),半径等于2,圆心到直线y=kx+3的距离等于d=由弦长公式得MN=2≥2,∴≤1,解得,故选B.【点评】利用直线与圆的位置关系,研究参数的值,同样应把握好代数法与几何法.5.如图,若n=4时,则输出的结果为()A.B.C.D.【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入n=4,i=1,s=0,s=,i=2≤4,s=+,i=3≤4,s=++,i=4≤4,s=+++,i=5>4,输出s=(1﹣)=,故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为,则该几何体的侧视图可能是()A.B.C.D.【考点】由三视图求面积、体积.【分析】利用该几何体的底面边长为2,侧棱长为,可得该几何体的高为,底面正六边形平行两边之间的距离为2,即可得出结论.【解答】解:∵该几何体的底面边长为2,侧棱长为,∴该几何体的高为=,底面正六边形平行两边之间的距离为2,∴该几何体的侧视图可能是C,故选:C.【点评】本题考查三视图,考查学生的计算能力,比较基础.7.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.8.已知x,y满足约束条件,则z=2x﹣3y的最小值为()A.﹣6 B.﹣4 C.﹣3 D.﹣2【考点】简单线性规划.【分析】首先画出可行域,利用目标函数的几何意义求最小值.【解答】解:由约束条件得到可行域如图:z=2x﹣3y变形为y=x﹣,当此直线经过图中B(1,2)时,在y轴的截距最大,z最小,所以z的最小值为2×1﹣3×2=﹣4;故选:B.【点评】本题考查了简单线性规划问题;正确画出可行域,利用目标函数的几何意义求最值是常规方法.9.已知向量,满足||=1,||=2,﹣=(,),则|+2|=()A.B.C. D.【考点】平面向量数量积的运算;向量的模.【分析】利用向量的数量积运算即可得出.【解答】解:向量,满足||=1,||=2,﹣=(,),可得|﹣|2=5,即||2+||2﹣2•=5,解得•=0.|+2|2=||2+4||2﹣4•=1+16=17.|+2|=.故选:C.【点评】熟练掌握向量的数量积运算是解题的关键.=a n+n+1,则10.若数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1等于()A.B.C.D.【考点】数列的求和.【分析】由所给的式子得a n﹣a n=n+1,给n具体值列出n﹣1个式子,再他们加+1起来,求出a n ,再用裂项法求出,然后代入进行求值的值,【解答】由a n +1=a n +n +1得,a n +1﹣a n =n +1, 则a 2﹣a 1=1+1, a 3﹣a 2=2+1, a 4﹣a 3=3+1 …a n ﹣a n ﹣1=(n ﹣1)+1,以上等式相加,得a n ﹣a 1=1+2+3+…+(n ﹣1)+n ﹣1,把a 1=1代入上式得,a n =1+2+3+…+(n ﹣1)+n==2()则=2[(1﹣)+()+…+()=2(1﹣)=,故答案选:C .【点评】本题主要考察数列的求和、利用累加法求数列的通项公式,以及裂项相消法求数列的前n 项和,这是数列常考的方法,需要熟练掌握,属于中档题.11.如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=lnx +f′(x )的零点所在的区间是( )A .()B .(1,2)C .(,1)D .(2,3)【考点】函数零点的判定定理.【分析】由二次函数图象的对称轴确定a 的范围,据g (x )的表达式计算g ()和g (1)的值的符号,从而确定零点所在的区间.【解答】解:由函数f(x)=x2+ax+b的部分图象得0<b<1,f(1)=0,即有a=﹣1﹣b,从而﹣2<a<﹣1,而g(x)=lnx+2x+a在定义域内单调递增,g()=ln+1+a<0,由函数f(x)=x2+ax+b的部分图象,结合抛物线的对称轴得到:0<﹣<1,解得﹣2<a<0,∴g(1)=ln1+2+a=2+a>0,∴函数g(x)=lnx+f′(x)的零点所在的区间是(,1);故选C.【点评】本题主要考查了导数的运算,以及函数零点的判断,同时考查了运算求解能力和识图能力,属于基础题.12.已知函数,若关于x的方程f2(x)﹣mf(x)+m﹣1=0恰好有4个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】利用导数研究函数的极值;根的存在性及根的个数判断.【分析】求函数的导数,判断函数的取值情况,设m=f(x),利用换元法,将方程转化为一元二次方程,利用根的分布建立条件关系即可得到结论.【解答】解:化简可得f(x)=,当x>0时,f(x)≥0,f′(x)===,当0<x<时,f′(x)>0,当x>时,f′(x)<0,故当x=时,函数f(x)有极大值f()====;当x<0时,f′(x)==<0,f(x)为减函数,作出函数f(x)对应的图象如图:∴函数f(x)在(0,+∞)上有一个最大值为f()=;设t=f(x),当t>时,方程t=f(x)有1个解,当t=时,方程t=f(x)有2个解,当0<t<时,方程t=f(x)有3个解,当t=0时,方程t=f(x)有1个解,当t<0时,方程m=f(x)有0个解,则方程f2(x)﹣mf(x)+m﹣1=0等价为t2﹣mt+m﹣1=0,等价为方程t2﹣mt+m﹣1=(t﹣1)[t﹣(m﹣1)]=0有两个不同的根t=1,或t=m ﹣1,当t=1时,方程t=f(x)有1个解,要使关于x的方程f2(x)﹣mf(x)+m﹣1=0恰好有4个不相等的实数根,则t=m﹣1∈(0,),即0<m﹣1<,解得1<m<+1,则m的取值范围是(1, +1)故选:A【点评】本题考查了根的存在性及根的个数的判断,考查了利用函数的导函数分析函数的单调性,考查了学生分析问题和解决问题的能力,利用换元法转化为一元二次方程,是解决本题的关键.二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.如图,利用随机模拟的方法可以估计图中由曲线与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0~1的增均匀随机数,a=rand (),b=rand ();②产生N个点(x,y),并统计满足条件的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为 1.328.(保留小数点后三位)【考点】几何概型.【分析】先由计算器做模拟试验结果试验估计,满足条件的点(x,y)的概率,再转化为几何概型的面积类型求解.【解答】解:根据题意:满足条件的点(x,y)的概率是,矩形的面积为4,设阴影部分的面积为s则有=,∴S=1.328.故答案为:1.328.【点评】本题主要考查模拟方法估计概率以及几何概型中面积类型,将两者建立关系,引入方程思想.14.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为π,弦长等于9米的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积与实际面积的差为+﹣9π.【考点】函数模型的选择与应用.【分析】利用扇形的面积公式,计算扇形的面积,从而可得弧田的实际面积;按照上述弧田面积经验公式计算得(弦×矢+矢2),从而可求误差.【解答】解:扇形半径r=3扇形面积等于=9π(m2)弧田面积=9π﹣r2sin=9π﹣(m2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦×矢+矢2)=(9×+)=(+).∴9π﹣﹣(+)=9π﹣﹣按照弧田面积经验公式计算结果比实际少9π﹣﹣平方米.故答案为: +﹣9π.【点评】本题考查扇形的面积公式,考查学生对题意的理解,考查学生的计算能力,属于中档题.15.已知{a n}满足,类比课本中推导等比数列前n项和公式的方法,可求得=.【考点】类比推理.【分析】先对S n=a1+a2•4+a3•42+…+a n•4n﹣1两边同乘以4,再相加,求出其和的表达式,整理即可求出5S n﹣4n a n的表达式,即可求出.【解答】解:由S n=a1+a2•4+a3•42+…+a n•4n﹣1①得4•s n=4•a1+a2•42+a3•43+…+a n﹣1•4n﹣1+a n•4n②①+②得:5s n=a1+4(a1+a2)+42•(a2+a3)+…+4n﹣1•(a n﹣1+a n)+a n•4n=a1+4×++…+4n•a n=1+1+1+…+1+4n•a n=n+4n•a n.所以5s n﹣4n•a n=n.故=,故答案为.【点评】本题主要考查数列的求和,用到了类比法,是一道比较新颖的好题目,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握.16.已知三棱锥O﹣ABC,∠BOC=90°,OA⊥平面BOC,其中AB=,AC=,O,A,B,C四点均在球S的表面上,则球S的表面积为14π.【考点】球的体积和表面积.【分析】根据∠BOC=90°且OA⊥平面BOC,得到三棱锥的三条侧棱两两垂直,以三条侧棱为棱长得到一个长方体,由圆的对称性知长方体的各个顶点都在这个球上,长方体的体积就是圆的直径,求出直径,得到圆的面积.【解答】解:∵∠BOC=90°,OA⊥平面BOC,∴三棱锥的三条侧棱两两垂直,∴可以以三条侧棱为棱长得到一个长方体,由圆的对称性知长方体的各个顶点都在这个球上,∴球的直径是,∴球的半径是∴球的表面积是=14π,故答案为:14π【点评】本题考查球的体积与表面积,考查球与长方体之间的关系,考查三棱锥与长方体之间的关系,本题考查几何中常用的一种叫补全图形的方法来完成,本题非常值得一做.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2016秋•桃城区校级月考)如图,在△ABC中,∠B=30°,AC=2,D是边AB上一点.(1)求△ABC面积的最大值;(2)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.【考点】余弦定理.【分析】(1)在△ABC中,由余弦定理,基本不等式可求,进而利用三角形面积公式即可计算得解△ABC的面积的最大值.(2)设∠ACD=θ,由已知及三角形面积公式可求sinθ,进而利用同角三角函数基本关系式可求cosθ,利用余弦定理可求AD的值,进而利用正弦定理可求BC 的值.【解答】解:(1)∵在△ABC中,,∴由余弦定理,得AC2=20=AB2+BC2﹣2AB•BC•cos∠ABC=,∴,当且仅当AB=BC时,取等号,∴,∴△ABC的面积的最大值为;(2)设∠ACD=θ,在△ACD中,∵CD=2,△ACD的面积为4,∠ACD为锐角,∴,∴,∴,由余弦定理,得,∴AD=4.由正弦定理,得,∴,∴,此时,∴,∴BC的长为4.【点评】本题主要考查了余弦定理,基本不等式,三角形面积公式,同角三角函数基本关系式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.(12分)(2016秋•普宁市校级期末)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=2,,PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.(Ⅰ)求证:AD⊥PB;(Ⅱ)在线段PA上是否存在一点M,使二面角M﹣BC﹣D的大小为,若存在,求的值;若不存在,请说明理由.【考点】与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系.【分析】(I)过B作BO∥CD,交AD于O,连接OP,则AD⊥OB,由勾股定理得出AD⊥OP,故而AD⊥平面OPB,于是AD⊥PB;(II)以O为原点建立坐标系,设M(m,0,n),求出平面BCM的平面ABCD的法向量,令|cos<>|=cos解出n,从而得出的值.【解答】证明:(I)过B作BO∥CD,交AD于O,连接OP.∵AD∥BC,∠ADC=∠BCD=90°,CD∥OB∴四边形OBCD是矩形,∴OB⊥AD.OD=BC=2,∵PD=4,∠PDA=60°,∴OP==2.∴OP2+OD2=PD2,∴OP⊥OD.又OP⊂平面OPB,OB⊂平面OPB,OP∩OB=O,∴AD⊥平面OPB,∵PB⊂平面OPB,∴AD⊥PB.(II)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,OA⊥AD,∴OP⊥平面ABCD.以O为原点,以OA,OB,OP为坐标轴建立空间直角坐标系,如图所示:则B(0,,0),C(﹣2,,0),假设存在点M(m,0,n)使得二面角M﹣BC﹣D的大小为,则=(﹣m,,﹣n),=(﹣2,0,0).设平面BCM的法向量为=(x,y,z),则.∴,令y=1得=(0,1,).∵OP⊥平面ABCD,∴=(0,0,1)为平面ABCD的一个法向量.∴cos<>===.解得n=1.∴==.【点评】本题考查了线面垂直的判定与性质,空间向量的应用与二面角的计算,属于中档题.19.(12分)(2016秋•桃城区校级月考)某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表:(1)试估计该校高三学生本次月考的平均分;(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在[110,130)中的学生数为ξ,求:①在三次抽取过程中至少有两次连续抽中成绩在[110,130)中的概率;②ξ的分布列和数学期望.(注:本小题结果用分数表示)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)计算本次月考数学学科的平均分即可;(2)由表知成绩落在[110,130)中的概率,①利用相互独立事件的概率计算“在三次抽取过程中至少有两次连续抽中成绩在[110,130)中”的概率值;②由题意ξ的可能取值为0,1,2,3;计算对应的概率值,写出ξ的分布列与数学期望.【解答】解:(1)本次月考数学学科的平均分为=;(2)由表知,成绩落在[110,130)中的概率为P=,①设A表示事件“在三次抽取过程中至少有两次连续抽中成绩在[110,130)中”,则,所以在三次抽取过程中至少有两次连续抽中成绩在[110,130)中的概率为;②ξ的可能取值为0,1,2,3;且,,,;∴ξ的分布列为数学期望为.(或,则.【点评】本题考查了离散型随机变量的分布列与数学期望的应用问题,是基础题.20.(12分)(2016秋•桃城区校级月考)已知抛物线C:x2=2py(p>0)的焦点为F,过抛物线上一点P作抛物线C的切线l交x轴于点D,交y轴于点Q,当|FD|=2时,∠PFD=60°.(1)判断△PFQ的形状,并求抛物线C的方程;(2)若A,B两点在抛物线C上,且满足,其中点M(2,2),若抛物线C上存在异于A、B的点H,使得经过A、B、H三点的圆和抛物线在点H处有相同的切线,求点H的坐标.【考点】直线与抛物线的位置关系.【分析】(1)设P(x1,y1),求出切线l的方程,求解三角形的顶点坐标,排除边长关系,然后判断三角形的形状,然后求解抛物线方程.(2)求出A,B的坐标分别为(0,0),(4,4),设H(x0,y0)(x0≠0,x0≠4),求出AB的中垂线方程,AH的中垂线方程,解得圆心坐标,由,求解H点坐标即可.【解答】解:(1)设P(x1,y1),则切线l的方程为,且,所以,,所以|FQ|=|FP|,所以△PFQ为等腰三角形,且D为PQ的中点,所以DF⊥PQ,因为|DF|=2,∠PFD=60°,所以∠QFD=60°,所以,得p=2,所以抛物线方程为x2=4y;(2)由已知,得A,B的坐标分别为(0,0),(4,4),设H(x0,y0)(x0≠0,x0≠4),AB的中垂线方程为y=﹣x+4,①AH的中垂线方程为,②联立①②,解得圆心坐标为:,k NH==,由,得,因为x0≠0,x0≠4,所以x0=﹣2,所以H点坐标为(﹣2,1).【点评】本题考查直线与抛物线的位置关系的应用,直线与圆的位置关系,考查转化思想以及计算能力.21.(12分)(2015•盐城三模)设函数f(x)=lnx,g(x)=(m>0).(1)当m=1时,函数y=f(x)与y=g(x)在x=1处的切线互相垂直,求n的值;(2)若函数y=f(x)﹣g(x)在定义域内不单调,求m﹣n的取值范围;(3)是否存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)分别求出f(x)、g(x)的导数,求得在x=1处切线的斜率,由两直线垂直的条件,解方程即可得到n;(2)求出y=f(x)﹣g(x)的导数,可得,得的最小值为负,运用基本不等式即可求得m﹣n的范围;(3)假设存在实数a,运用构造函数,求出导数,求得单调区间和最值,结合不等式恒成立思想即有三种解法.【解答】解:(1)当m=1时,,∴y=g(x)在x=1处的切线斜率,由,∴y=f(x)在x=1处的切线斜率k=1,∴,∴n=5.(2)易知函数y=f(x)﹣g(x)的定义域为(0,+∞),又,由题意,得的最小值为负,∴m(1﹣n)>4,由m>0,1﹣n>0,∴,∴m+(1﹣n)>4或m+1﹣n<﹣4,∴m﹣n>3或m﹣n<﹣5;(3)解法一、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x恒成立.令θ(x)=,其中x>0,a>0,则θ'(x)=,设,∴δ(x)在(0,+∞)单调递减,δ(x)=0在区间(0,+∞)必存在实根,不妨设δ(x0)=0,即,可得(*)θ(x)在区间(0,x0)上单调递增,在(x0,+∞)上单调递减,所以θ(x)max=θ(x0),θ(x0)=(ax0﹣1)•ln2a﹣(ax0﹣1)•lnx0,代入(*)式得,根据题意恒成立.又根据基本不等式,,当且仅当时,等式成立即有,即ax0=1,即.代入(*)式得,,即,解得.解法二、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x 恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0根据条件对任意正数x恒成立,即(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,∴且,解得且,即时上述条件成立,此时.解法三、假设存在实数a,使得f()•f(e ax)+f()≤0对任意正实数x 恒成立.令θ(x)=ax•ln2a﹣ax•lnx+lnx﹣ln2a=(ax﹣1)(ln2a﹣lnx),其中x>0,a>0要使得(ax﹣1)(ln2a﹣lnx)≤0对任意正数x恒成立,等价于(ax﹣1)(2a﹣x)≤0对任意正数x恒成立,即对任意正数x恒成立,设函数,则φ(x)的函数图象为开口向上,与x正半轴至少有一个交点的抛物线,因此,根据题意,抛物线只能与x轴有一个交点,即,所以.【点评】本题考查导数的运用:求切线的斜率和单调区间、极值和最值,主要考查函数的单调性的运用,以及不等式恒成立思想的运用,考查运算能力,具有一定的综合性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)(2016秋•桃城区校级月考)极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4sinθ,曲线C2的参数方程为(t为参数,0≤α<π),射线与曲线C1交于(不包括极点O)三点A,B,C.(1)求证:;(2)当时,B,C两点在曲线C2上,求m与α的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)依题意|OA|=4sinφ,,利用三角恒等变换化简|OB|+|OC|为,命题得证.(2)当时,B,C两点的极坐标分别为,再把它们化为直角坐标,根据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为,由此可得m及直线的斜率,从而求得α的值.【解答】(1)证明:依题意|OA|=4sinφ,,则=;(2)解:当时,B,C两点的极坐标分别为,化为直角坐标为,曲线C2是经过点(m,0),且倾斜角为α的直线,又因为经过点B,C的直线方程为,所以.【点评】本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于中档题.[选修4-5:不等式选讲]23.(2016•中山市二模)已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数x,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于a,即可解出实数a的取值范围.【解答】解:(1)a=2时:f(x)=|3x﹣2|﹣|x+2|≤3,或或,解得:﹣≤x≤;(2)不等式f(x)≥1﹣a+2|2+x|成立,即|3x﹣a|﹣|3x+6|≥1﹣a,由绝对值不等式的性质可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,即有f(x)的最大值为|a+6|,∴或,解得:a≥﹣.【点评】本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误.。
2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.(5分)已知x,y∈R,i为虚数单位,且(x﹣2)i﹣y=﹣1+i,则(1+i)x+y的值为()A.4B.4+4i C.﹣4D.2i2.(5分)已知集合A={x|﹣1≤x≤1},B={x|x2﹣5x+6≥0},则下列结论中正确的是()A.A∩B=B B.A∪B=A C.A⊊B D.∁R A=B3.(5分)已知△ABC的面积为2,在△ABC所在的平面内有两点P、Q,满足,=2,则△APQ的面积为()A.B.C.1D.24.(5分)如图,一个空间几何体的正视图、侧视图都是面积为,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.4D.85.(5分)七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.B.C.D.6.(5分)定义运算:=a1a4﹣a2a3,将函数f(x)=的图象向左平移m(m>0)个单位,所得图象对应的函数为偶函数,则m的最小值是()A.B.C.D.7.(5分)已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a8.(5分)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为()A.B.1C.1D.29.(5分)如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A′B′C′,其中A′B′∥y′轴,B′C′∥x′轴.若A′B′=B′C′=3,设△ABC的面积为S,△A′B′C的面积为S′,记S=kS′,执行如图②的框图,则输出T的值()A.12B.10C.9D.610.(5分)如图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n边形“扩展”而来的多边形的边数为a n,则=()A.B.C.D.11.(5分)过椭圆上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,Q两点,则△POQ面积的最小值为()A.B.C.1D.12.(5分)若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称f(x)为“柯西函数”,则下列函数:①f(x)=x+(x>0);②f(x)=lnx(0<x<e);③f(x)=cos x;④f(x)=x2﹣1.其中为“柯西函数”的个数为()A.1B.2C.3D.4二、填空题(每题5分,共20分.把答案填在答题纸的横线上)13.(5分)已知等比数列{a n}的第5项是二项式(﹣)6展开式的常数项,则a3a7=.14.(5分)已知在平面直角坐标系中,O(0,0),M(1,),N(0,1),Q(2,3),动点P(x,y)满足不等式0≤•≤1,0≤•≤1,则W=•的最大值为.15.(5分)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式a12+a22+…+a n2<5×2n+1成立的n的最大值为.16.(5分)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则.(写出所有正确结论的编号)①四面体ABCD每个面的面积相等②四面体ABCD每组对棱相互垂直③连接四面体ABCD每组对棱中点的线段相互垂直平分④从四面体ABCD每个顶点出发的三条棱的长都可以作为一个三角形的三边长三、解答题(本大题共5小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sin A sin C=.(Ⅰ)求角B的大小;(Ⅱ)设向量=(cos A,cos2A),=(﹣,1),当•取最小值时,判断△ABC的形状.18.在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.19.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4:样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为M,∠F1MF2=60°,P为椭圆上任意一点,且△PF1F2的面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点A,B为椭圆C上的两个不同的动点,且•=t(O为坐标原点),则是否存在常数t,使得O点到直线AB的距离为定值?若存在,求出常数t和这个定值;若不存在,请说明理由.21.已知函数f(x)=alnx﹣x2.(1)当a=2时,求函数y=f(x)在[,2]上的最大值;(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;(3)当a=2时,函数h(x)=f(x)﹣mx的图象与x轴交于两点A(x1,0),B (x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4一4:坐标系与参数方程选讲]22.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.[选修4-5:不等式选讲]23.设函数f(x)=|x+1|+|x﹣5|,x∈R.(Ⅰ)求不等式f(x)≤x+10的解集;(Ⅱ)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.2018-2019学年河北省衡水中学高三(下)六调数学试卷(理科)(5月份)参考答案与试题解析一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.(5分)已知x,y∈R,i为虚数单位,且(x﹣2)i﹣y=﹣1+i,则(1+i)x+y的值为()A.4B.4+4i C.﹣4D.2i【分析】利用复数相等的性质求出x,y,再利用复数的代数形式的乘除运算法则能求出结果.【解答】解:∵x,y∈R,i为虚数单位,且(x﹣2)i﹣y=﹣1+i,∴,解得x=3,y=1,∴(1+i)x+y=(1+i)4=(2i)2=﹣4.故选:C.【点评】本题考查实数值的求法,涉及到复数相等、复数的代数形式的乘除运算法则等基础知识,考查推理论证能力、运算求解能力,是基础题.2.(5分)已知集合A={x|﹣1≤x≤1},B={x|x2﹣5x+6≥0},则下列结论中正确的是()A.A∩B=B B.A∪B=A C.A⊊B D.∁R A=B【分析】由x2﹣5x+6≥0,解得x≥3,x≤2,【解答】解:由x2﹣5x+6≥0,化为(x﹣2)(x﹣3)≥0,解得x≥3,x≤2,∴B ={x|x≥3,x≤2},∴A⊊B,故选:C.【点评】本题考查了一元二次不等式的解法、集合之间的关系,考查了推理能力与计算能力,属于基础题.3.(5分)已知△ABC的面积为2,在△ABC所在的平面内有两点P、Q,满足,=2,则△APQ的面积为()A.B.C.1D.2【分析】画出△ABC,通过足,=2,标出满足题意的P、Q位置,利用三角形的面积公式求解即可.【解答】解:由题意可知,P为AC的中点,=2,可知Q为AB的一个三等分点,如图:因为S△ABC==2.所以S△APQ===.故选:B.【点评】本题考查向量在几何中的应用,三角形的面积的求法,考查转化思想与计算能力.4.(5分)如图,一个空间几何体的正视图、侧视图都是面积为,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.4D.8【分析】由题意求出菱形的边长,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,求出正四棱锥侧面积,即可求解.【解答】解:一个空间几何体的正视图、侧视图都是面积为,且一个内角为60°的菱形,所以菱形的边长为:1,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为1,侧棱长为:,所以几何体的表面积为:=4.故选:C.【点评】本题是基础题,考查三视图推出几何体的判断,几何体的表面积的求法,注意视图的应用.5.(5分)七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.B.C.D.【分析】根据几何概型的概率公式转化为对应面积之间的关系进行求解即可.【解答】解:以最小的等腰三角形为基本单位,则大正方体有16个小等腰直角三角形构成,则阴影部分对应的有7个小等腰直角三角形,则对应概率P=,故选:D.【点评】本题主要考查几何概型的概率的计算,结合面积之比是解决本题的关键.6.(5分)定义运算:=a1a4﹣a2a3,将函数f(x)=的图象向左平移m(m>0)个单位,所得图象对应的函数为偶函数,则m的最小值是()A.B.C.D.【分析】由题表达函数f(x)=sin﹣cos=2sin(x﹣);向左平移m(m>0)个单位即为:g(x)=f(x+m)=2sin(﹣);利用新函数g(x)为偶函数,由三角函数图象的性质可得答案.【解答】解:定义运算:=a1a4﹣a2a3,将函数f(x)=化为:f(x)=sin﹣cos=2sin(x﹣)再向左平移m(m>0)个单位即为:g(x)=f(x+m)=2sin(﹣);又因为新函数g(x)为偶函数,由三角函数图象的性质可得,即x=0时函数值为最大或最小值,即:sin(﹣)=1;或sin(﹣)=﹣1;所以:﹣=kπ+,k∈Z;即m=2kπ+,k∈Z;又m>0,所以m的最小值是:故选:C.【点评】本题考查对三角函数定义的理解能力,三角函数恒等变性,三角函数图象及性质.7.(5分)已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【分析】由,,=,则a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,根据对数的运算性质,导数和函数的单调性,即可比较.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)>0,当0<x<e时,f′(x)<0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.【点评】本题考查了不等式的大小比较,导数和函数的单调性,属于难题.8.(5分)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为()A.B.1C.1D.2【分析】求出抛物线的焦点坐标,即可得到双曲线C的值,利用抛物线与双曲线的交点以及△AF1F2是以AF1为底边的等腰三角形,结合双曲线a、b、c关系求出a 的值,然后求出离心率.【解答】解:抛物线的焦点坐标(1,0),所以双曲线中,c=1,又由已知得|AF2|=|F1F2|=2,而抛物线准线为x=﹣1,根据抛物线的定义A点到准线的距离=|AF2|=2,因此A点坐标为(1,2),由此可知是△AF1F2是以AF1为斜边的等腰直角三角形,因为双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,所以双曲线的离心率e=====+1.故选:B.【点评】本题考查抛物线的简单性质以及双曲线的简单性质的应用,考查计算能力.9.(5分)如图①,利用斜二侧画法得到水平放置的△ABC的直观图△A′B′C′,其中A′B′∥y′轴,B′C′∥x′轴.若A′B′=B′C′=3,设△ABC的面积为S,△A′B′C的面积为S′,记S=kS′,执行如图②的框图,则输出T的值()A.12B.10C.9D.6【分析】由斜二侧画法的画图法则,结合已知可求出S及k值,模拟程序的运行过程,分析变量T的值与S值的关系,可得答案.【解答】解:∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′=A′B′•B′C′•sin45°=由斜二侧画法的画图法则,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S=AB•BC=9则由S=kS′得k=2,则T=T=(m﹣1)=2(m﹣1)故执行循环前,S=9,k=2,T=0,m=1,满足进行循环的条件,执行循环体后,T=0,m=2当T=0,m=2时,满足进行循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进行循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进行循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进行循环的条件,退出循环后,T=12,故输出的结果为12故选:A.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.(5分)如图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n边形“扩展”而来的多边形的边数为a n,则=()A.B.C.D.【分析】先观察图形再结合归纳推理可得解.【解答】解:a3=12,a4=20,a5=30,猜想a n=n(n+1)(n≥3,n∈N+),所以==,所以+…=())+()+…+()==,故选:A.【点评】本题考查了观察能力及归纳推理,属中档题.11.(5分)过椭圆上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,Q两点,则△POQ面积的最小值为()A.B.C.1D.【分析】由点H在椭圆上,知H(3cosθ,2sinθ),由过椭圆上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,知直线AB的方程为:(3cosθ)x+(2sinθ)y=2,由此能求出△POQ面积最小值.【解答】解:∵点H在椭圆上,∴H(3cosθ,2sinθ),∵过椭圆上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B 为切点,∴直线AB的方程为:(3cosθ)x+(2sinθ)y=2,∵过A,B的直线l与x轴,y轴分布交于点P,Q两点,∴P(,0),Q(0,),∴△POQ面积S==×,∵﹣1≤sin2θ≤1,∴当sin2θ=1时,△POQ面积取最小值.【点评】本题考查三角形面积的最小值的求法,具体涉及到椭圆、圆、直线方程、三角函数、参数方程等基本知识点,解题时要认真审题,注意等价转化思想的合理运用.12.(5分)若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|的最大值为0,则称f(x)为“柯西函数”,则下列函数:①f(x)=x+(x>0);②f(x)=lnx(0<x<e);③f(x)=cos x;④f(x)=x2﹣1.其中为“柯西函数”的个数为()A.1B.2C.3D.4【分析】由“柯西函数”得函数f(x)在其图象上存在不同的两点A(x1,y1),B (x2,y2由),使得、共线,即存在点A、B与点O共线,判断满足条件即可.【解答】解:由柯西不等式得:对任意实数x1,y1,x2,y2:|x1x2+y1y2|≤0恒成立(当且仅当存在实数k,使得x1=kx2,y1=ky2取等号),又函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),满足条件:|x1x2+y1y2|的最大值为0,则函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),使得、共线,即存在点A、B与点O共线;设AB的方程为y=kx,对于①,由于y=kx(x>0)与f(x)=x+只有一个交点,所以①不是柯西函数;对于②,由于y=kx与f(x)=lnx(0<x<e)最多只有一个交点,所以②不是柯西函数;对于③,取A(0,0),点B任意,均满足定义,所以③是柯西函数;对于④,取A(﹣1,0),B(1,0),均满足定义,所以④是柯西函数.故选:B.【点评】本题考查了函数的新定义与应用问题,也考查了函数性质与应用问题,是中档题.二、填空题(每题5分,共20分.把答案填在答题纸的横线上)13.(5分)已知等比数列{a n}的第5项是二项式(﹣)6展开式的常数项,则a3a7=.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.再根据该项是等比数列{a n}的第5项,再利用等比数列的性质求得a3a7的值.【解答】解:二项式(﹣)6展开式的通项公式为T r+1=••,令3﹣=0,求得r=2,故展开式的常数项为•=.等比数列{a n}的第5项a5=,可得a3a7==,故答案为:.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,等比数列的定义和性质,属于基础题.14.(5分)已知在平面直角坐标系中,O(0,0),M(1,),N(0,1),Q(2,3),动点P(x,y)满足不等式0≤•≤1,0≤•≤1,则W=•的最大值为4.【分析】利用向量的坐标求法求出各个向量的坐标,利用向量的数量积公式求出各个数量积代入已知不等式得到P的坐标满足的不等式,将的值用不等式组中的式子表示,利用不等式的性质求出范围.【解答】解:由题得:,=(x,y),=(0,1),=(2,3).∵0≤≤1,0≤≤1.∴⇒∵=2x+3y=(2x+y)+2y;∴∈[0,4].∴所求最大值为4.故答案为:4.【点评】本题考查向量的坐标形式的数量积公式、不等式的性质.15.(5分)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式a12+a22+…+a n2<5×2n+1成立的n的最大值为4.【分析】利用及等比数列的通项公式即可得出a n,利用等比数列的前n项和公式即可得出,再化简即可得出答案.【解答】解:当n=1时,a1+1=2a1,解得a1=1.当n≥2时,∵S n+1=2a n,S n﹣1+1=2a n﹣1,∴a n=2(a n﹣a n﹣1),∴.∴数列{a n}是以1为首项,2为公比的等比数列.∴,∴.∴=1+4+42+…+4n﹣1==.∴.∴2n(2n﹣30)<1,可知使得此不等式成立的n的最大值为4.【点评】熟练掌握及等比数列的通项公式、等比数列的前n 项和公式、不等式的解法等是解题的关键.16.(5分)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则①③④.(写出所有正确结论的编号)①四面体ABCD每个面的面积相等②四面体ABCD每组对棱相互垂直③连接四面体ABCD每组对棱中点的线段相互垂直平分④从四面体ABCD每个顶点出发的三条棱的长都可以作为一个三角形的三边长【分析】由对棱相等知四面体为长方体的面对角线组成的三棱锥,借助长方体的性质判断各结论是否正确即可.【解答】解:由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,如图所示;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,则①正确;当四面体棱长都相等时,四面体的每组对棱互相垂直,则②错误;由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,由对称性知连接四面体ABCD每组对棱中点的线段相互垂直平分,则③正确;由AC=BD,AB=CD,AD=BC,可得过四面体任意一点的三条棱的长为△ABD的三边长,则④正确.故答案为:①③④.【点评】本题考查了棱锥的结构特征与命题真假的判断问题,解题的关键是把三棱锥放入长方体中,是基础题.三、解答题(本大题共5小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且sin A sin C=.(Ⅰ)求角B的大小;(Ⅱ)设向量=(cos A,cos2A),=(﹣,1),当•取最小值时,判断△ABC的形状.【分析】(Ⅰ)根据正弦定理和等比数列的关系建立方程关系即可求角B的大小;(Ⅱ)根据向量的数量积公式进行计算,然后利用三角函数的图象和性质即可判断三角形的性质.【解答】解:(Ⅰ)因为a、b、c成等比数列,则b2=ac.由正弦定理得sin2B=sin A sin C.又sin A sin C=,所以sin2B=.因为sin B>0,则sin B=.因为B∈(0,π),所以B=或.又b2=ac,则b≤a或b≤c,即b不是△ABC的最大边,故B=.(Ⅱ)因为向量=(cos A,cos2A),=(﹣,1),所以•=﹣cos A+cos2A=﹣cos A+2cos2A﹣1=2(cos A﹣)2﹣,所以当cos A=时,•取的最小值﹣.因为cos A=,所以.因为B=,所以A+B.从而△ABC为锐角三角形.【点评】本题主要考查三角形的形状的判断,利用正弦定理和三角函数的公式是解决本题的关键,考查学生的运算能力.18.在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.(1)求证:BD⊥PC;(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;(3)求二面角A﹣PC﹣B的余弦值.【分析】(1)利用线面垂直的判定定理,证明BD⊥平面PAC,可得BD⊥PC;(2)设取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,求出AD=CD,即可求AF的长;(3)建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角A﹣PC﹣B的余弦值.【解答】(1)证明:∵△ABC是正三角形,M是AC中点,∴BM⊥AC,即BD⊥AC.又∵PA⊥平面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.∴BD⊥PC.(2)解:取DC中点G,连接FG,则EG∥平面PAD,∵直线EF∥平面PAD,EF∩EG=E,∴平面EFG∥平面PAD,∵FG⊂平面EFG,∴FG∥平面PAD∵M为AC中点,DM⊥AC,∴AD=CD.∵∠ADC=120°,AB=4,∴∠BAD=∠BAC+∠CAD=90°,AD=CD=,∵∠DGF=60°,DG=,∴AF=1(3)解:分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C(2,2,0),D(0,,0),P(0,0,4).=(4,﹣,0)为平面PAC的法向量.设平面PBC的一个法向量为=(x,y,z),则∵=(2,2,﹣4),=(4,0,﹣4),∴,令z=3,得x=3,y=,则平面PBC的一个法向量为=(3,,3),设二面角A﹣PC﹣B的大小为θ,则cosθ==.∴二面角A﹣PC﹣B余弦值为.【点评】本题考查线面垂直的判定定理与性质,考查二面角,考查学生分析解决问题的能力,考查向量法的运用,确定平面的法向量是关键.19.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A,B两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4:样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.【分析】(1)由题取出十个编号,先将编号从小到大排列再求中位数(2)按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,求该数列的前10项和.(3)分别求出样本的平均数和方差,900名考生选做题得分的平均数与方差和样本的平均数与方差相等.【解答】解:(1)根据题意,读出的编号依次是:512,916(超界),935(超界),805,770,951(超界),512(重复),687,858,554,876,647,547,332.将有效的编号从小到大排列,得332,512,547,554,647,687,770,805,858,876,所以中位数为×(647+687)=667;(2)由题易知,按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,所以样本编号之和即为该数列的前10项之和,即S10=10×8+=4130;(3)记样本中8个A题目成绩分别为x1,x2,…x8,2个B题目成绩分别为y1,y2,由题意可知x i=8×7=56,=8×4=32,y i=16,=2×1=2,故样本平均数为=×(x i+y i)=×(56+16)=7.2;样本方差为s2=×[+]=×{+}=×[﹣0.4(x i﹣7)+8×0.22++1.6(y i﹣8)+2×0.82]=×(32﹣0+0.32+2+0+1.28)=3.56;所以估计该校900名考生该选做题得分的平均数为7.2,方差为3.56.【点评】本题考查了随机数表法抽样应用问题,也考查了系统抽样和平均数、方差的计算问题,是中档题.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为M,∠F1MF2=60°,P为椭圆上任意一点,且△PF1F2的面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点A,B为椭圆C上的两个不同的动点,且•=t(O为坐标原点),则是否存在常数t,使得O点到直线AB的距离为定值?若存在,求出常数t和这个定值;若不存在,请说明理由.【分析】(Ⅰ)由题得,,解得a2=4,b2=3,即可求出椭圆方程,(Ⅱ)设A(x1,y1)、B(x2,y2),当直线AB的斜率存在时,设其直线方程为:y=kx+n,由得由此利用韦达定理、向量知识,结合已知条件能求出结果.【解答】解:(Ⅰ)由题得,,解得a2=4,b2=3,∴椭圆的标准方程为+=1.(Ⅱ)设A(x1,y1)、B(x2,y2),当直线AB的斜率存在时,设其直线方程为:y=kx+n,则原点O到直线AB的距离为d=,联立方程,化简得,(4k2+3)x2+8knx+4n2﹣12=0,由△>0得4k2﹣n2+3>0,则x1+x2=﹣,x1x2=,∴•=x1x2+y1y2=x1x2+(kx1+n)(kx2+n)=(k2+1)x1x2+kn(x1+x2)+n2=t即(7d2﹣12﹣4t)k2+7d2﹣12﹣3t=0对任意的k∈R恒成立,则,解得t=0,d=,当直线AB斜率不存在时,也成立.故当t=0时,O点到直线AB的距离为定值d=.【点评】本题考查椭圆方程的求法,考查满足向量的数量积之和为定值的实数值的求法,考查直线方程、椭圆性质、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.已知函数f(x)=alnx﹣x2.(1)当a=2时,求函数y=f(x)在[,2]上的最大值;(2)令g(x)=f(x)+ax,若y=g(x))在区间(0,3)上为单调递增函数,求a的取值范围;(3)当a=2时,函数h(x)=f(x)﹣mx的图象与x轴交于两点A(x1,0),B (x2,0),且0<x1<x2,又h′(x)是h(x)的导函数.若正常数α,β满足条件α+β=1,β≥α.试比较h'(αx1+βx2)与0的关系,并给出理由.【分析】(1)当a=2时,利用导数的符号求得函数的单调性,再根据函数的单调性求得函数y=f(x)在[,2]上的最大值;(2)先求得g′(x)=﹣2x+a,因为g(x)在区间(0,3)上单调递增,所以g'(x)≥0在(0,3)上恒成立,运用参数分离和函数的单调性,求得右边函数的范围,由此可得a的范围;(3)h′(αx1+βx2)<0.理由:由题意可得,f(x)﹣mx=0有两个实根x1,x2,化简可得m=﹣(x1+x2),可得h'(αx1+βx2)=﹣2(αx1+βx2)﹣+(x1+x2)=﹣﹣+(2α﹣1)(x2﹣x1),由条件知(2α﹣1)(x2﹣x1)≤0,再用分析法证明h′(αx1+βx2)<0.【解答】解:(1)∵f(x)=2lnx﹣x2,可得,函数f(x)在[,1]是增函数,在[1,2]是减函数,所以f(1)取得最大值,且为﹣1;(2)因为g(x)=alnx﹣x2+ax,所以g′(x)=﹣2x+a,因为g(x)在区间(0,3)上单调递增,所以g'(x)≥0在(0,3)上恒成立,即有a≥在(0,3)的最大值,由y=的导数为y′=>0,则函数y=在(0,3)递增,可得y<,则a≥;(3)由题意可得,h′(x)=﹣2x﹣m,又f(x)﹣mx=0有两个实根x1,x2,∴2lnx1﹣x12﹣mx1=0,2lnx2﹣x22﹣mx2=0,两式相减,得2(lnx1﹣lnx2)﹣(x12﹣x22)=m(x1﹣x2),∴m=﹣(x1+x2),于是h'(αx1+βx2)=﹣2(αx1+βx2)﹣m=﹣2(αx1+βx2)﹣+(x1+x2)=﹣﹣+(2α﹣1)(x2﹣x1),∵β≥α,∴2α≤1,∴(2α﹣1)(x2﹣x1)≤0.可得h′(αx1+βx2)<0.要证:h′(αx1+βx2)<0,只需证:﹣<0,只需证:﹣ln>0.(*)令=t∈(0,1),∴(*)化为+lnt<0,只证u(t)=+lnt即可.∵u′(t)=+=﹣=,又∵≥1,0<t<1,∴t﹣1<0,∴u′(t)>0,∴u(t)在(0,1)上单调递增,故有u(t)<u(1)=0,∴+lnt<0,即﹣ln>0.∴h′(αx1+βx2)<0.【点评】本题主要考查利用导数研究函数的单调性,利用函数的单调性求函数在闭区间上的最值,用分析法证明不等式,体现了转化的数学思想,属于难题.请考生在22、23三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4一4:坐标系与参数方程选讲]22.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.【分析】(1)利用x=ρcosθ,y=ρsinθ即可得出;(2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,【解答】解(1)∵P点的极坐标为,∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x ﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.【点评】本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.[选修4-5:不等式选讲]23.设函数f(x)=|x+1|+|x﹣5|,x∈R.(Ⅰ)求不等式f(x)≤x+10的解集;(Ⅱ)如果关于x的不等式f(x)≥a﹣(x﹣2)2在R上恒成立,求实数a的取值范围.【分析】(Ⅰ)化简f(x)的解析式,分类讨论求得不等式f(x)≤x+10的解集.(Ⅱ)由题意可得f(x)在x∈[﹣1,5]上的最小值大于或等于g(x)的最大值.。
2016-2017学年度上学期高三年级六调考试理数试卷 第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知21zi i=++,则复数z =( )A .13i -B . 13i --C .13i -+D .13i +2。
已知命题()()()()122121:,,0p x xR f x f x x x ∀∈--≥,则p ⌝是()A .()()()()122121,,0x xR f x f x x x ∃∉--<B . ()()()()122121,,0x x R f x f x x x ∃∈--<C .()()()()122121,,0x x R f x f x x x ∀∉--<D .()()()()122121,,0x xR f x f x x x ∀∈--<3.已知()f x 是奇函数,且()()2f x f x -=,当[]2,3x ∈时,()()2log 1f x x =-,则13f ⎛⎫= ⎪⎝⎭( ) A .22log 3-B . 22log 3log 7-C .22log7log 3-D .2log32-4.直线3y kx =+与圆()()22234x y -+-=相交于,M N 两点,若MN ≥则k 的取值范围是 ( )A .3,04⎡⎤-⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C.⎡⎣ D .⎡⎢⎣5.如图,若4n =时,则输出的结果为( )A .37B . 67C 。
49D .5116.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为7,则该几何体的侧视图可能是 ( )A .B .C 。
D .7。
已知,A B 为双曲线E 的左,右顶点,点M 在E 上,ABM ∆为等腰三角形,且顶角为120°,则E 的离心率为 ( ) A . 2 B .2 C. 3 D 58.已知,x y 满足约束条件102202x y x y y -+≥⎧⎪-+≤⎨⎪≤⎩,则23z x y =-的最小值为()A . -6B .—3C 。
卜人入州八九几市潮王学校2021~2021第二学期高三年级六调考试理科数学试卷一、选择题〔每一小题5分,一共60分.以下每一小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上〕1.,,为虚数单位,且,那么的值是〔〕A.4B.C.-4D.【答案】C【解析】试题分析:根据复数相等的概念可知,,∴,∴,应选C考点:此题考察了复数的运算点评:纯熟掌握复数的概念及运算法那么是解决此类问题的关键,属根底题2.集合,,那么以下结论中正确的选项是〔〕A. B. C. D.【答案】C【解析】试题分析:由得,故,选项为C.考点:集合间的关系.【此处有视频,请去附件查看】3.的面积为2,在所在的平面内有两点、,满足,,那么的面积为〔〕A. B. C. D.1【答案】C【解析】【分析】画出△ABC,通过,2,标出满足题意的P、Q位置,利用三角形的面积公式求解即可.【详解】由题意可知,P为AC的中点,2,可知Q为AB的一个三等分点,如图:因为S△ABC2.所以S△APQ.应选:B.【点睛】此题考察向量在几何中的应用,三角形的面积的求法,考察转化思想与计算才能.4.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的外表积为〔〕A. B. C.8 D.4【答案】D【解析】试题分析:因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的外表积为:,应选D.考点:1、三视图;2、多面体的外表积.【此处有视频,请去附件查看】5.七巧板是我国古代劳动人民的创造之一,被誉为“模板〞,它是由五块等腰直角三角形、一块正方形和一块平行四边形一共七块板组成的.如下列图的是一个用七巧板拼成的正方形,假设在此正方形中任取一点,那么此点取自黑色局部的概率为〔〕A. B. C. D.【答案】D【解析】【分析】将右下角黑色三角形进展挪动,可得黑色局部面积等于一个等腰直角三角形加一个直角梯形的面积之和,求解出面积再根据几何概型公式求得结果.【详解】设正方形的边长为那么①处面积和右下角黑色区域面积一样故黑色局部可拆分成一个等腰直角三角形和一个直角梯形等腰直角三角形面积为:直角梯形面积为:黑色局部面积为:那么所求概率为:此题正确选项:【点睛】此题考察几何概型中的面积类问题,属于根底题.6.定义运算:,将函数的图像向左平移个单位,所得图像对应的函数为偶函数,那么的最小值是〔〕A. B. C. D.【答案】C【解析】试题分析:,将函数化为再向左平移〔〕个单位即为:又为偶函数,由三角函数图象的性质可得,即时函数值为最大或者最小值,即或者,所以,即,又,所以的最小值是.考点:对定义的理解才能,三角函数恒等变性,三角函数图象及性质.7.,,,那么以下选项正确的选项是〔〕A. B. C. D.【答案】D【解析】【分析】由,,,那么a,b,c的大小比较可以转化为的大小比较.设f 〔x〕,那么f′〔x〕,根据对数的运算性质,导数和函数的单调性,即可比较.【详解】,,,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f〔x〕,那么f′〔x〕,当x=e时,f′〔x〕=0,当x>e时,f′〔x〕>0,当0<x<e时,f′〔x〕<0∴f〔x〕在〔e,+∞〕上,f〔x〕单调递减,∵e<3<π<4∴,∴b>c>a,应选:D.【点睛】此题考察了不等式的大小比较,导数和函数的单调性,属于难题.8.双曲线的左右焦点分别为,,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,假设是以为底边的等腰三角形,那么双曲线的离心率为〔〕A. B.C. D.【答案】B【解析】试题分析:∵,∴焦点为,即,∵,∴,即,∴,那么,即,∴.考点:抛物线的HY方程及几何性质.9.如图①,利用斜二侧画法得到程度放置的的直观图,其中轴,,设的面积为,的面积为,记,执行如图②的框图,那么输出的值A.12B.10C.9D.6【答案】A【解析】【分析】由斜二侧画法的画图法那么,结合可求出S及k值,模拟程序的运行过程,分析变量T的值与S值的关系,可得答案.【详解】∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′A′B′•B′C′•sin45°由斜二侧画法的画图法那么,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S AB•BC=9那么由S=kS′得k=2,那么T=T〔m﹣1〕=T2〔m﹣1〕故执行循环前,S=9,k=2,T=0,m=1,满足进展循环的条件,执行循环体后,T=0,m=2当T=0,m=2时,满足进展循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进展循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进展循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进展循环的条件,退出循环后,T=12,故输出的结果为12应选:A.【点睛】根据流程图〔或者伪代码〕写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图〔或者伪代码〕,从流程图〔或者伪代码〕中即要分析出计算的类型,又要分析出参与计算的数据〔假设参与运算的数据比较多,也可使用表格对数据进展分析管理〕⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.边形“扩展〞而来的多边形的边数为,那么〔〕A.;B.;C.;D.【答案】A【解析】,猜想,,,应选A.11.过椭圆上一点作圆的两条切线,点,为切点,过,的直线与轴,轴分别交于点,两点,那么的面积的最小值为〔〕A. B. C.1 D.【答案】B【解析】试题分析::∵点在椭圆上,∴设,∵过椭圆上一点作圆的两条切线,点为切点,那么∴以O为圆心,以|AM|为半径的圆的方程为①.又圆的方程为②.①-②得,直线AB的方程为:∵过A,B的直线l与x轴,y轴分别交于点P,Q两点,∴P,Q,∴△POQ面积,∵-1≤sin2θ≤1,∴当sin2θ=±1时,△POQ面积取最小值.考点:圆与圆锥曲线的综合12.假设函数在其图象上存在不同的两点,,其坐标满足条件:的最大值为0,那么称为“柯西函数〞,那么以下函数:①:②:③:④.其中为“柯西函数〞的个数为〔〕A.1B.2C.3D.4【答案】B【解析】【分析】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点一共线,结合“柯西函数〞定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点一共线.【详解】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点一共线,结合“柯西函数〞定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点一共线过原点直线与f(x)有两个交点.①,画出f(x)在x>0时,图像假设f(x)与直线y=kx有两个交点,那么必有k≥2,此时,,所以〔x>0〕,此时仅有一个交点,所以不是柯西函数;②,曲线过原点的切线为,又〔e,1〕不是f(x)图像上的点,故f(x)图像上不存在两点A,B与O一共线,所以函数不是;③;④.显然都是柯西函数.应选:B【点睛】此题主要考察柯西不等式,考察学生对新概念的理解和应用,意在考察学生对这些知识的理解掌握程度和分析推理才能.二、填空题〔每一小题5分,一共20分.把答案填在答题纸的横线上〕13.假设等比数列的第5项是二项式展开式的常数项,那么________【答案】【解析】,那么其常数项为,所以,那么14.在平面直角坐标系中,,,,,动点满足不等式,,那么的最大值为________.【答案】4【解析】试题分析:∵,,,,,∴,又∵∴故本例转化为在线性约束条件下,求线性目的函数的最大值问题.可作出如右图的可行域,显然在点时为最优解.∵即∴考点:线性规划.15.数列的前项和为,且,那么使不等式成立的的最大值为________.【答案】4【解析】试题分析:当时,,得,当时,,所以,所以,又因为适宜上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.考点:1.等比数列的求和公式;2.数列的通项公式.16.假设四面体的三组对棱分别相等,即,,,那么________.〔写出所有正确结论的编号〕①四面体每个面的面积相等②四面体每组对棱互相垂直③连接四面体每组对棱中点的线段互相垂直平分④从四面体每个顶点出发的三条棱的长都可以作为一个三角形的三边长【答案】【解析】【分析】由对棱相等知四面体为长方体的面对角线组成的三棱锥,借助长方体的性质判断各结论是否正确即可.【详解】由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,如下列图;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,那么正确;当四面体棱长都相等时,四面体的每组对棱互相垂直,那么错误;由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,由对称性知连接四面体ABCD每组对棱中点的线段互相垂直平分,那么正确;由,,,可得过四面体任意一点的三条棱的长为的三边长,那么正确.故答案为:.【点睛】三、解答题〔本大题一一共6小题,一共62分,解容许写出文字说明、证明过程或者演算步骤,写在答题纸的相应位置〕17.设的三内角、、的对边长分别为、、,、、成等比数列,且.〔I〕求角的大小;〔Ⅱ〕设向量,,当取最小值时,判断的形状.【答案】〔I〕;〔Ⅱ〕为锐角三角形.【解析】【分析】〔Ⅰ〕根据正弦定理和等比数列的关系建立方程关系即可求角B的大小;〔Ⅱ〕根据向量的数量积公式进展计算,然后利用三角函数的图象和性质即可判断三角形的形状.【详解】〔I〕因为、、成等比数列,那么.由正弦定理得.又,所以·因为,那么.因为,所以或者.又,那么,当且仅当a=c等号成立,即故.〔Ⅱ〕因为,所以.所以当时,,于是.又,从而为锐角三角形.【点睛】此题主要考察三角形的形状的判断,利用正弦定理和三角函数的公式是解决此题的关键,考察学生的运算才能.18.在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.〔1〕求证:;〔2〕设为的中点,点在线段上,假设直线平面,求的长;〔3〕求二面角的余弦值.【答案】〔1〕见解析;〔2〕1;〔3〕.【解析】【分析】〔1〕利用线面垂直的断定定理,证明BD⊥平面PAC,可得BD⊥PC;〔2〕取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,证明三角形AMF为直角三角形,即可求AF的长;〔3〕建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角A﹣PC﹣B的余弦值.【详解】〔1〕∵是正三角形,是中点,∴,即.又∵平面,∴.又,∴平面.∴.〔2〕取中点,连接,那么平面,又直线平面,EG∩EF=E所以平面平面,所以∵为中点,,∴.∵,,∴,那么三角形AMF为直角三角形,又,故〔3〕分别以,,为轴,轴,轴建立如图的空间直角坐标系,∴,,,.为平面的法向量.,.设平面的一个法向量为,那么,即,令,得,,那么平面的一个法向量为,设二面角的大小为,那么.所以二面角余弦值为.【点睛】此题考察线面垂直的断定定理与性质,考察二面角,考察学生分析解决问题的才能,考察向量法的运用,确定平面的法向量是关键.19.在一次高三年级统一考试中,数学试卷有一道总分值是10分的选做题,学生可以从,〔1〕假设采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;〔2〕假设采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:〔3〕假设采用分层轴样,按照学生选择题目或者题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中【答案】【解析】【分析】〔1〕由题取出十个编号,先将编号从小到大排列再求中位数〔2〕按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,求该数列的前10项和。
襄阳五中2014-2015届高三上学期六调考试数学理科试题2015.1.31一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}{}3,2,,4a A B a b A B A B ==⋂=⋃,则,则等于A. B.C. D.2.已知,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.正项等比数列的公比为2,若,则的值是A.8B.16C.32D.644.已知命题:命题.则下列判断正确的是A.p 是假命题B.q 是真命题C.是真命题D.是真命题5.已知为不同的直线,为不同的平面,则下列说法正确的是A. ,////m n m n αα⊂⇒B. ,m n m n αα⊂⊥⇒⊥C. ,////m n n m αβαβ⊂⊂⇒D. ,n n βααβ⊂⊥⇒⊥ 6.若变量满足条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则的取值范围为A. B. C. D.7.下列函数中,与函数,0,1,0x x e x y x e ⎧≥⎪=⎨⎛⎫<⎪ ⎪⎝⎭⎩的奇偶性相同,且在上单调性也相同的是A.B. C. D.8.设函数()()sin cos 0f x x x ωωω=+>的最小正周期为,将的图象向左平移个单位得函数的图象,则A.上单调递减B.上单调递减C.上单调递增D.上单调递增9.设函数的零点为的零点为,若()120.25x x f x -≤,则可以是A.B. C. D.10.定义在R 上的函数满足:()()()()()1,00,f x f x f f x f x ''>-=是的导函数,则不等式(其中e 为自然对数的底数)的解集为A. B. C. D.二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题纸的相应位置.11.已知向量()()()3,1,0,1,,3.2m n k t m n k ==-=-若与共线,则t= ▲ . 12.设为锐角,若4cos sin 6512ππαα⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭,则 ▲ . 13.若()()1203f x x f x dx =+⎰,则= ▲ . 14.已知直线及直线截圆C 所得的弦长均为8,则圆C 的面积是 ▲ .15.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是 ▲ .三、解答题:(本大题共6个小题,满分75分,解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置.)16.(本小题满分12分)在中,角A 、B 、C 所对的边分别为,且(I )求角C 的大小;(II )若,的面积,求a 、c 的值.17.(本小题满分12分)如图所示,在直三棱柱中,12,4,3,AA AB AC BC D ====为AB 的中点,且(I )求证:;(II )求二面角的平面的正弦值.18.(本小题满分12分)若数列的前n 项和为,且满足: ()21262n n n S S S n n N *++++=-∈.(I )若数列是等差数列,求的通项公式.(II )若,求.19.(本小题满分12分)某公司研发甲、乙两种新产品,根据市场调查预测,甲产品的利润y (单位:万元)与投资(单位:万元)满足:(为常数),且曲线与直线在(1,3)点相切;乙产品的利润与投资的算术平方根成正比,且其图像经过点(4,4).(I )分别求甲、乙两种产品的利润与投资资金间的函数关系式;(II )已知该公司已筹集到40万元资金,并将全部投入甲、乙两种产品的研发,每种产品投资均不少于10万元.问怎样分配这40万元投资,才能使该公司获得最大利润?其最大利润约为多少万元? (参考数据:ln 10 2.303,ln15 2.708,ln 20 2.996,ln 25 3.219,ln30 3.401======)20.(本小题满分13分) 已知椭圆()222210x y a b a b+=>>的两个焦点为,离心率为,直线l 与椭圆相交于A 、B 两点,且满足121,2OA OB AF AF K K +=⋅=-O 为坐标原点.(I )求椭圆的方程;(II )求的最值.21.(本小题满分14分)设函数()()11ln .22f x m x x m R x=-+∈. (I )当时,求的极值;(II )设A 、B 是曲线上的两个不同点,且曲线在A 、B 两点处的切线均与轴平行,直线AB 的斜率为,是否存在,使得若存在,请求出的值,若不存在,请说明理由.。
○…………外…………○……学校:___○…………内…………○……绝密★启用前六调理科理科数学考试范围:选修2-2-导数及其应用;考试时间:120分钟;命题人:张飞 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.已知z1+i=2+i ,则复数z =( )A. 1−3iB. −1−3iC. −1+3iD. 1+3i2.已知命题p :∀x 1,x 2∈R ,(f (x 2)−f (x 1))(x 2−x 1)≥0,则¬p 是( ) A. ∃x 1,x 2∉R ,(f (x 2)−f (x 1))(x 2−x 1)<0 B. ∃x 1,x 2∈R ,(f (x 2)−f (x 1))(x 2−x 1)<0 C. ∀x 1,x 2∉R ,(f (x 2)−f (x 1))(x 2−x 1)<0 D. ∀x 1,x 2∈R ,(f (x 2)−f (x 1))(x 2−x 1)<03.已知f (x )是奇函数,且f (2−x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x −1),则f (13)= ( )A. 2−log 23B. log 23−log 27C. log 27−log 23D. log 23−24.直线y =k x +3与圆(x −2)2+(y −3)2=4相交于M ,N 两点,若|M N |≥2 3,则k 的取值范围是 ( )A. [−34,0] B. [−23,0] C. [− 3, 3] D. [− 33, 33] 5.如图,若n =4时,则输出的结果为( )3645…外…………○…………○…………线…………○※※※答※※题※※…内…………○…………○…………线…………○6.已知一个底面为正六边形,侧棱长都相等的六棱锥的正视图与俯视图如图所示,若该几何体的底面边长为2,侧棱长为 7,则该几何体的侧视图可能是 ( )A. B. C. D.7.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,ΔA B M 为等腰三角形,且顶角为120°,则E 的离心率为 ( ) A. 2 B. 2 C. 3 D. 58.已知x ,y 满足约束条件{x −y +1≥0x −2y +2≤0y ≤2,则z =2x −3y 的最小值为( )A. -6B. -3C. -4D. -29.已知向量a ,b 满足|a |=1,|b |=2,a −b =( 3, 2),则|a +2b |=( ) A. 2 2 B. 17 C. 15 D. 2 510.若数列{a n }满足a 1=1,且对于任意的n ∈N ∗都有a n +1=a n +n +1,则1a 1+1a 2+⋯+1a 2016等于( )A. 20162017 B. 20152016 C. 40302016 D. 4032201711.如图是函数f (x )=x 2+a x +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A. (14,12) B. (12,1) C. (1,2) D. (2,3) 12.已知函数f (x )=|x |e x(x ∈R ),若关于x 的方程f 2(x )−m f (x )+m −1=0恰好有4个不相等的实数根,则实数m 的取值范围为 ( )A. (1,1e +1) B. (0,2e2e) C. (1,2e2e+1) D. (2e2e,1)…………订…………订※※线※※内※※答※※题※※…………订…………第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.如图,利用随机模拟的方法可以估计图中由曲线y=x22与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组0∼1的增均匀随机数,a=ra n d(),b=ra n d();②产生N个点(x,y),并统计满足条件y<x22的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=332,则据此可估计S的值为__________.(保留小数点后三位)14.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为23π,弦长等于9米的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积与实际面积的差为__________.(实际面积-弧田面积)15.已知{a n}满足a1=1,a n+a n+1=(14)n(n∈N∗),S n=a1+4·a2+42·a3+⋯+4n−1a n,类比课本中推导等比数列前n项和公式的方法,可求得S n−4n5a n=__________.16.已知三棱锥O−A B C,∠B O C=900,O A⊥平面B O C,其中A B=10,B C=13,A C=5,O,A,B,C四点均在球S的表面上,则球S的表面积为__________.三、解答题17.如图,在中,∠B=300,A C=25,D是边A B上一点.……订…………○………………○……________考号:___________……订…………○………………○……(1)求ΔA B C 中,∠B =300,A C =2 5,D 是边A B 上一点; (2)若C D =2,ΔA C D 的面积为4,∠A C D 为锐角,求B C 的长. 18.四棱锥P −A B C D 中,底面A B C D 为直角梯形,∠A D C =∠B C D =900,B C =2,C D = 3,P D =4,∠P D A =600,且平面P A D ⊥平面A B C D .(1)求证:A D ⊥P B ;(2)在线段P A 上是否存在一点M ,使二面角M −B C −D 的大小为π6,若存在,求出P MP A 的值;若不存在,请说明理由.19.某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表: (1)试估计该校高三学生本次月考的平均分;(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在[110,130)中的学生数为ξ,求:①在三次抽取过程中至少有两次连续抽中成绩在[110,130)中的概率; ②ξ的分布列和数学期望.(注:本小题结果用分数表示) 20.已知抛物线C :x 2=2p y (p >0)的焦点为F ,过抛物线上一点P 作抛物线C 的切线l 交x 轴于点D ,交y 轴于点Q ,当|F D |=2时,∠P F D =600.(2)若A ,B 两点在抛物线C 上,且满足A M +B M =0,其中点M (2,2),若抛物线C 上存在异于A 、B 的点H ,使得经过A 、B 、H 三点的圆和抛物线在点H 处有相同的切线,求点H 的坐标. 21.设函数f (x )=ln x ,g (x )=m (x +n )x +1(m >0).(1)当m =1时,函数y =f (x )与y =g (x )在x =1处的切线互相垂直,求n 的值;(2)若函数y =f (x )−g (x )在定义域内不单调,求m −n 的取值范围;(3)是否存在正实数a ,使得f (2ax )·f (e a x )+f (x 2a)≤0对任意正实数x 恒成立?若存在,求出满足条件的实数a ;若不存在,请说明理由. 22.选修4-4:坐标系与参数方程极坐标系与直角坐标系x O y 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的参数方程为{x =m +t cos αy =t sin α(t 为参数,0≤α<π),射线θ=φ,θ=φ+π4,θ=φ−π4与曲线C 1交于(不包括极点O )三点A ,B ,C .(1)求证:|O B |+|O C |= 2|O A |;(2)当φ=5π12时,B ,C 两点在曲线C 2上,求m 与α的值.23.选修4-5:不等式选讲已知函数f (x )=|a −3x |−|2+x |. (1)若a =2,解不等式f (x )≤3;(2)若存在实数x ,使得不等式f (x )≥1−a +2|2+x |成立,求实数a 的取值范围.参考答案1.A 【解析】∵z1+i =2+i ⇒z=(2+i )(1+i )=1+3i ,∴z =1−3i ,故选A. 2.B【解析】根据全称命题和特称命题互为否定的关系可知,¬p 是∃x 1,x 2∈R ,(f (x 2)−f (x 1))(x 2−x 1)<0,故选B. 3.D 【解析】因为f (x )是奇函数,且f (2−x )=f (x ),所以f (x −2)=−f (x )∴f (x +4)=f (x ),所以f (13)=f (2−13)=f (53)=−f (4−53)=−f (73) ,又当x ∈[2,3]时,f (x )=log 2(x −1),所以f (73)=log 2(73−1)=log 243=2−log 23,所以f (13)=log 23−2,故选D.4.D 【解析】当|M N |≥2 3时,圆心(2,3) 到直线y =k x +3 的距离为d =k = r 2−(|M N |2)2=4−3=1,故当|MN |≥2 3时,d =≤1,求得[−33, 33] ,故选:D .5.C【解析】模拟执行程序,可得n =4,k =1,S =0,S =11×3,满足条件k <4,k =2;S =11×3+13×5 ,满足条件k <4,k =3;S =11×3+13×5+15×7 ,满足条件k <4,k =4 ;S =11×3+13×5+15×7+17×9 ,不满足条件k <4 ,退出循环,输出S 的值.由于S =11×3+13×5+15×7+17×9=12[(1−13)+(13−15)+(15−17)+(17−19)]=49.故选C.6.C 【解析】∵该几何体的底面边长为2,侧棱长为 7 , ∴该几何体的高为 7−4= 3 ,底面正六边形平行两边之间的距离为2 3 , ∴该几何体的侧视图可能是C , 故选C . 7.A 【解析】设双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0) ,如图所示,|A B|=|B M|,∠A B M=120°,过点M作M N⊥x轴,垂足为N,则∠M B N=60°,在R t△B M N中,|B M|=|A B|=2a,∠M B N=60°,即有|B N|=2a cos60°=a,|M N|=2a sin60°=3a,故点M的坐标为M(2a,3a),代入双曲线方程得4a2a2−3a2b2=1,即为a2=b2,即c2=2a2,则e=ca=2,故选A.点睛:本题主要考查双曲线的性质——离心率;首先根据题意画出图形,过点M作M N⊥x轴,得到R t△B M N,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合a,b,c的关系和离心率公式,求得双曲线的离心率.8.C【解析】由约束条件得到可行域如图:z=2x−3y变形为y=23x−z3,当此直线经过图中B(1,2)时,在y轴的截距最大,z最小,所以z的最小值为2×1−3×2=−4;故选C.点睛:一般地,在解决简单线性规划问题时,如果目标函数z=A x+B y,首先,作直线y=−ABx,并将其在可行区域内进行平移;当B>0时,直线y=−ABx在可行域内平移时截距越高,目标函数值越大,截距越低,目标函数值越小;当B<0时,直线y=−ABx在可行域内平移时截距越低,目标函数值越大,截距越高,目标函数值越小.9.B 【解析】向量a,b 满足|a |=1,|b |=2,a −b =( 3, 2),可得|a −b |2=5,即|a |2+|b |2−2a ⋅b =5,解得a ⋅b =0 .|a +2b |2=|a |2+4|b |2−4a ⋅b =1+16=17,所以|a +2b |= 17.故选:B .10.D 【解析】由a n +1=a n +n +1 得,a n +1−a n =n +1,则a 2−a 1=1+1 ,a 3−a 2=2+1, a 4−a 3=3+1…a n −a n −1=(n −1)+1 ,以上等式相加,得a n −a 1=1+2+3+⋯+(n −1)+n −1 ,把a 1=1代入上式得,a n =1+2+3+⋯+(n −1)+n =n (n +1)2,所以1a n =2n (n +1)=2(1n −1n +1),则1a 1+1a 2+⋯+1a2016=2[(1−12)+(12−13)+⋯+(12016−12017)=2(1−12017)=40322017 ,故选D . 点睛:裂项相消在使用过程中有一个很重要得特征,就是能把一个数列的每一项裂为两项的差,其本质就是两大类型类型一:a n =kf (n )f (n +c )型,通过拼凑法裂解成a n=k a n a n +c=k cd (1a n−1a n +c);类型二:通过有理化、对数的运算法则、阶乘和组合数公式直接裂项型;该类型的特点是需要熟悉无理型的特征,对数的运算法则和阶乘和组合数公式。
摘要:本文对高三大联考调研试卷六的数学试题进行详细分析,包括试题类型、难度分布、考点分析及解题思路,旨在帮助考生了解试题特点,为高考复习提供参考。
一、试题类型分析本次高三大联考调研试卷六的数学试题涵盖了高中数学的主要知识点,包括函数、数列、三角函数、立体几何、解析几何、概率统计等。
试题类型多样,包括选择题、填空题、解答题等。
1. 选择题:主要考察学生对基础知识的掌握程度,题型包括判断题、单选题、多选题等。
2. 填空题:考察学生对基础知识的灵活运用,题型包括直接填空题和计算题。
3. 解答题:考察学生的综合运用能力和解题技巧,题型包括解析题、证明题、应用题等。
二、难度分布分析本次试卷的难度适中,适合高三学生进行阶段性复习。
以下是各部分难度分布:1. 选择题:难度较低,主要考察学生对基础知识的掌握。
2. 填空题:难度适中,需要学生对知识点进行灵活运用。
3. 解答题:难度较高,考察学生的综合运用能力和解题技巧。
三、考点分析1. 函数:主要考察函数的性质、图像、单调性、奇偶性等。
2. 数列:主要考察数列的通项公式、求和公式、递推关系等。
3. 三角函数:主要考察三角函数的性质、图像、变换等。
4. 立体几何:主要考察空间几何体的性质、体积、表面积等。
5. 解析几何:主要考察直线、圆、圆锥曲线的性质、方程、应用等。
6. 概率统计:主要考察概率的基本性质、统计量的计算、数据的分析等。
四、解题思路1. 选择题:审题要仔细,注意题干中的关键词和条件,根据知识点进行判断。
2. 填空题:先理解题意,再根据知识点进行计算,注意运算的准确性。
3. 解答题:审题要全面,分析题目的条件,运用所学知识进行解题。
五、总结本次高三大联考调研试卷六的数学试题具有以下特点:1. 考察范围全面,涵盖高中数学主要知识点。
2. 难度适中,适合高三学生进行阶段性复习。
3. 试题类型多样,考察学生的综合运用能力和解题技巧。
考生在复习过程中,应根据试题特点,有针对性地进行复习,提高自己的数学水平。
2017—2018学年度上学期高三年级六调考试数学(理科)试卷本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I卷(选择题共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.已知数集«Skip Record If...»,设函数f(x)是从A到B的函数,则函数f(x)的值域的可能情况的个数为A.1 B.3 C.7 D.82.已知i为虚数单位,且«Skip Record If...»A.1 B.«Skip Record If...»C.«Skip Record If...»D.2 3.已知等差数列«Skip Record If...»的前n项和为«Skip Record If...»A.18 B.36 C.54 D.724.已知«Skip Record If...»为第二象限角,«Skip Record If...»A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»5.已知双曲线«Skip Record If...»轴交于A,B两点,«Skip Record If...»,则«Skip Record If...»的面积的最大值为A.1 B.2 C.4 D.86.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有A.120种B.156种C.188种D.240种7.在等比数列«Skip Record If...»中,«Skip Record If...»为A.64 B.81 C.128 D.2438.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为72,27,则输出的«Skip Record If...»A.18 B.9 C.6 D.39.已知点M在抛物线«Skip Record If...»上,N为抛物线的准线l上一点,F为该抛物线的焦点,若«Skip Record If...»,则直线MN的斜率为A.±«Skip Record If...»B.±l C.±2 D.±«Skip Record If...»10.规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上;再以每三个随机数作为一组,代表一轮的结果.经随机模拟实验产生了如下20组随机数:据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»11.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,«Skip Record If...»平面BCD,且«Skip Record If...»,则球O的表面积为A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»12.若对任意的实数t,函数«Skip Record If...»在R上是增函数,则实数a的取值范围是A.«Skip Record If...»B.«Skip Record If...»C.«Skip Record If...»D.«Skip Record If...»第Ⅱ卷(非选择题共90分)二、填空题(本题共4小题,每小题5分,共20分)13.曲线«Skip Record If...»和直线«Skip Record If...»所围成的图形的面积是_________.14.若«Skip Record If...»的值为_________.15.某三棱锥的三视图如图所示,则该三棱锥的四个面中,最大面的面积为_________.16.已知函数«Skip Record If...»,数列«Skip Record If...»为等比数列,«Skip Record If...»«Skip Record If...»____________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.(本小题满分12分)如图,在«Skip Record If...»的平分线BD交AC于点D,设«Skip Record If...»,其中«Skip Record If...»是直线«Skip Record If...»的倾斜角.(1)求sin A;(2)若«Skip Record If...»,求AB的长.18.(本小题满分12分)如图,在三棱柱«Skip Record If...»«Skip Record If...»分别为«Skip Record If...»的中点.(1)在平面ABC内过点A作AM∥平面«Skip Record If...»交BC于点M,并写出作图步骤。
2018~2019学年度第二学期高三年级六调考试理科数学试卷一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知,,为虚数单位,且,则的值为()A. 4B.C. -4D.【答案】C【解析】试题分析:根据复数相等的概念可知,,∴,∴,故选C 考点:本题考查了复数的运算点评:熟练掌握复数的概念及运算法则是解决此类问题的关键,属基础题2.已知集合,,则下列结论中正确的是()A. B. C. D.【答案】C【解析】试题分析:由得,故,选项为C.考点:集合间的关系.【此处有视频,请去附件查看】3.已知的面积为2,在所在的平面内有两点、,满足,,则的面积为()A. B. C. D. 1【答案】C【解析】【分析】画出△ABC,通过,2,标出满足题意的P、Q位置,利用三角形的面积公式求解即可.【详解】由题意可知,P为AC的中点,2,可知Q为AB的一个三等分点,如图:因为S△ABC2.所以S△APQ.故选:B.【点睛】本题考查向量在几何中的应用,三角形的面积的求法,考查转化思想与计算能力.4.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为()A. B. C. 8 D. 4【答案】D【解析】试题分析:因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的表面积为:,故选D.考点:1、三视图;2、多面体的表面积.【此处有视频,请去附件查看】5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图所示的是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.【答案】D【解析】【分析】将右下角黑色三角形进行移动,可得黑色部分面积等于一个等腰直角三角形加一个直角梯形的面积之和,求解出面积再根据几何概型公式求得结果.【详解】设正方形的边长为则①处面积和右下角黑色区域面积相同故黑色部分可拆分成一个等腰直角三角形和一个直角梯形等腰直角三角形面积为:直角梯形面积为:黑色部分面积为:则所求概率为:本题正确选项:【点睛】本题考查几何概型中的面积类问题,属于基础题.6.定义运算:,将函数的图像向左平移个单位,所得图像对应的函数为偶函数,则的最小值是()A. B. C. D.【答案】C【解析】试题分析:,将函数化为再向左平移()个单位即为:又为偶函数,由三角函数图象的性质可得,即时函数值为最大或最小值,即或,所以,即,又,所以的最小值是.考点:对定义的理解能力,三角函数恒等变性, 三角函数图象及性质.7.已知,,,则下列选项正确的是()A. B. C. D.【答案】D【解析】【分析】由,,,则a,b,c的大小比较可以转化为的大小比较.设f(x),则f′(x),根据对数的运算性质,导数和函数的单调性,即可比较.【详解】,,,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x),则f′(x),当x=e时,f′(x)=0,当x>e时,f′(x)>0,当0<x<e时,f′(x)<0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.【点睛】本题考查了不等式的大小比较,导数和函数的单调性,属于难题.8.双曲线的左右焦点分别为,,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A. B.C. D.【答案】B【解析】试题分析:∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.考点:抛物线的标准方程及几何性质.9.如图①,利用斜二侧画法得到水平放置的的直观图,其中轴,轴.若,设的面积为,的面积为,记,执行如图②的框图,则输出的值A. 12B. 10C. 9D. 6【答案】A【解析】【分析】由斜二侧画法的画图法则,结合已知可求出S及k值,模拟程序的运行过程,分析变量T的值与S值的关系,可得答案.【详解】∵在直观图△A′B′C′中,A′B′=B′C′=3,∴S′A′B′•B′C′•sin45°由斜二侧画法的画图法则,可得在△ABC中,AB=6.BC=3,且AB⊥BC∴S AB•BC=9则由S=kS′得k=2,则T=T(m﹣1)=T2(m﹣1)故执行循环前,S=9,k=2,T=0,m=1,满足进行循环的条件,执行循环体后,T=0,m =2当T=0,m=2时,满足进行循环的条件,执行循环体后,T=2,m=3当T=2,m=3时,满足进行循环的条件,执行循环体后,T=6,m=4当T=6,m=4时,满足进行循环的条件,执行循环体后,T=12,m=5当T=12,m=5时,不满足进行循环的条件,退出循环后,T=12,故输出的结果为12故选:A.【点睛】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.10.如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正边形“扩展”而来的多边形的边数为,则()A. ;B. ;C. ;D.【答案】A【解析】,猜想,,,故选A.11.过椭圆上一点作圆的两条切线,点,为切点,过,的直线与轴,轴分别交于点,两点,则的面积的最小值为()A. B. C. 1 D.【答案】B【解析】试题分析::∵点在椭圆上,∴设,∵过椭圆上一点作圆的两条切线,点为切点,则∴以O为圆心,以|AM|为半径的圆的方程为①.又圆的方程为②.①-②得,直线AB的方程为:∵过A,B的直线l与x轴,y轴分别交于点P,Q两点,∴P,Q,∴△POQ面积,∵-1≤sin2θ≤1,∴当sin2θ=±1时,△POQ面积取最小值.考点:圆与圆锥曲线的综合12.若函数在其图象上存在不同的两点,,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①:②:③:④.其中为“柯西函数”的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.再利用柯西函数的定义逐个分析推理得解.【详解】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.①,画出f(x)在x>0时,图像若f(x)与直线y=kx有两个交点,则必有k≥2,此时,,所以(x>0),此时仅有一个交点,所以不是柯西函数;②,曲线过原点的切线为,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B与O共线,所以函数不是;③;④.显然都是柯西函数.故选:B【点睛】本题主要考查柯西不等式,考查学生对新概念理解和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题(每题5分,共20分.把答案填在答题纸的横线上)13.若等比数列的第5项是二项式展开式的常数项,则________【答案】【解析】,则其常数项为,所以,则14.已知在平面直角坐标系中,,,,,动点满足不等式,,则的最大值为________.【答案】4【解析】试题分析:∵,,,,,∴,又∵∴故本例转化为在线性约束条件下,求线性目标函数的最大值问题.可作出如右图的可行域,显然在点时为最优解.∵即∴考点:线性规划.15.已知数列的前项和为,且,则使不等式成立的的最大值为________.【答案】4【解析】试题分析:当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.考点:1.等比数列的求和公式;2.数列的通项公式.16.若四面体的三组对棱分别相等,即,,,则________.(写出所有正确结论的编号)①四面体每个面的面积相等②四面体每组对棱相互垂直③连接四面体每组对棱中点的线段相互垂直平分④从四面体每个顶点出发的三条棱的长都可以作为一个三角形的三边长【答案】【解析】【分析】由对棱相等知四面体为长方体的面对角线组成的三棱锥,借助长方体的性质判断各结论是否正确即可.【详解】由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,如图所示;由四面体的对棱相等可知四面体的各个面全等,它们的面积相等,则正确;当四面体棱长都相等时,四面体的每组对棱互相垂直,则错误;由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,由对称性知连接四面体ABCD每组对棱中点的线段相互垂直平分,则正确;由,,,可得过四面体任意一点的三条棱的长为的三边长,则正确.故答案为:.【点睛】本题考查了棱锥的结构特征与命题真假的判断问题,解题的关键是把三棱锥放入长方体中,属于难题.三、解答题(本大题共6小题,共62分,解答应写出文字说明、证明过程或演算步骤,写在答题纸的相应位置)17.设的三内角、、的对边长分别为、、,已知、、成等比数列,且. (I)求角的大小;(Ⅱ)设向量,,当取最小值时,判断的形状.【答案】(I);(Ⅱ)为锐角三角形.【解析】【分析】(Ⅰ)根据正弦定理和等比数列的关系建立方程关系即可求角B的大小;(Ⅱ)根据向量的数量积公式进行计算,然后利用三角函数的图象和性质即可判断三角形的形状.【详解】(I)因为、、成等比数列,则.由正弦定理得.又,所以·因为,则.因为,所以或.又,则,当且仅当a=c等号成立,即故. (Ⅱ)因为,所以.所以当时,取得最小值.此时,于是.又,从而为锐角三角形.【点睛】本题主要考查三角形的形状的判断,利用正弦定理和三角函数的公式是解决本题的关键,考查学生的运算能力.18.在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.(1)求证:;(2)设为的中点,点在线段上,若直线平面,求的长;(3)求二面角的余弦值.【答案】(1)见解析;(2)1;(3).【解析】【分析】(1)利用线面垂直的判定定理,证明BD⊥平面PAC,可得BD⊥PC;(2)取DC中点G,连接FG,证明平面EFG∥平面PAD,可得FG∥平面PAD,证明三角形AMF为直角三角形,即可求AF 的长;(3)建立空间直角坐标系,求出平面PAC、平面PBC的法向量,利用向量的夹角公式,即可求二面角A﹣PC﹣B的余弦值.【详解】(1)∵是正三角形,是中点,∴,即.又∵平面,∴.又,∴平面.∴.(2)取中点,连接,则平面,又直线平面,EG∩EF=E所以平面平面,所以∵为中点,,∴.∵,,∴,则三角形AMF为直角三角形,又,故(3)分别以,,为轴,轴,轴建立如图的空间直角坐标系,∴,,,.为平面的法向量.,.设平面的一个法向量为,则,即,令,得,,则平面的一个法向量为,设二面角的大小为,则.所以二面角余弦值为.【点睛】本题考查线面垂直的判定定理与性质,考查二面角,考查学生分析解决问题的能力,考查向量法的运用,确定平面的法向量是关键.19.在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从,两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001一900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;(2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:(3)若采用分层轴样,按照学生选择题目或题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.【答案】(1)667(2)4130(3)平均数为7.2,方差为3.56 【解析】 【分析】(1)由题取出十个编号,先将编号从小到大排列再求中位数(2)按照系统抽样法,抽出的编号可组成以8为首项,以90为公差的等差数列,求该数列的前10项和。