浙江2016年中考数学总复习全程考点训练28坐标中的图形变换(含解析
- 格式:doc
- 大小:209.00 KB
- 文档页数:6
图形的变换(1)班级某某学号一、选择题1.下列图形中可以作为一个三棱柱的展开图的是()A. B. C. D.2.下列四个立体图形中,左视图为矩形的是()A.①③ B.①④ C.②③ D.③④3.如图所示,该几何体的俯视图是( )开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A. 0 B. 2 C.数 D.学ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为()6.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.7.在下列图形中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开的是()(A)(B)(C)(D)8.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为()A.(4,1) B.(4,﹣1) C.(5,1) D.(5,﹣1)9.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()10.在△ABC 中,已知AB =2a ,∠A =30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14,有如下结论: ①AC 边的长可以等于a ; ②折叠前的△ABC 的面积可以等于23a ; ③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等。
其中,正确结论的个数是( )A. 0个B. 1个C. 2个D. 3个 二.填空题11.如图是一个长方体的三视图(单位:cm ),根据图中数据计算这个长方体的体积是cm 3.60cm 2,母线长10cm ,则圆锥的高是cm .13.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =﹣x 上,则点B 与其对应点B ′间的距离为.14.如图,在Rt △ABC 中,∠ACB =90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处.若∠A =26°,则∠CDE =.题第1815.如图,将一X 边长为6cm 的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为cm 2.16.在▱ABCD 中,AB <BC ,已知∠B =30°,AB =2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在▱ABCD所在的平面内,连接B ′D.若△AB ′D 是直角三角形,则BC 的长为.17.如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则∠CDE 的正切值为.18.如图,四边形ABCD 是矩形纸片, 2=AB .对折矩形纸片ABCD ,使AD 与BC重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,,延长MN 交BC 于点G .有如下结论:①︒=∠60ABN ; ②1=AM ; ③33=QN ; ④△BMG 是等边三角形; ⑤P 为线段BM 上一动点,H 是BN 的中点,则PH PN +的最小值是3.其中正确结论的序号是. 三.解答题AB Cl19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC (顶点是格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 3B 2.20.已知:在Rt △ABC 中,∠B =90°,BC =4cm ,AB =8cm ,D 、E 、F 分别为AB 、AC 、BC 边上的中点。
一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【答案】C【解析】试题分析:根据有理数的加法运算法则进行计算即可得解.(+5)+(﹣2)=+(5﹣2)=3.考点:有理数的加法2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时【答案】B考点:频数(率)分布直方图3.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B. C. D.【答案】B【解析】试题分析:主视图是分别从物体正面看,所得到的图形.观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是考点:简单组合体的三视图4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A. B. C. D.【答案】A考点:由实际问题抽象出二元一次方程组5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【答案】D【解析】试题分析:直接利用分式的值为0,则分子为0,进而求出答案.∵分式的值为0,∴x﹣2=0,∴x=2.考点:分式的值为零的条件6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.【答案】A【解析】试题分析:由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,考点:概率公式7.六边形的内角和是()A.540° B.720° C.900° D.1080°【答案】B【解析】试题分析:多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.由内角和公式可得:(6﹣2)×180°=720°,考点:多边形内角8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【答案】C考点:(1)、待定系数法求一次函数解析式;(2)、矩形的性质9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A .c >a >bB .b >a >cC .c >b >aD .b >c >a 【答案】D 【解析】试题分析:(1)图1,根据折叠得:DE 是线段AC 的垂直平分线,由中位线定理的推论可知:DE 是△ABC 的∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH ,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH ⊥AB ∴∠AGH=90°∴△ACB ∽△AGH ∴= ∴= ∴GH=,即c= ∵2>> ∴b >c >a考点:翻折变换(折叠问题)10.如图,在△ABC 中,∠ACB=90°,AC=4,BC=2.P 是AB 边上一动点,PD ⊥AC 于点D ,点E 在P 的右侧,且PE=1,连结CE .P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积S 1+S 2的大小变化情况是( )A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小【答案】C∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.考点:动点问题的函数图象二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a= .【答案】a(a﹣3)【解析】试题分析:直接把公因式a提出来即可考点:因式分解-提公因式法12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.【答案】37 【解析】试题分析:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37. 考点:中位数13.方程组的解是 .【答案】⎩⎨⎧==13y x考点:二元一次方程组的解14.如图,将△ABC 绕点C 按顺时针方向旋转至△A ′B ′C ,使点A ′落在BC 的延长线上.已知∠A=27°,∠B=40°,则∠ACB ′= 度.【答案】46 【解析】考点:旋转的性质15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是 cm .【答案】322+16【解析】试题分析:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);考点:七巧板16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D 分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE 的面积的2倍,则k的值是.3【答案】72【解析】考点:反比例函数系数k的几何意义三、解答题(共8小题,满分80分)17.(1)计算: +(﹣3)2﹣(2﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【答案】(1)、25+8;(2)、4-m【解析】试题分析:(1)、直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)、直接利用平方差公式计算,进而去括号得出答案.试题解析:(1)、原式=2+9﹣1=2+8;(2)、(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.考点:(1)、实数的运算;(2)、单项式乘多项式;(3)、平方差公式;(4)、零指数幂18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【答案】(1)、20%;(2)、600考点:(1)、扇形统计图;(2)、用样本估计总体19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【答案】 (1)、证明过程见解析;(2)、8.【解析】试题分析:(1)、由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)、由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.试题解析:(1)、∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)、∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8考点:(1)、平行四边形的性质;(2)、全等三角形的判定与性质20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD .(2)在图乙中画出一个四边形ABCD ,使∠D=90°,且∠A ≠90°.(注:图甲、乙在答题纸上)【答案】(1)、答案见解析;(2)、答案见解析.(2)如图②,.考点:平行四边形的性质21.如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF . (1)求证:∠1=∠F . (2)若sinB=55,EF=25,求CD 的长.【答案】(1)、证明过程见解析;(2)、3∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)、∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.考点:(1)、圆周角定理;(2)、解直角三角形22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【答案】(1)、22元;(2)、20千克答:加入丙种糖果20千克考点:(1)、一元一次不等式的应用;(2)、加权平均数23.如图,抛物线y=x 2﹣mx ﹣3(m >0)交y 轴于点C ,CA ⊥y 轴,交抛物线于点A ,点B 在抛物线上,且在第一象限内,BE ⊥y 轴,交y 轴于点E ,交AO 的延长线于点D ,BE=2AC . (1)用含m 的代数式表示BE 的长.(2)当m=3时,判断点D 是否落在抛物线上,并说明理由. (3)若AG ∥y 轴,交OB 于点F ,交BD 于点G . ①若△DOE 与△BGF 的面积相等,求m 的值.②连结AE ,交OB 于点M ,若△AMF 与△BGF 的面积相等,则m 的值是 .【答案】(1)、2m ;(2)、落在抛物线上;(3)、①、m=23;②、m=223 【解析】试题分析:(1)、根据A 、C 两点纵坐标相同,求出点A 横坐标即可解决问题;(2)、求出点D 坐标,然后判断即可;(3)、①首先根据EO=2FG ,证明BG=2DE ,列出方程即可解决问题;②求出直线AE 、BO 的解析式,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,考点:二次函数综合题24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD )于点E ,交线段BC (或射线CD )于点F .以EF 为边作矩形EFGH ,点G ,H 分别在围成菱形的另外两条射线上. (1)求证:BO=2OM .(2)设EF >HE ,当矩形EFGH 的面积为24时,求⊙O 的半径.(3)当HE 或HG 与⊙O 相切时,求出所有满足条件的BO 的长.【答案】(1)、答案见解析;(2)、2或4;(3)、18﹣63或9或18或18+63. 【解析】试题分析:(1)、设⊙O 切AB 于点P ,连接OP ,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP 的度数,然后依据含30°直角三角形的性质证明即可;(2)、设GH 交BD 于点N ,连接AC ,交BD 于点Q .先依据特殊锐角三角函数值求得BD 的长,设⊙O 的半径为r ,则OB=2r ,MB=3r .当点E 在AB 上时.在Rt △BEM 中,依据特殊锐角三角函数值可得到EM 的长(用含r 的式子表示),由图形的对称性可得到EF 、ND 、BM 的长(用含r 的式子表示,从而得到MN=18﹣6r ,接下来依据矩形的面积列方程求解即可;当点E 在AD 边上时.BM=3r ,则MD=18﹣3r ,最后由MB=3r=12列方程求解即可;(3)、先根据题意画出符合题意的图形,①如图4所示,点E 在AD 上时,可求得DM=r ,BM=3r ,然后依据BM+MD=18,列方程求解即可;②如图5①如图2所示,当点E 在AB 上时.在Rt △BEM 中,EM=BM •tan ∠EBM=r . 由对称性得:EF=2EM=2r ,ND=BM=3r .∴MN=18﹣6r . ∴S 矩形EFGH =EF •MN=2r (18﹣6r )=24. 解得:r 1=1,r 2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)、解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.考点:圆的综合题。
专题04 图形的变换一、选择题1.(2016河北第3题)下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D【答案】A.考点:轴对称图形和中心对称图形的定义.2.(2016河南第8题)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为【】(A)(1,-1)(B)(-1,-1)(C)(2,0)(D)(0,-2)【答案】B.【解析】试题分析:根据已知条件O(0,0),B(2,2),可求得D(1,1),OB与x轴、y轴的交角为45°,当菱形绕点O逆时针旋转,每秒旋转45°,时,8秒可旋转到原来的位置,因60÷8=7....4,所以第60秒时是第8循环的地上个位置,这时点D的坐标原来位置点D的坐标关于原点对称,所以为(-1,-1),故答案选B. 考点:规律探究题.3.(2016湖北黄石第2题)下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】A.考点:轴对称图形和中心对称图形的概念.4.(2016山东淄博第9题)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1 C.D.2【答案】D.【解析】试题分析:如图,连接AP,QB,可得∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ,∴△PAM∽△QBM,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan∠QMB=tan∠PMA===2.故答案选D.考点:相似三角形的判定及性质;勾股定理.5.(2016湖南长沙第8题)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)【答案】C.考点:坐标与图形变化﹣平移.6.(2016山东威海第12题)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【答案】D.【解析】试题分析:如图,连接BF,已知BC=6,点E为BC的中点,可得BE=3,根据勾股定理求得AE=5,根据三角形的面积公式求出BH=,即可得BF=,因FE=B E=EC,可得∠BFC=90°,再由勾股定理可得CF=.故答案选D.考点:翻折变换;矩形的性质;勾股定理.7.(2016山东威海第18题)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为.【答案】﹣(3)2015.考点:规律探究题.8.(2016山东济宁第9题)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .B .C .D .【答案】B . 【解析】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况(如下图所示),所以使图中黑色部分的图形仍然构成一个轴对称图形的概率是135.故答案选B .考点:轴对称图形的概念;概率.9.(2016新疆生产建设兵团第5题)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60° B.90° C.120° D.150°【答案】D.【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,可得旋转角是∠CAC′=180°﹣30°=150°.故答案选D.考点:旋转的性质.10.(2016湖南永州第3题)下列图案中既是轴对称图形又是中心对称图形的是()【答案】A.考点:轴对称图形与中心对称图形的概念.11.(2016湖北十堰第5题)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△AB C的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【答案】D. 【解析】试题分析:由OB=3OB ′,可得OB ′:OB=1:3,已知以点O 为位似中心,将△ABC 缩小后得到△A ′B ′C ′,即可得△A ′B ′C ′∽△ABC ,,所以31'''==OB OB AB B A ,再由相似三角形的面积比等于相似比的平方即可得△A ′B ′C ′与△ABC 的面积比为1:9,故答案选D. 考点:位似变换. 二、填空题1.(2016四川达州第15题)如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60°得到线段AQ ,连接BQ .若PA=6,PB=8,PC=10,则四边形APBQ 的面积为 .【答案】24+93.考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.2.(2016湖北黄石第15题)如图所示,正方形ABCD 对角线AC 所在直线上有一点O ,2==AC OA ,将正方形绕O 点顺时针旋转︒60,在旋转过程中,正方形扫过的面积是__________.【答案】22+π.考点:扇形的面积.3.(2016山东淄博第14题)由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.【答案】如图:第15题图【解析】试题分析:根据俯视图和左视图可知,该几何体共两层,底层有9个正方体,上层中间一行有正方体,若使主视图为轴对称图形可使中间一行、中间一列有一个小正方体即可.如图所示,考点:几何体的三视图;轴对称图形.4.(2016湖南怀化第12题)旋转不改变图形的和.【答案】形状,大小.【解析】试题分析:根据旋转的性质可得旋转不改变图形的形状和大小,只改变图形的位置.考点:旋转的性质.5.(2016山东威海第17题)如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】(﹣8,﹣3)或(4,3).考点:一次函数图象上点的坐标特征;位似变换.6.(2016湖南娄底第15题)将直线y=2x+1向下平移3个单位长度后所得直线的解析式是.【答案】y=2x﹣2.考点:一次函数图象与几何变换.三、解答题1.(2016浙江宁波第20题)(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
专题05 数量和位置变化一、选择题1.(2016浙江宁波第5题)如图所示的几何体的主视图为【答案】B.考点:几何体的三视图.2.(2016河南第3题)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【】【答案】C.【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.3.(2016河北第8题)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是()图1 图2第8题图A.○1B.○2C.○3D.○4【答案】A.考点:几何体的侧面展开图.4.(2016河北第13题)沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【答案】C.【解析】试题分析:因为AB∥CD,∠1=∠B'AB,由于折叠,∠BAC=∠B'AC=22°,在△ABC中,∠B=180°-∠ACB-∠CAB=114°,故答案选C.考点:平行线的性质;折叠的性质.5.(2016四川达州第3题)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【答案】D.考点:正方体的展开图.6.(2016山东滨州第9题)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()【答案】C.【解析】试题分析:根据图形可得主视图为:.故答案选C.考点:简单组合体的三视图7.(2016湖南长沙第6题)如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是()【答案】B.【解析】试题分析:观察可得,从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,所以该几何体的主视图为,故答案选B.考点:几何体的三视图.8.(2016山东枣庄第6题)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑【答案】C.考点:几何体的侧面展开图.9.(2016湖北黄石第7题)某几何体的主视图和左视图如图所示,则该几何体可能是A.长方体B.圆锥C. 圆柱D. 球【答案】C.【解析】试题分析:由几何体的主视图、左视图可得该几何体是一个放倒的圆柱,故答案选C.考点:根据三视图判定几何体.10.(2016山东淄博第10题)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24 B.39 C.48 D.96【答案】C.【解析】试题分析:根据题意得方程组,解得:,所以(9+3)×4=48.故答案选C.考点:计算器的基础知识.11.(2016湖南长沙第8题)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)【答案】C.考点:坐标与图形变化﹣平移.12.(2016山东淄博第11题)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B. C.D.【答案】A.∴=.故答案选A.考点:平行线分线段成比例.13.(2016湖北鄂州第4题)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()【答案】B.考点:几何体的三视图.14.(2016湖南岳阳第5题)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【答案】A.【解析】试题分析:观察可得,几何体的主视图和俯视图都是宽度相等的长方形,所以该几何体是一个柱体,俯视图是一个圆,即可判定该几何体是一个圆柱.故答案选A.考点:由三视图判断几何体.15.(2016湖南岳阳第7题)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【答案】C.【解析】试题分析:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等,选项A正确;根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半,选项B正确;根据菱形的性质,菱形的对角线互相垂直,但是不一定相等,选项C不正确;根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,选项D正确.故答案选C.考点:中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质.16.2016广东广州第2题)图1所示几何体的左视图是()【答案】A.【解析】试题分析:观察可知几何体由两个圆锥组合而成,所以该几何体的左视图是由两个三角形组成,故答案选A.考点:几何体的三视图.16.(2016山东威海第6题)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.6【答案】B.考点:几何体的三视图.17.(2016山东威海第18题)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为.【答案】﹣(3)2015.考点:规律探究题.18.(2016湖北襄阳第4题)一个几何体的三视图如图所示,则这个几何体是( )A.球体B.圆锥C.棱柱D.圆柱【答案】D.【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.19.(2016山东济宁第4题)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【答案】D.考点:简单几何体的三视图.20.(2016湖南永州第5题)如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A. B. C. D.【答案】B.【解析】试题分析:该实物图的主视图为,故答案选B.考点:简单几何体的三视图.21.(2016湖南永州第7题)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.22.(2016湖北十堰第2题)下面几何体中,其主视图与俯视图相同的是()【答案】C.【解析】试题分析:选项A,圆柱主视图是矩形,俯视图是圆;选项B,圆锥主视图是三角形,俯视图是圆;选项C,正方体的主视图与俯视图都是正方形;选项D,三棱柱的主视图是矩形与俯视图都是三角形;故答案选C.考点:几何体的三视图.23.(2016湖南娄底第4题)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【答案】D.【解析】试题分析:选项A,根据平行四边形的判定可知,两组对边分别平行的四边形是平行四边形,正确.选项B,根据矩形的判定可知,有一个角是直角的平行四边形是矩形,正确.选项C,根据菱形的判定可知,有一组邻边相等的平行四边形是菱形,正确.选项D,内错角相等,错误,缺少条件两直线平行,内错角相等.故答案选D.考点:命题.24.(2016湖南娄底第5题)下列几何体中,主视图和俯视图都为矩形的是()A. B. C. D.【答案】B.考点:几何体的三视图.二、填空题1.(2016山东威海第17题)如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】(﹣8,﹣3)或(4,3).【解析】试题分析:直线y=x+1与x轴、y轴的交点坐标为A(﹣2,0),B(0,1),已知△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,所以==,即可求得O′B′=3,AO′=6,所以B′的坐标为(﹣8,﹣3)或(4,3).考点:一次函数图象上点的坐标特征;位似变换.2.(2016山东济宁第13题)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】53.考点:平行线分线段成比例定理.。
中考数学总复习《坐标及几何变换》专项测试卷(带有答案)-北师大版学校:___________班级:___________姓名:___________考号:___________一.选择题1.把直线y=﹣x﹣3向上平移m个单位后,与直线y=2x+4的交点在第二象限,则m的取值范围是()A.1<m<7B.3<m<4C.m>1D.m<42.通过平移y=﹣2x的图象,可得到y=﹣2(x﹣1)+3的图象,平移方法正确的是()A.向左移动1个单位,再向上移动3个单位B.向右移动1个单位,再向上移动3个单位C.向左移动1个单位,再向下移动3个单位D.向右移动1个单位,再向下移动3个单位3.直线y=﹣2x+b上有三个点(,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y1<y34.定义:对于给定的一次函数y=ax+b(a、b为常数,且a≠0),把形如y=的函数称为一次函数y=ax+b的“相依函数”,已知一次函数y=x+1,若点P(﹣2,m)在这个一次函数的“相依函数”图象上,则m的值是()A.1B.2C.3D.45.将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.y随x的增大而减小C.与x轴交于点(﹣2,0)D.与y轴交于点(0,1)6.已知点P(3,y1)、Q(﹣2,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1<y2,则m的取值范围是()A.m≥1B.m<1C.m>1D.m<7.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+4与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.18.已知点A(﹣2,4),点B(3,0)分别是直线y1=ax+b(a≠0),y2=mx+n(m≠0)上的点,若直线y1=ax+b与,y2=mx+n关于y轴对称,则它们的交点坐标是()A.(12,0)B.(﹣12,0)C.(0,﹣12)D.(0,12)9.已知一次函数y=kx﹣1,y随着x的增大而增大,将它向上平移2个单位长度后得到直线y=k1x+b,则下列关于直线y=k1x+b的说法正确的是()A.经过第一、二、三象限B.与x轴交于点(1,0)C.与y轴交于点(0,﹣1)D.y随x的增大而减小10.如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣,5),将△AOB沿x轴向左平移得到△A′O′B′,若点B′的坐标为(﹣,5),点A′落在直线y=kx上,则k的值为()A.﹣B.C.D.11.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是,则c的值是()A.6B.12C.2D.312.将一次函数y=的图象向左平移2个单位得到的新的函数的表达式()A.y=x+1B.y=x+2C.y=x﹣1D.y=x﹣213.直线y=3x+4平移后过点(1,﹣2),则平移后的直线解析式是()A.y=3x﹣2B.y=3x+5C.y=3x+1D.y=3x﹣514.如图,在平面直角坐标系中,直线y=﹣3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,直线y=3x﹣2与y轴交于点F,与线段AB交于点E,将正方形ABCD沿x轴负半轴方向平移a个单位长度,使点D落在直线EF上.有下列结论:①△ABO的面积为3;②点C的坐标是(4,1);③点E到x轴距离是;④a=1.其中正确结论的个数是()A.4个B.3个C.2个D.1个15.如图,在平面直角坐标系中,直线y=﹣x+3分别与x轴、y轴交于A,B两点,在线段AB上取一点C,过C作CD⊥y轴于D,CE⊥x轴于E,连接DE,当DE最短时,点C的坐标为()A.(2,3)B.(,)C.(,)D.(4,0)16.若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1二、填空题17.将直线y=﹣x﹣1向上平移4个单位所得的直线表达式为.18.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,8),点B的坐标为(﹣4,0),点P是直线l:x+y=4上的一个动点,若∠P AB=∠ABO,则点P的坐标是.19.若点P(m,n)在函数y=x+1的图象上,则代数式5n﹣m+1的值为.20.如图,直线y=x﹣4分别交x轴、y轴于A、B两点,C为OB中点(O为坐标原点),D点在第四象限,且满足∠ADO=45°,则线段CD长度的最大值等于.21.如图,在平面直角坐标系中,一次函数y=﹣2x﹣2的图象分别交x,y轴于点A,B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.22.一次函数y=﹣2(x﹣1)可由一次函数y=﹣2x+3向平移个单位得到.23.如图,直线y=x+4分别交x轴、y轴于点A、B,将△AOB沿过点A的直线折叠,使得点B落在x 轴正半轴上的C点,折痕与y轴交于点D,则折痕AD所在直线的函数关系式为.24.已知直线y=﹣2x+5,则将其向右平移1个单位后与两坐标轴围成的三角形面积为.三.解答题25.如图,在平面直角坐标系中,点A的坐标为(0,15),点B的坐标为(20,0),直线l1经过点A和点B,直线l2:y=x﹣13与x轴交于点C,与y轴交于点D,直线l1与直线l2相交于点P.(1)求直线l1的表达式和点P的坐标;(2)正方形EFGH的边EF与线段AO重合,点G在x轴的正半轴上,将正方形EFGH沿射线AB的方向平移,边EH始终与x轴平行.已知正方形EFGH以每秒5个单位的速度匀速移动(点E移动到点B 时停止移动),设移动时间为t秒(t>0);①正方形EFGH在移动过程中,当点F落在直线l2上时,请求出此时t的值;②正方形EFGH在移动过程中,设正方形EFGH与△PBC重合部分的面积为S,当S=4.5时,请直接写出此时t的值.26.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、p满足+(p﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边的等腰直角三角形,直角顶点为Q.若存在,请求出点Q坐标;若不存在,请说明理由.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=﹣x+6与x轴交于点A,与y轴交于点B.矩形CDEF的顶点F的坐标为(﹣2,4),D点与原点重合,将矩形CDEF沿x轴正方向以每秒2个单位长度的速度平移,点D到达点A时运动停止,设运动时间为t秒,矩形CDEF与△ABO重叠部分的面积为S.(1)填空:t=1秒时,点E落在直线AB上;(2)如图2,当0<t<1时,求S与t的函数关系式;(3)当矩形CDEF与△ABO重叠部分为四边形,且S=4时,请直接写出t的值.参考答案一.选择题1.【答案】A.2.【答案】B.3.【答案】C.4.【答案】A.5.【答案】D.6.【答案】D.7.【答案】A.8.【答案】D.9.【答案】A.10.【答案】B.11.【答案】A.12.【答案】C.13.【答案】D.14.【答案】B.15.【答案】C.16.【答案】D.二、填空题17.【答案】y=﹣x+3.18.【答案】(﹣4,8)或(12,﹣8).19.【答案】6.20.【答案】2+.21.【答案】y=3x﹣2.22.【答案】下;1.23.【答案】.24.【答案】×7×=.三.解答题25.【答案】解:(1)设直线l1的表达式为y=kx+b,将A(0,15),B(20,0)代入得:解得∴直线l1的表达式为y=﹣x+15;解得:∴P(16,3);(2)①当点F落在直线l2上时,如图:∵正方形EFGH沿射线AB的方向平移,边EH始终与x轴平行∴E始终在射线AB上,当F点F落在直线l2上时,E、F的纵坐标之差等于15∴﹣x+15﹣(x﹣13)=15解得x=∴E(,)∵A(0,15)∴AE==∴t==答:t的值为;②(Ⅰ)当正方形EFGH与△PBC重合部分在P左侧时,如图:设HG交直线l1于R,交直线l2于T,交x轴于K∵直线l2:y=x﹣13与x轴夹角是45°∴△CTK是等腰直角三角形∴TK=CK设TK=CK=m∵S△CTK=4.5∴m2=4.5∴m=3(负值舍去)∴CK=3∴OK=OC+CK=16∴E的横坐标是16﹣15=1在y=﹣x+15中,令x=1得y=∴E(1,)∴AE==∴t==;(Ⅱ)当正方形EFGH与△PBC重合部分在P右侧时,如图:∵OA=15,OB=20∴tan∠ABO===设ES=3n,则BS=4n∴×3n×4n=4.5解得n=(负值已舍去)∴BS=4n=2,ES=3n=∴BE==∵AB==25∴AE=AB﹣BE=25﹣∴t==5﹣综上所述,t的知为或5﹣.26.【答案】解:(1)∵+(p﹣1)2=0∴a+3=0,p﹣1=0∴a=﹣3,p=1∴P(1,0),A(0,﹣3)设直线AP的解析式为y=kx+b∴,解得∴直线AP的解析式为y=3x﹣3;(2)过M作MD∥AP交x轴于D,连接AD,如图:∵MD∥AP,△MAP面积等于6∴△DAP面积等于6∴DP•|y A|=6,即DP×3=6∴DP=4∴D(﹣3,0)设直线DM为y=3x+c,则0=3×(﹣3)+c∴c=9∴直线DM为y=3x+9令x=﹣2得y=3∴M(﹣2,3);(3)存在设B(t,3t﹣3)①当Q在x轴负半轴时,过B作BE⊥x轴于E,如图:∴OE=t,BE=3﹣3t∵△BCQ是以BC为底边的等腰直角三角形∴BQ=CQ,∠BQC=90°∴∠BQE=90°﹣∠NQC=∠QCN又∠BEQ=∠QNC∴△BEQ≌△QNC(AAS)∴QN=BE=3﹣3t,QE=CN=4∴OQ=QE﹣OE=ON+QN,即4﹣t=2+3﹣3t∴t=∴OQ=∴Q(﹣,0)②当Q在y轴正半轴时,过C作CF⊥y轴于F,过B作BG⊥y轴于G,如图:∴BG=t,OG=3t﹣3∵△BCQ是以BC为底边的等腰直角三角形∴BQ=CQ,∠BCQ=90°∴∠CQF=90°﹣∠BQG=∠GBQ又∠CFQ=∠BGQ=90°∴△CQF≌△QBG(AAS)∴CF=QG=2,QF=BG=t∴OQ=OG﹣QG=OF﹣QF,即3t﹣3﹣2=4﹣t∴t=∴OQ=4﹣t=∴Q(0,);③Q在y轴正半轴,过C作CF⊥y轴于F,过B作BT⊥y轴于T,如图:∴BT=t,OT=3t﹣3同②可证△CFQ≌△QTB(AAS)∴QF=BT=t,QT=CF=2∴OQ=OT+QT=OF+QF,即3t﹣3+2=4+t∴t=∴OQ=4+t=∴Q(0,);综上所述,Q的坐标为(﹣,0)或(0,)或(0,).27.【答案】解:(1)如图1当x=0时,y=6当y=0时,﹣x+6=0∴x=6OB=6,OA=6∴tan∠ABO==设直线EF交OB于F′∴BF′=6﹣4=2∴EF′=BF′•tan∠ABO=2=2∴t==1故答案是:1;(2)当0<t<1时∵OD=2t,DE=4∴S=2t•4=8;(3)当0<t<1时8=4∴t=如图2当2<t≤3时∵tan∠BAO===∴DG=AD•tan∠BAO=(6﹣2t)=6﹣2t CH==(8﹣2t)=8﹣2∵S==4∴14﹣4t=4∴t=综上所述,t=或。
考点达标训练28 坐标中的图形变换图形中的坐标变换(第1题)1. (2014·某某某某)如图,线段AB 的两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A. (3,3)B. (4,3)C. (3,1)D. (4,1)2. 在平面直角坐标系内的机器人接受指令[a ,θ](a ≥0,0°<θ<180°)后的行动结果为:在原地顺时针旋转θ后,再向正前方沿直线行走a .若现在机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[2,60°]后的位置的坐标为( )A. (-1,3)B. (-1,-3)C. (-3,-1)D. (-3,1)3. (2014·某某某某)如图,正方形OABC 的两边OA ,OC 分别在x 轴,y 轴上,点D (5,3)在边AB 上,以点C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D ′的坐标是( )A. (2,10)B. (-2,0)C. (2,10)或(-2,0)D. (10,2)或(-2,0),(第3题)) ,(第4题))4. (2014·某某某某)如图,在平面直角坐标系中,已知点A (-3,-1),点B (-2,1),平移线段AB,使点A落在点A1(0,-1)处,点B落在点B1处,则点B1的坐标为________.5. 如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为________.(第5题)图形变换作图6. (2015·某某某某)在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.(第6题)7. 在如图所示的平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).(第7题)(1)画出△ABC,并求出AC所在直线的函数表达式.(2)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1,并求出△ABC在上述旋转过程中扫过的面积.利用坐标或网格计算图形的面积(第8题)8. 如图,每个小正方形的边长均为1,若记格点多边形的面积为S,其内部的格点数为N,边界上的格点数为L,则图中格点多边形DEFGHI所对应的S,N,L分别是______________.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c(其中a,b,c为常数),则当N=5,L=14时,S=________(用数值作答).9. 在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫作“格点三角形”,根据图形,回答下列问题:,(第9题))(1)图中格点三角形A′B′C′是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出△DEF的面积.10. (2014·某某某某)如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )(第10题)A. (1,1)B. (1,2)C. (1,3)D. (1,4)11. 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能...是( )A. (6,0)B. (6,3)C. (6,5)D. (4,2),(第11题)) ,(第12题))12. (2014·某某某某)如图,在5×4的方格纸中,每个小正方形的边长为1,点O,A,B在方格纸的交点(格点)上.在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A. 2个B. 3个C. 4个D. 5个(第13题)13. 如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b经过点A,C′,则点C′的坐标是________.14. (2015·某某眉山)如图,在方格纸中已知格点三角形ABC和点O.(第14题)(1)画△A ′B ′C ′和△ABC 关于点O 成中心对称.(2)请在方格纸中标出所有使以点A ,O ,C ′,D 为顶点的四边形是平行四边形的点D .参考答案1.A 2.C 3.C 4.(1,1) 5.(36,0) 6.略 7.(1)画图略,AC 所在直线的函数表达式为y =-7x -5. (2) 画图略,△ABC 在旋转过程中扫过的面积为25π2+6.8.7,3,10 11 9.(1)图中格点三角形A ′B ′C ′是由格点三角形ABC 向右平移7个单位长度得到的. (2)点D (0,-2),E (-4,-4),F (3,-3);S △DEF =5.10.B[∵将△ABC 以某点为旋转中心,顺时针旋转90°得到△A ′B ′C ′,∴点A 的对应点为点A ′,点C 的对应点为点C ′.作线段AA ′和CC ′的垂直平分线,如解图,它们的交点即为旋转中心.∴点P 的坐标为(1,2).](第10题解)11.B[在△ABC 中,∠ABC =90°,AB =6,BC =3,ABBC=2.A .当点E 的坐标为(6,0)时,∠CDE =90°,CD =2,DE =1,则AB BC =CDDE,∴△CDE ∽△ABC ,故本选项不符合题意;B .当点E 的坐标为(6,3)时,∠CDE =90°,CD =2,DE =2,则AB BC ≠CD DE,∴△CDE 与△ABC 不相似,故本选项符合题意;C .当点E 的坐标为(6,5)时,∠CDE =90°,CD =2,DE =4,则AB BC =DE CD,∴△EDC ∽△ABC ,故本选项不符合题意;D .当点E 的坐标为(4,2)时,∠ECD =90°,CD =2,CE =1,则AB BC =CD CE,∴△DCE ∽△ABC ,故本选项不符合题意.故选B .](第12题解)12.B[由题图可知AB ∥x 轴,且AB =3,可设点C 到AB 的距离为h ,则△ABC 的面积=12×3h =3,解得h =2.∵点C 在第四象限,∴点C 的位置如解图所示,共有3个.]13.(1,3)[∵点A (-2,0),B (-1,0),∴AO =2,OB =1.∵△A ′B ′C ′和△AB C 关于y 轴对称,∴OB ′=OB =1,∴AB ′=AO +OB ′=2+1=3.∵直线y =x +b 经过点A ,C ′,∴AB ′=B ′C ′=3,∴点C ′的坐标为(1,3).] 14.(1)△A ′B ′C ′如解图①所示. (2)如解图②③④所示.(第14题解)。
2016中考数学考点指导:几何图形变换的切入点_考点解析2016中考是九年义务教育的终端显示与成果展示,2016中考是一次选拔性考试,其竞争较为激烈。
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2016中考中取得理想的成绩,下文为大家准备了2016中考数学考点。
实践操作性试题正逐渐成为2016中考命题的热点,前两年的上海市数学2016中考中,压轴的都是这类题型。
下面,我们通过一个例题谈谈如何更好更快地找到解决问题的切入点。
例已知∠AOB=90°,OM是∠AOB的角平分线,按以下要求解答问题(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与OA,OB交于点C,E.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,PG=PD,求∠POD与∠PDG 的面积之比;(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与∠OCD 相似,在图丙中作出图形,试求OP的长。
(见题图)紧扣不变量,并善于使用前题所采用的方法或结论在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
如本例中,PC 与PD始终保持相等关系,如果我们能认识到这一点,才可能考虑利用第①题的证明方法证PC=PD(如图丁)进而得到∠PCH=∠PDN,再结合相似三角形性质易得∠PCH=∠PDN=∠CDO=22.5°=∠OPC最后得到OP=OC,这样做比使用其他方法计算要简单得多,再如2002年、2003年压轴题第(2)小题,也都需要使用第(1)小题的证明方法或结论。
展开联想,寻找解决过的问题尽管已经做过了许多复习题,但考试中碰到的压轴题又往往是新的面孔,如何在新老问题之间找到联系呢?请同学们牢记,在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。
2019 初三中考数学复习 图形的变换与坐标 专题复习练习题1. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B ′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(3,2)B .(-2,3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)2. 任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0+3),则经过的变化为( )A .向左平移5个单位长度B .向上平移3个单位长度C .向右平移5个单位长度,再向上平移3个单位长度D .不能确定3. 已知△ABC 在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A 的对应点A′的坐标为( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)4. 如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 的坐标为(5,0),则点A 的坐标为( ) A .(2,5) B .(2.5,5) C .(3,5)D .(3,6)5. 在坐标系中,将△ABC 的三个顶点的纵坐标都乘以-1,横坐标不变,得到的△A ′B ′C ′与△ABC 的关系是( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点O 对称 D .关于原点O 成位似图形6. P(x ,y)关于x 轴对称点P 1的坐标为 ,关于y 轴对称点P 2的坐标为 ,关于原点对称的点P 3的坐标为 .7. 点P(-2,5)关于原点对称点P 1的坐标为 .8.如图,△ABC 在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2,则顶点A 2的坐标是( ) A .(-3,2) B .(2,-3) C .(1,-2)D .(3,-1)9.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE = .10. △OAB 三个顶点分别为O(0,0),A(4,6),B(3,0)以O 为位似中心,将△OAB 缩小为原来的 ,则△OA′B′,则点A 的对应点A′的坐标为 . 11. 将点P(2,-3)向右平移1个单位,再向上平移2个单位后的坐标是 . 12. 如图,在直角坐标系中,每个小方格的边长均为1,△AOB 与△A ′OB ′是以原点O 为位似中心的位似图形,且相似比为3∶2,点A ,B 都在格点上,则点B ′的坐标是 .13. △ABC 在平面直角坐标系xOy 中的位置如图所示. (1)作△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2.14. 如图,直线y =13x +1与x 轴、y 轴分别交于A 、B 两点,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1∶2,则点B′的坐标为 .15. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.16. 如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为 A( -1,2)、 B(2,1)、 C(4,5). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在x 轴的上方画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2,并求出△A 2B 2C 2的面积. 参考答案: 1—5 DCDBA6. (x ,-y ) (-x ,y ) (-x ,-y )7. (2,-5)8. B9. 4.510. 12 (2,3)或(-2,-3)11. (3,-1) 12. (-2,43)13. 解:图略. 14. (3,2)或(-9,-2) 15. 解:(1)△A 1B 1C 1如图所示.(2)线段A 2C 2和△A 2B 2C 2如图所示.(符合条件的△A 2B 2C 2不唯一) 16. 解:(1)如图所示,△A 1B 1C 1就是所求三角形;(2)如图所示,△A 2B 2C 2就是所求三角形,如图,分别过点A 2、C 2作y 轴的平行线,过点B 2作x 轴的平行线,交点分别为E 、F.∵A( ,2)、 B(2,1)、 C(4,5),△A 2B 2C 2与△ABC 位似,且位似比为2,∴A 2( -2,4)、 B 2(4,2)、 C 2(8,10),∴S △A 2B 2C 2=8×10-12×6×2-12×4×8-12×6×10=28.。
坐标与图形的变换一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为52.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:;(2)求经过第2008次跳动之后,棋子落点与点P的距离.坐标与图形的变换参考答案与试题解析一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5【考点】立方根;无理数;二次根式有意义的条件;函数自变量的取值范围;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】对每个选项分别求出正确结论,然后就可以进行验证.【解答】解:A、=2,是一个有理数,故A错误;C、正数有一个正的立方根,故C错误;D、两点若共于x轴对称,则横坐标相等,纵坐标互为相反数,得a=3,b=﹣2,则a+b=1,故D错误;B、根据二次根式和分式有意义的条件得x>1,故B正确;故选B.【点评】判断一个数是否是无理数,应先化简后判断;二次根式有意义的条件是被开方数大于或等于0,分式有意义的条件是分母不等于0;掌握立方根的性质和关于x轴对称的两点的坐标之间的关系.2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可在此题平移规律是(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).故选A.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:从B到B1,点的移动规律是(x﹣2,y),如此规律计算可知B1的坐标为(0,1).故选B.【点评】本题考查图形的平移变换.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据矩形的特点和旋转的性质来解决.【解答】解:矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点评】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′【考点】关于x轴、y轴对称的点的坐标.【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),从而求解.【解答】解:根据轴对称的性质,可知横坐标都乘以﹣1,即是横坐标变成相反数,则实际是作出了这个图形关于y轴的对称图形.故选:B.【点评】考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:原三角形中点A的坐标是(﹣4,1),将△ABC向右平移6个单位后,平移后点的横坐标变为﹣4+6=2,而纵坐标不变,所以点A的坐标变为(2,1).故选B.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化﹣平移.【专题】压轴题;网格型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化﹣旋转.【专题】压轴题;数形结合.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.【点评】本题考查了旋转与坐标与图形的变化,根据网格结构找出点B旋转后的位置是解题的关键.二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是10 .【考点】轴对称﹣最短路线问题.【专题】压轴题.【分析】本题首先要明确奶站应建在何处,点A关于x轴的对称点A的坐标是1B与x轴的交点就是奶站应建的位置.从A、B两点到奶(0,﹣3),则线段A1B的长.通过点B向y轴作垂线与C,根据勾股定站距离之和最小时就是线段A1理就可求出.的坐标是(0,﹣3),过点B向x轴作【解答】解:点A关于x轴的对称点A1和x轴平行的直线交于C,垂线与过A1C=6,BC=8,则A1B==10∴A1∴从A、B两点到奶站距离之和的最小值是10.故填10.【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是(4,﹣4).【考点】坐标与图形变化﹣旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状.【解答】解:旋转后已知OB=OA=4,做BC⊥x轴于点C,那么△OBC是等腰直角三角形,∴OC=BC=4,∵在第四象限,∴点B的坐标是(4,﹣4).【点评】解答此题要注意旋转前后线段的长度不变,构造直角三角形求解即可.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是(2,﹣1).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据旋转的性质,旋转不改变图形的大小和形状,准确把握旋转的方向和度数.【解答】解:把Rt△OAB的绕点O按顺时针方向旋转90°,就是把它上面的各个点按顺时针方向旋转90度.点A在y轴上,且OA=2,正好旋转到x轴正半轴.则旋转后A′点的坐标是(2,0);又旋转过程中图形不变,OA=2,AB=1,故点B′坐标为(2,﹣1).【点评】本题将一个图形的旋转放在坐标系中来考查,是一道考查数与形结合的好试题,也为高中后续学习做了良好的铺垫.从考试情况看,还有非常多考生没完全理解旋转的三大要素即中心、方向、角度,故失分的较多.本题综合考查学生旋转和坐标知识.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是().【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据A点坐标可知∠AOB=30°,因此旋转后OA在y轴上.如图所示.作B′C′⊥y轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.【解答】解:将△OAB绕O点,逆时针旋转60°后,位置如图所示,作B′C′⊥y轴于C′点,∵A的坐标为,∴OB=,AB=1,∠AOB=30°,∴OB′=,∠B′OC′=30°,∴B′C′=,OC′=,∴B′(,).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为(2,3).【考点】坐标与图形变化﹣旋转.【专题】压轴题;网格型.【分析】正确作出A旋转以后的点,即可确定坐标.【解答】解:由图知A点的坐标为(﹣3,2),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(2,3).【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(﹣3,﹣2).【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【专题】网格型.【分析】(1)根据图形,可得出AC的坐标,可得纵横坐标的关系,进而可求出AC的长;(2)根据图形,可得出ABC的坐标,向右平移2个单位可得A'的坐标;(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标.【解答】解:(1)根据图形,可得出A的坐标为(﹣1,2),C的坐标为(0,﹣1),故AC的长等于=;(2)根据图形,可得出A的坐标为(﹣1,2),B的坐标为(3,1),C的坐标为(0,﹣1),将△ABC向右平移2个单位得到△A'B'C',则A点的对应点A'的坐标是(1,2);(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标为(﹣3,﹣2).【点评】此题主要考查图形的平移及平移特征﹣﹣﹣在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图﹣轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:(﹣2,0),(4,4);(2)求经过第2008次跳动之后,棋子落点与点P的距离.【考点】作图﹣轴对称变换.【专题】压轴题;规律型.【分析】(1)点P关于点A的对称点M,即是连接PA延长到M使PA=AM,所以M的坐标是M(﹣2,0),点M关于点B的对称点N处,即是连接MB延长到N 使MB=BN,所以N的坐标是N(4,4);(2)棋子跳动3次后又回点P处,所以经过第2008次跳动后,棋子落在点M 处,根据勾股定理可知PM的值.【解答】解:(1)M(﹣2,0),N(4,4);故答案为:M(﹣2,0),N(4,4);(2)棋子跳动3次后又回点P处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M处,∴PM=.答:经过第2008次跳动后,棋子落点与P点的距离为.【点评】考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.。
图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△AP Q中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。
浙江省2016年中考数学总复习全程考点训练25 视图(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2016年中考数学总复习全程考点训练25 视图(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2016年中考数学总复习全程考点训练25 视图(含解析)的全部内容。
全程考点训练25 视图一、选择题1.如图所示的支架是由两个长方体构成的组合体,则它的主视图是(D),(第1题)) 错误!【解析】从几何体的正面看可得此几何体的主视图是“”,故选D。
2.由5个相同的正方体搭成的几何体如图所示,则它的左视图是(A),(第2题)) 错误!【解析】从左面看,最底层是两个正方形,第二层是左边有一个正方形.故选A. 3.下列几何体的主视图既是中心对称图形又是轴对称图形的是(D)【解析】A,B主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C.主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D.主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D。
(第4题)4.如图是一个正方体的展开图,则原正方体相对两个面上的数字之和的最小值是(C) A.8 B.7C.6 D.5【解析】提示:1对5,2对6,3对4。
(第5题)5.由一些大小相同的小正方体组成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数不可能是(D)A.3 B.4C.5 D.6【解析】第一层最少有2个,最多有4个;第二层有1个,故最少有3个,最多有5个.故选D。
(第6题)6.如图,它是由8个相同的小正方体搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小正方体后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小正方体的个数为(B)A.1 B.2C.3 D.4【解析】可以拿掉第二层对角的2个小正方体.(第7题)7.如图是某几何体的三视图及相关数据,则下列判断正确的是(D)A.a>cB.b〉cC.a2+4b2=c2D.a2+b2=c2【解析】由三视图可知该几何体为圆锥,且圆锥底面半径r=b,高为a,母线长为c,∴a2+b2=c2。
32 用坐标表示图形变换一、选择题1.点A(0,-4)与点B(0,4)是( B )A.关于y轴对称B.关于x轴对称C.关于坐标轴对称 D.不能确定2.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是( C )A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)3.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为( D) A.33 B.-33 C.-7 D.7【解析】(-20,a)与(b,13)关于原点对称,则b=20,a=-13,a+b=20-13=7.4.如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为( D )A.(m+2,n+1) B.(m-2,n-1)C.(m-2,n+1) D.(m+2,n-1)【解析】由⊙A到⊙O需将A向右移2个单位,再向下移1个单位,P(m,n)平移后则为P′(m+2,n-1).5.如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为( B )A.(-x,y-2) B.(-x,y+2)C.(-x+2,-y) D.(-x+2,y+2)【解析】在横坐标上A 与A ′,B 与B ′,C 与C ′均关于y 轴对称,而纵坐标上移了2个单位,则由此知△A ′B ′C ′是由△ABC 沿y 轴对折后上移2个单位得到.而P (x ,y )对折后为(-x ,y ),再上移2个单位则变为(-x ,y +2).6.把以 (-1,3),(-1,1)为端点的线段向右平移6个单位,所得图象上任意一点的坐标可表示为( D )A .(-1, y )(1≤y ≤3)B .(x, -1)(1≤x ≤3)C .(x, 5)(1≤x ≤3)D .(5, y )(1≤y ≤3)【解析】以(-1,3),(-1,1)为端点的线段与y 轴平行,向右平移6个单位后为(5,3),(5,1)则其上的点可以表示为(5,y )(1≤y ≤3).二、填空题7.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是__(3,-2)__.【解析】以原点为中心对称点的两点坐标符号相反.8.如图,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是__(-4,3)__.【解析】过A ′,A 分别作x 轴的垂线,垂足为M ,N .易知△OA ′M ≌△AON ,有OM =AN =4,A ′M =ON =3,∴A ′坐标为(-4,3).9.将点A(-1,2)沿x 轴向右平移3个单位长度,再沿y 轴向下平移4个单位长度后得到点A′的坐标为__(2,-2)__.【解析】A (-1,2)向右平移3个单位长度为(2,2),再向下平移4个单位长度则变成(2,-2).10.如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B′的坐标是__(1,0)__.【解析】易知∠ACB =90°,延长AC 到B ′使CB ′=CB .B ′恰好落在(1,0)处.,第10题图) ,第11题图)11.如图,△AOB 为等腰三角形,顶点A 的坐标为(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B,点A 的对应点A′在x 轴上,则点O′的坐标为__(203,3)__. 【解析】过点A 作AC ⊥OB 于C ,过点O ′作O ′D ⊥A ′B 于D ,∵A (2,5),∴OC =2,AC =5,OA =OC 2+AC 2=3,∵△AOB 为等腰三角形,OB 是底边,∴OB =2OC =4,由旋转的性质得,BO ′=OB =4,∠A ′BO ′=∠ABO ,∴O ′D =453,BD =83,OD =OB +BD =4+83=203,∴点O ′的坐标为(203,453). 三、解答题12.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△AB C关于原点O成中心对称的△A2B2C2.解:(1)图略(2)图略13.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出点C2的坐标;(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.解:(1)图略,C1(-1,-3)(2)图略,C2(3,1)(3)图略,A3(2,-2),B3(2,-1)14.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1与△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.解:(1)图略,A1(0,4),B1(2,2),C1(1,1)(2)图略,A2(6,4),B2(4,2),C2(5,1)(3)图略,△A1B1C1与△A2B2C2关于直线x=3对称15.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1∶S△A2B2C2=__1∶4__.(不写解答过程,直接写出结果)解:(1)图略(2)图略(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为1∶2,∴S△A1B1C1∶S△A2B2C2=1∶4。
全程考点训练28 坐标中的图形变换一、选择题1.在平面直角坐标系中,将点A (-1,2)向右平移2个单位长度得到点B ,则点B 关于x 轴的对称点C 的坐标是(C )A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)【解析】 点A (-1,2)向右平移2个单位长度得到的点B 的坐标为(-1+2,2),即(1,2),则点B 关于x 轴的对称点C 的坐标是(1,-2).故选C.(第2题)2.如图,在平面直角坐标系xOy 中,点P (-3,5)关于原点对称的点的坐标为(C )A .(-3,-5)B .(3,5)C .(3,-5)D .(5,-3)3.在平面直角坐标系内的机器人接受指令[a ,θ](a ≥0,0°<θ<180°)后的行动结果为:在原地顺时针旋转θ后,再向正前方沿直线行走a .若现在机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[2,60°]后的位置的坐标为(C )A .(-1,3)B .(-1,-3)C .(-3,-1)D .(-3,1)【解析】 绕点O 顺时针旋转60°后在第三象限,与y 轴负半轴的夹角为60°,∴得(-2sin60°,-2cos60°),即(-3,-1).4.如图,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,设点A 的坐标为(a ,b ),则点A ′的坐标为(D )(第4题)A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2)【解析】 根据题意,点A ,A ′关于点C 对称.设点A ′的坐标是(x ,y ),则a +x 2=0,b +y 2=1,解得x =-a ,y =-b +2.∴点A′的坐标是(-a,-b+2).故选D. 5.在如图所示的平面直角坐标系内,有一画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是(B)A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位(第5题)【解析】5-0=5,-1-2=-3,∴为向右移5个单位,向下平移3个单位.6.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上点A的位置,(1,2)表示点B的位置,那么点P的位置为(A)A.(5,2) B.(2,5)C.(2,1) D.(1,2)(第6题)(第6题解)【解析】如解图,分别连结AD,CF,然后作它们的垂直平分线交于点P.∵点A的坐标为(2,1),∴由解图可知点P的坐标为(5,2).二、填空题。
九年级数学图形的变换某某版【本讲教育信息】一. 教学内容:图形的变换二. 知识回顾:1、图形变换的重点是图形的对称、平移、旋转和相似变换中的前三者。
难点是它们与其它知识(如三角形、四边形的相关证明与求解)的综合应用。
2、图形的变换:一个图形改变成另一个图形,改变的方式不同就形成了四种基础的图形变换法。
3、轴对称变换(反射变换):不改变图形的形状和大小。
必须指出沿着哪条直线(对称轴)去变换(对称轴是对应点连线段的中垂线)。
平移变换(保距变换)不改变图形的形状和大小,变换中,对应点的连线段平行且相等,必须指出:往哪个方向平移,平移多少距离。
旋转变换(保角变换):不改变图形的形状和大小,必须指出:绕哪个点旋转,往哪个方向旋转,并且旋转多大的角度。
特殊地,当旋转角为180°时,两图形为中心对称图形)相似变换:不改变图形的形状,但改变了图形的大小(这里的大小不是指面积,而是图形的每条线段都同时扩大或者缩小若干倍)。
4、学习中应分清:轴对称与中心对称,会求解折叠问题。
【典型例题】例1. 矩形ABCD 中,AB =3,BC =4,将它折叠,使点C 与点A 重合。
求折痕EF 的长。
解析:折叠问题应该用轴对称的知识来求解。
思路一:用勾股定理的知识以及建方程的模型来求AE 进而求出EF 的长。
思路二:利用轴对称的知识直接寻找相似的三角形比如:△AOE ∽△CBA 。
∴由此求OE 长,进而求出EF 的长为415。
大家可以都求一下。
例2. 已知:线段AB 和线段外一点O 。
①求作:线段上一点C ,使AB 32AC②求作:①中的点C 绕着点O 旋转90°的像。
解析:①C 不是中点,在AB 41上的点等,怎么作? 过点A 作任一射线AD ,并在AD 上找到某条线段的三等分点E 、F 、G 连接BG , 过点F 作BG 的平行线,交AB 于C 即可。
②旋转三要素中,此题只规定了旋转中心O ,旋转角90°,并没有给出旋转方向,故应作出点C 的两个像C ′和C ″。
全程考点训练27 平移、旋转、轴对称一、选择题1.以下手机应用图标中,既是轴对称图形,又是中心对称图形的是( D)【分析】 依据轴对称图形及中心对称图形的定义知 A ,C 是轴对称图形, 但不是中心对称图形,B 既不是轴对称图形也不是中心对称图形, D 既是轴对称图形又是中心对称图形.应选 D.(第 2题)2.如图,在由边长为 1 的正方形构成的网格中,△的极点都在格点上,将△绕点 C 顺ABCABC时针旋转 60°,则极点 A 所经过的路径长为 ( C)A . 10π B. 10πC.103 π D . π60π · AC 10【分析】所经过的路径是以 AC 为半径, 60°圆心角所对的弧, ∴其路径长 l =180= 3π .3.以下图案能够经过某个基本图形平移获得的有( C)(第 3题)A .1个B .2个C .3个D .4个【分析】①②③均可.4.将一张正方形纸片按如图①②的步骤沿虚线对折两次,而后沿图③中的虚线剪去一个角,展开后摊平的图形是 ( B)(第 4题)【分析】由题意知,睁开摊平后的图形是 B.5.在以下对称图形中,对称轴的条数最少的是( B)A.圆 B .等边三角形C.正方形 D .正六边形【分析】圆有无数条对称轴,等边三角形有 3 条对称轴,正方形有 4 条对称轴,正六边形有6 条对称轴.应选 B.(第 6题)6.P是正方形ABCD边 AB上一点(不与点 A, B 重合),连接 PD并将线段PD绕点 P 顺时针旋转90°,得线段PE,连接 BE,则∠ CBE等于( C)A.75° B .60°C.45° D .30°【分析】过点 E作 EF⊥AB,交 AB的延伸线于点F,则∠ F=90°.∵四边形 ABCD为正方形,∴AD= AB,∠ A=∠ ABC=90°,∴∠ ADP+∠ APD=90°.由旋转可知 PD= PE,∠ DPE=90°,∴∠ APD+∠ EPF=90°,∴∠ ADP=∠ EPF.又∵∠ A=∠ PFE=90°, PD= EP,∴△ APD≌△ FEP( AAS),∴AP= EF, AD= PF.又∵ AD=AB,∴ PF= AB,∴ AP= BF,∴ BF= EF.∵∠ F=90°,∴△ BEF为等腰直角三角形,∴∠ EBF=45°.∵∠ CBF=90°,∴∠ CBE=45°.二、填空题(第 7题)7.如图,将△ABC沿直线 AB向右平移后抵达△BDE的地点.若∠ CAB=50°,∠ ABC=100°,则∠ CBE的度数为30°.【分析】易得∠ EBD=∠ CAB=50°,∴∠ CBE=180°-∠ EBD-∠ ABC=180°-50°-100°=30°.(第 8题)8.如图,△ABC的三个极点都在5×5的网格 ( 每个小正方形的边长均为 1 个单位长度 ) 的格点上,将△ ABC绕点 B 顺时针旋转到△A′ BC′的地点,且点A′, C′仍落在格点上,则线段AB扫过13的图形的面积是4π平方单位 ( 结果保存π ).【分析】∠ ABA′=∠ CBC′=90°,21390π∴S=360· AB=4π.9.如图,在平面直角坐标系中,有A(3,-2), B(4,2)两点,现另取一点C(1, n),当 n=-2时, AC+ BC的值最小.5(第 9题)(第 9题解)【分析】过点 A 作对于直线 x = 1 的对称点 A ′( - 1,- 2) ,连接 A ′ B 交直线 x = 1 于点 C ,4 6此时点 C 即为使 AC + BC 最小的点.可求出直线 A ′B 的函数表达式为 y = 5x -5,把点 C (1 ,n ) 的坐4 6 2 标代入 y = 5x - 5,得 n =- 5.10.如图①是一个直角三角形纸片,∠ = 30°, = 4 cm ,将其折叠,使点C 落在斜边上的点A BCC ′处, 折痕为 BD ,如图②,再将图②沿 DE 折叠,使点 A 落在 DC ′的延伸线上的点 A ′处, 如图③,8则折痕 DE 的长为 3 cm.【分析】∵△ ABC 是直角三角形,∠(第 10 题)A = 30°,∴∠ ABC = 90°- 30°= 60° .1由折叠的性质,得∠BDC =∠ BDC ′,∠ CBD =∠ ABD = 2∠ ABC = 30°,∠ ADE =∠ A ′DE ,1∴∠ BDE =∠ BDC ′+∠ A ′DE = 2× 180°= 90°.∴在 Rt △BCD 中, BD = BC ÷cos 3038 3 °= 4÷ 2 =3 (cm) ,∴在 Rt △BDE 中, DE = BD ·tan 308 3 ×3 8 °=3 3 = (cm) .3三、解答题11.如图,在方格纸中,△ABC 的 3 个极点和点 P 都在小方格的极点上,按要求画一个三角形,使它的极点在方格的极点上.(1) 将△ ABC 平移,使点 P 落在平移后的三角形内部,在图①中画出表示图.(2) 以点 C 为旋转中心, 将△ ABC 旋转,使点 P 落在旋转后的三角形内部,在图②中画出表示图.(第 11 题)【分析】(1) 如解图①.(第 11题解)(2) 如解图② .12.如图,在正方形 中, = 4, E 是的中点, P 是对角线 上一动点,求 + PB 的ABCD AB BC AC PE最小值.(第 12 题)(第 12 题解)【分析】如解图,连接 DE , BD , DE 与 AC 交于点 P ,连接 PB .∵点 B 与点 D 对于 AC 对称,∴ PD = PB ,∴ PB +PE = PD +PE ≥ DE .∴ DE 的长即为 PE + PB 的最小值. ∵ AB = 4, E 是 BC 的中点,∴CE = 2.在 Rt △ CDE 中, DE =2 2 2 2= 2 5,即 PE +PB 的最小值为 2 5.CD + CE = 4 + 2(第 13 题)13.如图,在Rt△ABC中,∠ABC= 90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线 AB平移至△ FEG,DE, FG交于点 H.(1)判断线段 DE,FG的地点关系,并说明原因.(2)连接 CG,求证:四边形 CBEG是正方形.【分析】 (1) FG⊥DE. 原因以下:∵把△ ABC绕点 B顺时针旋转90°至△DBE,∴∠ DEB=∠ ACB.∵把△ ABC沿射线 AB平移至△ FEG,∴∠ GFE=∠ A.∵∠ ABC=90°,∴∠ A+∠ ACB=90°,∴∠ GFE+∠ DEB=90°,∴∠ FHE=90°,∴FG⊥ DE.(2) 由平移的性质,得∠FEG=∠ ABC=90°, CG∥ BE, CG= BE.∴四边形 CBEG是矩形.由旋转的性质,得CB= BE,∴四边形 CBEG是正方形.14.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕极点C顺时针旋转,旋转角为θ (0°<θ<180°) ,获得△A′ B′ C.(第 14 题)(1)如图①,当 AB∥ CB′时,设 A′B′与 CB交于点 D,求证:△ A′ CD是等边三角形.(2) 如图②,连接A′ A,B′ B,设△ ACA′和△BCB′的面积分别为S△ACA′和S△BCB′,求证: S△ACA′∶S△BCB′=1∶3.(3)如图③,设 AC的中点为 E,A′ B′的中点为 P,AC= a,连接 EP,当θ=________度时, EP 的长度最大,最大值为________.【分析】(1) ∵AB∥CB′,∴∠B=∠BCB′= 30°,∴∠ A′CD=60°.又∵∠ A′=60°,∴∠ A′DC=∠ A′=∠ A′CD=60°,∴△ A′CD是等边三角形.(2)由旋转的性质,得∠ ACA′=∠ BCB′, AC=A′ C,CB= CB′,∴△ ACA′∽△ BCB′,相像比为 AC∶ BC=1∶3,∴S△ACA′∶ S△BCB′=1∶3.(3)120 23a [当 E, C, P 三点不共线时, EC+ CP>EP;当 E, C, P 三点共线时,EC+CP= EP.综上所述,EP≤ EC+ CP,则当旋转120°时, E,C, P 三点共线, EP的长度最大,此时EP= EC+ CP=1a+ a=3a].22。
全程考点训练28 坐标中的图形变换
一、选择题
1.在平面直角坐标系中,将点A(-1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是(C)
A.(1,2) B.(-1,2)
C.(1,-2) D.(-1,-2)
【解析】点A(-1,2)向右平移2个单位长度得到的点B的坐标为(-1+2,2),即(1,2),则点B关于x轴的对称点C的坐标是(1,-2).故选C.
(第2题)
2.如图,在平面直角坐标系xOy中,点P(-3,5)关于原点对称的点的坐标为(C)
A.(-3,-5) B.(3,5)
C.(3,-5) D.(5,-3)
3.在平面直角坐标系内的机器人接受指令[a,θ](a≥0,0°<θ<180°)后的行动结果为:在原地顺时针旋转θ后,再向正前方沿直线行走a.若现在机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[2,60°]后的位置的坐标为(C)
A.(-1,3) B.(-1,-3)
C.(-3,-1) D.(-3,1)
【解析】绕点O顺时针旋转60°后在第三象限,与y轴负半轴的夹角为60°,
∴得(-2sin60°,-2cos60°),即(-3,-1).
4.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为(D)
(第4题)
A.(-a,-b) B.(-a,-b-1)
C.(-a,-b+1) D.(-a,-b+2)
【解析】根据题意,点A,A′关于点C对称.
设点A ′的坐标是(x ,y ), 则
a +x
2
=0,
b +y
2
=1,
解得x =-a ,y =-b +2. ∴点A ′的坐标是(-a ,-b +2). 故选D.
5.在如图所示的平面直角坐标系内,有一画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是(B )
A .先向右平移5个单位,再向下平移1个单位
B .先向右平移5个单位,再向下平移3个单位
C .先向右平移4个单位,再向下平移1个单位
D .先向右平移4个单位,再向下平移3个单位
(第5题)
【解析】 5-0=5,-1-2=-3,∴为向右移5个单位,向下平移3个单位.
6.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上点A 的位置,(1,2)表示点B 的位置,那么点P 的位置为(A )
A .(5,2)
B .(2,5)
C .(2,1)
D .(1,2)
(第6题)
(第6题解)
【解析】如解图,分别连结AD,CF,然后作它们的垂直平分线交于点P.
∵点A的坐标为(2,1),
∴由解图可知点P的坐标为(5,2).
二、填空题
(第7题)
7.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点E成中心对称,则对称中心点E的坐标是(3,-1).
【解析】连结AA1,BB1,交点即为点E,易得E(3,-1).
8.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标:(2,2)或(0,0)等.
9.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是(3,0),A1的坐标是(4,3).
【解析】∵点O(0,0),A(1,3),线段OA向右平移3个单位,
∴点O1的坐标是(0+3,0),即(3,0),A1的坐标是(1+3,3),即(4,3).
10.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为(36,0).
(第10题)
【解析】每3次一循环,三角形⑩相当于三角形①向右平移36个单位.
(第11题)
11.如图,在平面直角坐标系中有一矩形ABCD ,其中点A (0,0),B (8,0),D (0,4).若将△ABC
沿AC 所在直线翻折,点B 落在点E 处,则点E 的坐标是 ⎛⎪⎫245,325. 【解析】 过点E 作EF ⊥AB 于点F ,连结BE 与AC 交于点G . 易知△AEB 是等腰三角形,AG ⊥EB , ∴EG =BG ,EB =2EG .
由Rt△ABG ∽△ACB ,AB =8,BC =4,AC =82+42
=45,可得BG =855
.
设点E (x ,y ),则EF 2=AE 2-AF 2=BE 2-BF 2,即y 2=82-x 2=(2BG )2-(8-x )2
,解得x =245.
∴y =EF =32
5.
∴点E 的坐标是⎝ ⎛⎭
⎪
⎫245,325.
三、解答题
12.在如图所示的正方形网格中,每个小正方形的边长都为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系. (2)请作出△ABC 关于y 轴对称的△A ′B ′C ′. (3)写出点B ′的坐标.
(第12题)
(第12题解)
【解析】 (1)(2)如解图. (3)点B ′(2,1).
(第13题)
13.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.
【解析】依题意可知,折痕AD是四边形OAED的对称轴,
∴在Rt△ABE中,AE=OA=10,AB=OC=8,
∴BE=AE2-AB2=102-82=6,
∴CE=BC-BE=4,∴点E(4,8).
在Rt△DCE中,DC2+CE2=DE2.
又∵DE=OD,
∴(8-OD)2+42=DE2=OD2,
∴OD=5,
∴点D(0,5).
14.如图,在平面直角坐标系中,已知点A(0,4),C(3,0).
(1)①画出线段AC关于y轴对称的线段AB.
②将线段AC绕点C顺时针旋转一个角度,得到对应线段CD,使得AD∥x轴,请画出线段CD.
(2)若直线y=kx平分(1)中的四边形ABCD的面积,请直接写出实数k的值.
(第14题)
【解析】(1)①线段AB如解图所示.
②线段CD如解图所示.
(第14题解)
(2)由解图易得四边形ABCD为平行四边形.
∵点A(0,4),C(3,0),
∴▱ABCD 的中心坐标为⎝ ⎛⎭
⎪⎫32,2, 则直线y =kx 必经过点⎝ ⎛⎭⎪⎫32,2,∴32k =2, 解得k =4
3
.。