2016届中考数学题型研究突破复习题1
- 格式:doc
- 大小:125.02 KB
- 文档页数:12
中考备考专题复习:一元一次方程一、单选题1、(2016•大连)方程2x+3=7的解是()A、x=5B、x=4C、x=3.5D、x=22、(2016•梧州)一元一次方程3x﹣3=0的解是()A、x=1B、x=﹣1C、x=D、x=03、若关于x的方程(k-1)x2+x-1=0是一元一次方程.则k=( )A、0B、1C、2D、34、(2016•泰安)当1≤x≤4时.mx﹣4<0.则m的取值范围是()A、m>1B、m<1C、m>4D、m<45、已知方程2x-3=+x的解满足|x|-1=0.则m的值是()A、-6B、-12C、-6与-12D、任何数6、若2(a+3)的值与4互为相反数.则a的值为()A、﹣1B、﹣C、﹣5D、7、下列各式中.是方程的个数为()(1)-3-3=-7 (2)3x-5=2x+1 (3)2x+6(4)x-y=0 (5)a+b>3 (6)a2+a-6=0A、1个B、2个C、3个D、4个8、如果等式ax=b成立.则下列等式恒成立的是().A、abx=abB、x=C、b-ax=a-bD、b+ax=b+b9、已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) . 则a-b的值为().A、-1B、0C、1D、210、在如图的2016年6月份的月历表中.任意框出表中竖列上三个相邻的数.这三个数的和不可能是()A、27B、51C、69D、7211、互联网“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为200元.按标价的五折销售.仍可获利20元.则这件商品的进价为()A、120元B、100元C、80元D、60元12、某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3.二楼售出与未售出的座位数比为3:2.且此场音乐会一、二楼未售出的座位数相等.则此场音乐会售出与未售出的座位数比为何?()A、2:1B、7:5C、17:12D、24:1713、某车间有26名工人.每人每天可以生产800个螺钉或1000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉.则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x14、8月份是新学期开学准备季.东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后.超出部分按50%收费.在百惠书店购买学习用品或工具书累计花费50元后.超出部分按60%收费.郝爱同学准备买价值300元的学习用品和工具书.她在哪家书店消费更优惠()A、东风B、百惠C、两家一样D、不能确定15、在解方程时.方程两边同时乘以6.去分母后.正确的是()A、2x﹣1+6x=3(3x+1)B、2(x﹣1)+6x=3(3x+1)C、2(x﹣1)+x=3(3x+1)D、(x﹣1)+x=3(x+1)二、填空题16、已知方程(a-2)x|a|-1=1是一元一次方程.则a=________.x=________ .17、如果关于x的方程x2﹣3x+k=0有两个相等的实数根.那么实数k的值是________.18、一件服装的标价为300元.打八折销售后可获利60元.则该件服装的成本价是________元.19、为了改善办学条件.学校购置了笔记本电脑和台式电脑共100台.已知笔记本电脑的台数比台式电脑的台数的还少5台.则购置的笔记本电脑有________台.20、书店举行购书优惠活动:①一次性购书不超过100元.不享受打折优惠.②一次性购书超过100元但不超过200元一律打九折.③一次性购书200元一律打七折.小丽在这次活动中.两次购书总共付款229.4元.第二次购书原价是第一次购书原价的3倍.那么小丽这两次购书原价的总和是________元.三、计算题21、先化简:÷ + .再求当x+1与x+6互为相反数时代数式的值.四、解答题22、在红城中学举行的“我爱祖国”征文活动中.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级收到的征文有多少篇?23、世界读书日.某书店举办“书香”图书展.已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元.《汉语成语大词典》按标价的50%出售.《中华上下五千年》按标价的60%出售.小明花80元买了这两本书.求这两本书的标价各多少元.五、综合题24、在纪念中国抗日战争胜利70周年之际.某公司决定组织员工观看抗日战争题材的影片.门票有甲乙两种.甲种票比乙种票每张贵6元.买甲种票10张.乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元.那么最多可购买多少张甲种票?25、如图是一根可伸缩的鱼竿.鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩.完全收缩后.鱼竿长度即为第1节套管的长度(如图1所示):使用时.可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm.第2节套管长46cm.以此类推.每一节套管均比前一节套管少4cm.完全拉伸时.为了使相邻两节套管连接并固定.每相邻两节套管间均有相同长度的重叠.设其长度为xcm.(1)请直接写出第5节套管的长度.(2)当这根鱼竿完全拉伸时.其长度为311cm.求x的值.26、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率.(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值.答案解析部分一、单选题1、【答案】 D【考点】一元一次方程的解【解析】【解答】解:2x+3=7. 移项合并得:2x=4.解得:x=2.故选D【分析】方程移项合并.把x系数化为1.即可求出解.此题考查了一元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.2、【答案】 A【考点】一元一次方程的解【解析】【解答】解:3x﹣3=0.3x=3.x=1.故选:A.【分析】直接移项.再两边同时除以3即可.此题主要考查了一元一次方程的解.关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3、【答案】B【考点】一元一次方程的定义【解析】【解答】根据题意得:k-1=0.解得:k=1.故答案是:B.【分析】只含有一个未知数(元).并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a.b是常数且a≠0).高于一次的项系数是0.据此可得出关于k的方程.继而可求出k的值.4、【答案】 B【考点】一元一次方程的解【解析】【解答】解:设y=mx﹣4.由题意得.当x=1时.y<0.即m﹣4<0.解得m<4.当x=4时.y<0.即4m﹣4<0.解得.m<1.则m的取值范围是m<1.故选:B.【分析】设y=mx﹣4.根据题意列出一元一次不等式.解不等式即可.本题考查的是含字母系数的一元一次不等式的解法.正确利用函数思想、数形结合思想是解题的关键.5、【答案】 C【考点】一元一次方程的解.含绝对值符号的一元一次方程【解析】【解答】∵|x|-1=0∴x=±1当x=1时.把x=1代入方程2x-3=+x2-3=+1∴m=-6.当x=-1时.把x=-1代入方程2x-3=+x-2-3=-1∴m=-12∴m的值是-6与-12.【分析】根据方程的解满足|x|-1=0就可得到x=±1.即±1是方程的解.把x=±1分别代入方程2x-3= m 3 +x就得到关于m的方程.从而求出m的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法.在以后的学习中.常用此法求函数解析式.6、【答案】C【考点】相反数.解一元一次方程【解析】【解答】解:∵2(a+3)的值与4互为相反数.∴2(a+3)+4=0.∴a=﹣5.故选C【分析】先根据相反数的意义列出方程.解方程即可.此题是解一元一次方程.主要考查了相反数的意义.一元一次方程的解法.掌握相反数的意义是解本题的关键.7、【答案】C【考点】一元一次方程的定义.二元一次方程的定义.一元二次方程的定义【解析】【解答】根据方程的定义依次分析即可。
知识改变命运与切线有关的证明及计算针对演练1. (2015钦州8分)如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A .(1)求证:BC 是⊙O 的切线;(2)连接OC ,如果OC 恰好经过弦BD 的中点E ,且tan C =12,AD =3,求直径AB 的长.第1题图2. (2015黔东南州12分)如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点.(1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第2题图知识改变命运3. (2015朝阳8分)如图,在△ABC 中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE ⊥BC 于点E ,且∠BDE =∠A .(1)判断DE 与⊙O 的位置关系并说明理由;(2)若AC =16,tan A =34,求⊙O 的半径.第3题图4. (2015抚顺12分)如图,四边形ABCD 为矩形,E 为BC 边中点,连接AE ,以AD 为直径的⊙O 交AE 于点F ,连接CF .(1)求证:CF 与⊙O 相切;(2)若AD =2,F 为AE 的中点,求AB 的长.第4题图5. (2015南通8分)如图,P A ,PB 分别与⊙O 相切于A ,B 两点,∠ACB =60°.知识改变命运(1)求∠P 的度数;(2)若⊙O 的半径长为4 cm ,求图中阴影部分的面积.第5题图6. (2015青海8分)如图,在△ABC 中,∠B =60°,⊙O 是△ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点M ,CM 交⊙O 于点D .(1)求证:AM =AC ;(2)若AC =3,求MC 的长.第6题图7. (2015丹东10分)如图,AB 是⊙O 的直径,ED ︵=BD ︵,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C .(1)若OA =CD =22,求阴影部分的面积;知识改变命运(2)求证:DE =DM.第7题图【答案】题型三 与切线有关的证明及计算1. (1)证明:∵AB 为⊙O 的直径,知识改变命运∴∠D =90°,∴∠ABD +∠A =90°,∵∠DBC =∠A ,∴∠DBC +∠ABD =90°,即AB ⊥BC ,∴BC 是⊙O 的切线;(4分)(2)解:∵DE =BE ,∴OE ⊥BD ,∴∠EOB +∠OBE =∠EOB +∠C =90°,∴∠OBE =∠C ,∴tan ∠ABD =tan ∠OBE =tan ∠C =12,即12AD BD =, ∴BD =2AD =6,在Rt △ABD 中,AB=.(8分)2. (1)证明:如解图,连接OE ,过O 作OF ⊥PN 于F.第2题解图∵PM 与⊙O 相切于点E ,∴OE ⊥PM ,∵PC 平分∠MPN ,知识改变命运∴OE =OF ,∴PN 是⊙O 的切线.(6分)(2)解:∵在Rt △POE 中,∠EPO =30°,PE=∴OE =PEtan ∠EP O==2, ∵∠EOB 是△PEO 的外角,∴∠EOB =∠EPO +∠PEO =30°+90°=120°, ∴劣弧BE 的长120241801803BE n r l πππ===.(12分) 3. 解:(1)DE 与⊙O 相切于点D .理由如下: 如解图,连接OD ,第3题解图∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°,∵OA =OD ,∴∠OAD =∠ODA ,∵∠BDE =∠BAD ,∴∠ODA =∠BDE ,∴∠BDE +∠ODB =90°,知识改变命运∴∠ODE =90°,即OD ⊥DE ,∴DE 是⊙O 的切线.(4分)(2)∵DE ⊥BC ,DO ⊥DE ,∴DO ∥BC ,∴∠ADO =∠C ,∴∠BAC =∠C ,∴AB =BC ,∵BD ⊥AC ,AC =16,∴AD =CD =8.在Rt △ABD 中,tan A =34,设BD =3k ,则AD =4k ,由勾股定理得AB =5k , ∴845AD k AB AB k ==, 解得AB =10,∴⊙O 的半径OA =5.(8分)4. (1)证明:连接OF 、OC ,如解图.第4题解图∵四边形ABCD 是矩形,∴AD∥BC,AD=BC,∠ADC=90°,∵E是BC的中点,AO=DO,∴AO= 12AD,EC= 12BC,∴四边形OAEC是平行四边形,∴AE∥OC,∴∠DOC=∠OAF,∠FOC=∠OF A,∵OA=OF,∴∠OAF=∠OF A,∴∠DOC=∠FOC,∵OD=OF,OC=OC,∴△ODC≌△OFC(SAS),∴∠OFC=∠ODC=90°,∴OF⊥CF,∴CF与⊙O相切.(6分)(2)解:连接DE,如解图,∵AO=DO,AF=EF,AD=2,∴DE=2OF=2,∵E是BC的中点,∴CE=1,在Rt△DCE中,由勾股定理得CD∴AB=CD= .(12分)知识改变命运知识改变命运5.解:(1)如解图,连接OA ,OB 交⊙O 于点D.第5题解图∵P A ,PB 分别与⊙O 相切于A ,B 两点, ∴∠P AO =90°,∠PBO =90°. ∴∠AOB +∠P =180°.∵∠AOB =2∠ACB =120°,∴∠P =60°.(4分)(2)如解图,连接OP.∵P A ,PB 分别与⊙O 相切于A ,B 两点, ∴∠APO =12∠APB =30°.∵在Rt △APO 中,tan30°=OA AP , ∴AP =tan 30OA , ∵OA =4 cm ,∴AP =∴S 阴影=2(S △AOP -S 扇形AOD )2×21604(4)2360π⨯⨯⨯⨯=16)3π cm 2.(8分) 6. (1)证明:如解图,连接OA ,AD .第6题解图∵∠B=60°,∴∠ADC=60°.∵CD是⊙O的直径,∴∠DAC=90°,∴∠ACD=30°.∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°.∵AM是⊙O的切线,∴∠OAM=90°,∴∠M=30°,∴∠ACD=∠M,∴AC=AM.(4分)(2)解:由(1)可得,在Rt△ACD中,AD∵△AOD是等边三角形,∴AD=OD=OA=OC∵在Rt△OAM中,∠M=30°,知识改变命运知识改变命运∴OM =2OA∴MC =OM +OC分)7. (1)解:连接OD ,如解图①,第7题解图①∵CD 是⊙O 的切线,∴OD ⊥CD ,∵OA =CDOA =OD ,∴OD =CD∴△OCD 为等腰直角三角形,∴∠DOC =∠C=45°,∴S 阴影=S △OCD -S 扇形OBD =12×245360π⨯ =4-π.(5分)(2)方法一证明:连接AD .如解图①,∵AB 是⊙O 的直径,∴∠ADB =∠ADM =90°,又∵ED BD =,知识改变命运∴ED =BD ,∠MAD =∠BAD ,∴△AMD ≌△ABD (ASA ),∴DM =BD ,∴DE =DM .(10分)②方法二证明:连接BE .如解图②,第7题解图∵AB 是⊙O 的直径,∴∠AEB =90°,∴∠MEB =90°,∴∠DEM +∠BED =90°,∠M +∠MBE =90°, 又∵ED BD ,∴∠DBE =∠BED ,∴∠DEM =∠M ,∴DE =DM .(10分)薄雾浓云愁永昼, 瑞脑消金兽。
2016年全国各地中考数学试题分类解析汇编(第一辑)第12章全等三角形一.选择题(共13小题)1.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF2.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD4.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD5.(2016•莆田)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB 上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD6.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15 B.30 C.45 D.607.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC9.(2015•宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB11.(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD12.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE13.(2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个2016年全国各地中考数学试题分类解析汇编(第一辑)第12章全等三角形参考答案与试题解析一.选择题(共13小题)1.(2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.2.(2016•永州)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.3.(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.5.(2016•莆田)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB 上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论.于是答案可得.【解答】解:∵OP是∠AOB的平分线,∴∠AOP=∠BOP,∵OP=OP,∴根据‘HL’需添加PC⊥OA,PD⊥OB,根据‘SAS’需添加OC=OD,根据‘AAS’需添加∠OPC=∠OPD,故选D.【点评】本题考查了角平分线的定义,全等三角形的判定,熟记全等三角形的判定定理是解题的关键.6.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.7.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.8.(2015•莆田)如图,AE∥DF,AE=DF,要使△E AC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2015•宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到A B的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C【点评】此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P 的位置.10.(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠AC B【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(2015•六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【分析】本题要判定△ABC≌△DCB,已知∠ABC=∠DCB,BC是公共边,具备了一组边对应相等,一组角对应相等,故添加AB=CD、∠ACB=∠DBC、∠A=∠D后可分别根据SAS、ASA、AAS能判定△ABC≌△DCB,而添加AC=BD后则不能.【解答】解:A、可利用AAS定理判定△ABC≌△DC B,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.13.(2015•宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD 全等和利用SAS证明△AOD与△COD全等.智汇文库专业文档。
【8份】2016中考数学(贵州专版)复习题型专项集训及答案纵向复习 贵州8大题型专项目录题型专项(一) 计算求值题 .................................................................................................... 1 题型专项(二) 方程(组)、不等式(组)的解法与应用 ........................................................... 5 题型专项(三) 一次函数与反比例函数的综合 .................................................................. 10 题型专项(四) 二次函数知识的综合运用 .......................................................................... 15 题型专项(五) 解直角三角形的应用 .................................................................................. 23 题型专项(六) 特殊四边形的性质与判定 .......................................................................... 30 题型专项(七) 圆的有关证明与计算 .................................................................................. 38 题型专项(八)统计与概率的应用 (48)题型专项(一) 计算求值题本专项主要考查实数的运算、整式的运算与分式的化简求值.纵观近年本省9个地州考试试卷,这类题出现频繁,一般难度不大,实数的运算常结合特殊角的三角函数值进行考查,整式、分式的化简求值题型新而灵活,多以解答题形式呈现.类型1 实数的运算(2015·毕节)计算:(-2 015)0+|1-2|-2cos 45°+8+(-13)-2.【思路点拨】 先分别计算(-2 015)0=1,|1-2|=2-1,cos 45°=22,8=22,(-13)-2=9,然后代入算式计算即可.【解答】 原式=1+2-1-2×22+22+9 =2-2+22+9 =22+9.本题考查实数的混合运算.在计算过程中先需要熟悉每个知识点,如:零指数幂、绝对值的计算、特殊锐角三角函数值等;其次根据计算出的各值,按照实数运算的顺序计算出最终结果.1.(2015·台州)计算:6÷(-3)+|-1|-2 0150.2.(2015·遵义)计算:(3-π)0-12-|-3|+4sin 60°.类型2 整式的运算(2015·贵阳)先化简,再求值:(x +1)(x -1)+x 2(1-x)+x 3,其中x =2. 【思路点拨】 先运用平方差公式、单项式乘以多项式、合并同类项等知识进行化简,然后将给定值代入,按照实数运算法则进行计算.【解答】 原式=x 2-1+x 2-x 3+x 3=2x 2-1.当x =2时,原式2×22-1=7.本题考查了整式的混合运算——化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.单项式或多项式与多项式相乘时,应注意以下几个问题:①实质上是转化为单项式乘以单项式;②用单项式、多项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.1.(2015·南宁)先化简,再求值:(1+x)(1-x)+x(x +2)-1,其中x =12.2.(2015·常州)先化简,再求值:(x +1)2-x(2-x),其中x =2.3.(2015·北京)已知2a 2+3a -6=0.求代数式3a(2a +1)-(2a +1)(2a -1)的值.类型3 分式的化简求值(2015·遵义)先化简,再求值:3a -3a ÷a 2-2a +1a 2-aa -1,其中a =2. 【思路点拨】 先根据分式混合运算将分式进行化简,再将a =2代入进行求值. 【解答】 原式=3(a -1)a ·a 2(a -1)2-aa -1 =3a a -1-aa -1 =2a a -1. 当a =2时,原式=2×22-1=4.此题考查了分式的化简求值,分式的加减运算的关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.分式的化简求值,有时需要选取合适的x 的值代入,那么要保证化简前的分式与化简后得到的分式有意义;同时计算程序要简洁、分明.1.(2015·铜仁)先化简(2x +2+x +5x 2+4x +4)·x +2x 2+3x,然后选取一个你喜欢的数代入求值.2.(2015·毕节)先化简,再求值:(x 2+1x 2-x -2x -1)÷x +1x -1,其中x =-3.3.(2015·安顺)先化简,再求值:x +22x 2-4x ÷(x -2+8xx -2),其中x =2-1.4.(2015·黔东南)先化简,后求值:m -33m 2-6m ÷(m +2-5m -2),其中m 是方程x 2+2x -3=0的根.参考答案类型11.原式=-2+1-1=-2. 2.原式=1-23-3+4×32=-2-23+2 3 =-2.类型21.原式=1-x 2+x 2+2x -1=2x. 当x =12时,原式=2×12=1.2.原式=(x +1)2-x(2-x)=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=2x 2+1=2×22+1=9.3.原式=6a 2+3a -4a 2+1=2a 2+3a +1.当2a 2+3a -6=0,即2a 2+3a =6时,原式=6+1=7. 类型31. 原式=[2(x +2)(x +2)2+x +5(x +2)2]·x +2x (x +3)=2(x +2)+(x +5)(x +2)2·x +2x (x +3) =3(x +3)(x +2)2·x +2x (x +3) =3x (x +2).∵x 取0,-2,-3使分式无意义,∴x 只能取除0,-2,-3之外的值进行代入求值计算. ∴当x =1时,原式=3x (x +2)=1.2.原式=[x 2+1x (x -1)-2x x (x -1)]÷x +1x -1=(x -1)2x (x -1)·xx +1-1 =x -1x +1-1 =-2x +1.将x =-3代入,得-2x +1=-2-3+1=1.3.原式=x +22x (x -2)÷x 2-4x +4+8xx -2=x +22x (x -2)·x -2(x +2)2 =12x (x +2).当x =2-1时,原式=12(2-1)(2-1+2)=12(2-1)(2+1) =12. 4.原式=m -33m (m -2)÷[(m +2)(m -2)m -2-5m -2]=m -33m (m -2)÷(m +3)(m -3)m -2 =m -33m (m -2)·m -2(m +3)(m -3) =13m (m +3)=13m 2+9m.解一元二次方程x 2+2x -3=0,得x 1=1,x 2=-3,∵要分式有意义,则m 不能取-3,3,2,0, ∴当m =1时,原式=112.题型专项(二) 方程(组)、不等式(组)的解法与应用纵观贵州9地州近年中考试卷命题情况分析,一次方程(组)、一元二次方程、分式方程、一元一次不等式(组)的解法已成高频考点,重在考查解法的技能;近年来方程与不等式不但作为解决其他数学题的工具,而且已频频单独凸显在试卷解答题中,注重考查构建方程或不等式模型解决现实生活中的问题.类型1 解方程(组)(2015·黔西南)解方程:2x x -1+11-x=3. 【解答】 去分母,得2x -1=3(x -1). 去括号,得2x -1=3x -3. 移项、合并,得-x =-2. 系数化为1,得x =2.检验:把x =2代入x -1,得2-1=1≠0, ∴x =2是原分式方程的解.解分式方程的基本思想是将分式方程转化为整式方程,转化的具体方法是去分母,由于在分式方程转化为整式方程过程中,容易产生增根(使分母为零的未知数的值),所以解分式方程必须验根,这是一个容易被忽视的过程. 解方程(组)注重的是解题过程,解答这类问题必须注意步骤分明,简洁.1.(2015·南京)解方程:2x -3=3x .2.(2013·遵义)解方程组:⎩⎪⎨⎪⎧x -2y =4,2x +y -3=0.3.解方程:x 2-6x +8=0.类型2 解不等式(组)(2015·黔东南)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,3x -12≥-2,并将它的解集在数轴上表示出来.【思路点拨】 先分别计算不等式2(x +2)>3x 及3x -12≥-2的解集,再确定它们的公共部分,最后将不等式组的解集表示在数轴上.【解答】 解不等式2(x +2)>3x ,得x <4.解不等式3x -12≥-2,得x≥-1.∴不等式组的解集为-1≤x<4. 将解集表示在数轴上,如图所示:解不等式组思路概括为“分开解,解中判”. 求解集过程可以借助口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集. 在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.1.(2015·上海)解不等式组:⎩⎪⎨⎪⎧4x>2x -6,x -13≤x +19,并把解集在数轴上表示出来.2.(2015·呼和浩特)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值.类型3 方程(组)、不等式的应用(2015·铜仁)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种汽车各有多少辆.【思路点拨】 (1)根据等量关系“甲货车比乙货车每辆多装20件”可设乙货车每辆装x 件帐篷,根据等量关系“甲货车装1 000件和乙货车装800件辆数相等”列分式方程求解;(2)通过建立一元一次方程或二元一次方程组求甲、乙两种汽车的数量.【解答】 (1)设乙货车每辆装x 件帐篷,则甲货车每辆装(x +20)件,根据题意,得1 000x +20=800x.解得x =80. 经检验,x =80是原方程的解,且符合题意,x +20=100. 答:甲、乙两种货车每辆分别装100件、80件.(2)设乙汽车有y 辆,则甲汽车有(16-y)辆,根据题意,得 100(16-y)+80(y -1)+50=1 490. 解得y =4,16-y =12.答:甲、乙两种汽车分别是12辆、4辆.解答本题的关键是读懂题意,找出合适的等量关系,构建方程模型求解. 列方程(组)、不等式解应用题的一般步骤:审:审清题意,分清题中的已知量、未知量;设:设未知数,设其中某个未知量为x ,并注意单位,对于含有两个未知数的问题,需要设两个未知数;列:根据题意寻找等量(不等)关系列方程(不等式);解:解方程(不等式);验:检验方程(组)、不等式的解是否符合题意;答:写出答案(包括单位).1.(2015·山西)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1 520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1 050元,则该经营户最多能批发西红柿多少kg?2.(2015·连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.类型4 方程(组)、不等式与函数的综合应用(2015·黔西南)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 【思路点拨】 (1) 建立二元一次方程组求两种价格;(2)若每月用水量为x 吨,从x ≤12和x>12两个方面来考虑应交水为y 与x 之间函数关系;(3)根据用水量这一变量值,结合(2)问选择函数表达式求函数变量x 的值.【解答】 (1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元, 市场调节价2.5元. (2)当x≤12时,y =x.当x>12时,y =12+2.5(x -12),即y =2.5x -18.(3)当x =26时,y =2.5×26-18=65-18=47(元). 答:小黄家三月份应交水费47元.本题考查运用一次方程、一次函数及简单一元一次不等式综合解决实际问题. 解决这类问题,可以按照一般步骤:结合实际审题,构建方程或函数模型,求解方程或函数模型,检验结果写答案.按照解题的一般步骤可以顺利分析问题、解决问题.(2014·黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.参考答案类型11.方程两边乘x(x -3),得2x =3(x -3).解得x =9. 检验:当x =9时,x(x -3)≠0. ∴原方程的解为x =9.2.解法一:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0,②由①得x =2y +4.③将③代入②,得2(2y +4)+y -3=0.解得y =-1.将y =-1代入③,得x =2×(-1)+4=2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.解法二:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0.②①×2-②,得-5y = 5,即y =-1.将y =-1代入①,得 x -2×(-1)=4,即x =2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.3.配方,得x 2-6x +9=1,即(x -3)2=1,∴x -3=1或x -3=-1. ∴x 1=4,x 2=2. 类型21.解不等式4x >2x -6,得x >-3. 解不等式x -13≤x +19,得x≤2.∴不等式组的解集为:-3<x≤2. 在数轴上表示如图:2.⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4,②①+②得3(x +y)=-3m +6,即x +y =-m +2.代入不等式,得-m +2>-32.解得m <72.则满足条件的m 的正整数值为1,2,3.类型31.(1)设批发西红柿x kg, 西兰花y kg. 由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1 520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg, 由题意得(5.4-3.6)a +(14-8)×1 520-3.6a 8≥1 050.解得a≤100.答:该经营户最多能批发西红柿100 kg.2.(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元, 根据题意得6 000x =4 800x -80.解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元.(2)设平均每次降价的百分率为y ,根据题意得400(1-y)2=324,解得y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%. 类型41.(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得⎩⎪⎨⎪⎧x =30,y =27. 答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180. (3)设购进玩具z 件(x >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30. 所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30. 所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30. 所以当购进玩具少于30件,选择购乙种玩具省钱.题型专项(三) 一次函数与反比例函数的综合本专项主要考查一次函数与反比例函数的图象与字母系数的关系,图象交点、图象及其性质等的综合,在中考试题中常以解答题的形式呈现,选填题呈现较少.类型1 函数图象与字母系数的关系(2015·黔东南)若ab<0,则正比例函数y =ax 与反比例函数y =bx在同一坐标系的大致图象可能是(B)【思路点拨】 本题考查正比例函数与反比例函数的图象与性质,由正比例函数y =ax 过原点可知选项C 错误;∵a b <0,∴a 与b 异号,∴当a >0时b <0,当a <0时b >0;选项A 中a 与b 均大于0,故错误;选项B 中a <0,b >0,正确;选项D 中a 、b 均小于0,故错误.根据条件ab <0,可以得到a>0,b<0或a<0,b>0两种情况进行分类讨论,同时借助数形结合思想进行分析,解此类图象问题要善于以其中一个图象为参照,分析另一图象与该图象之间是否存在矛盾.1.(2013·毕节)一次函数y =kx +b(k≠0)与反比例函数y =kx (k≠0)的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )A .k >0,b >0B .k <0,b >0C .k <0,b <0D .k >0,b <02.(2015·兰州)在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )3.(2015·牡丹江)在同一直角坐标系中,函数y =-ax 与y =ax +1(a≠0)的图象可能是( )4.(2013·潍坊)设点A(x 1,y 1)和B(x 2,y 2)是反比例函数y =kx 图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y =-2x +k 的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限类型2 一次函数与反比例函数的综合运用(2015·贵阳)如图,一次函数y =x +m 的图象与反比例函数y =kx的图象相交于A(2,1),B 两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B 点的坐标,并指出使反比例函数值大于一次函数值的x 的取值范围.【思路点拨】 (1)直接运用待定系数法可求一次函数和反比例函数的解析式; (2)求x -1=2x 的解可得到一次函数与反比例函数的交点坐标,再结合图象分析,反比例函数图象在一次函数图象上方时,求出x 的取值范围.【解答】 (1)将点A(2,1)代入一次函数y =x +m ,解得 m =-1.所以一次函数的解析式为y =x -1.将点A(2,1)代入反比例函数y =k x ,解得 k =2.所以反比例函数的解析式为2x.(2)点B 的坐标为(-1,-2).由题意并结合图象知:当x<-1时,反比例函数的值大于一次函数的值; 当-1<x<0时,一次函数的值大于反比例函数的值; 当0<x<2时,反比例函数的值大于一次函数的值; 当x>2时,一次函数的值大于反比例函数的值,综上所述:当x<-1或0<x<2,反比例函数的值大于一次函数的值.(1)待定系数法的一般步骤:①写出函数解析式的一般式,其中包括未知的系数;②把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组;③解方程(组)求出待定系数的值,从而写出函数解析式.(2)比较两函数值的大小时,通常可运用数形结合的思想方法来解答.1.(2015·铜仁)如图,在平面直角坐标系xOy 中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y =k 2x 在第一象限内的图象交于点B ,连接BO ,若S △OBC =1,tan∠BOC =13,则k 2的值是( )A .-3B .1C .2D .32.(2015·黔南)如图,函数y =-x 的图象是二、四象限的角平分线,将y =-x 的图象以点O 为中心旋转90°与函数y =1x 图象交于点A ,再将y =-x 的图象向右平移至点A ,与x 轴交于点B ,则点B 的坐标为________.3.(2014·六盘水)如图,一次函数y 1=k 1x +b(k 1≠0)的图象与反比例函数y 2=k 2x (k 2≠0)的图象交于A 、B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .4.(2015·安顺)如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A(2,3)、B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.5.(2015·黔东南)如图,已知反比例函数y =kx 与一次函数y =x +b 的图象在第一象限相交于点A(1,-k +4).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.6.(2013·黔南)如图,一次函数y =kx +2的图形与反比例函数y =mx 的图象交于点P ,点P 在第一象限,PA ⊥x 轴于点A ,一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △COD =1,CO OA =12. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数值大于反比例函数的值的x 的取值范围.参考答案类型1 1.C 2.A 3.B 4.A类型2 1.D 2.(2,0) 3.x>2或-1<x<0 4.(1)∵反比例函数y =mx 的图象经过点A(2,3),∴m =6.∴反比例函数的解析式是y =6x.∵点B(-3,n)在反比例函数y =6x的图象上,∴n =-2.∴B(-3,-2).∵一次函数y =kx +b 的图象经过A(2,3)、B(-3,-2)两点,∴⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2.解得⎩⎪⎨⎪⎧k =1,b =1. ∴ 一次函数的解析式是y =x +1. (2)OP 的长为 3或1.5.(1)∵点A(1,-k +4)在反比例函数y =kx 的图象上,∴-k +4=k ,解得k =2.∴反比例函数解析式为y =2x ,点A 的坐标为(1,2).将点A(1,2)代入一次函数y =x +b ,得b =1. ∴一次函数解析式为y =x +1.(2)由⎩⎪⎨⎪⎧y =2x ,y =x +1,解得⎩⎪⎨⎪⎧x 1=1,y 1=2,⎩⎪⎨⎪⎧x 2=-2,y 2=-1.∴点B 的坐标为(-2,-1).对于直线y =x +1,令y =0得x =-1, ∴点C 的坐标为(-1,0).∴S △ABO =S △AOC +S △BOC =12OC ·|y A |+12OC ·|y B |=12×1×2+12×1×1=32.6.(1)在y =kx +2中,令x =0,得y =2,∴点D 的坐标为(0,2). (2)∵PA∥OD,∴Rt △PAC ∽Rt △DOC. ∵CO OA =12, ∴OD PA =CO CA =13,PA =6.又S △COD =1,可得12OC ·OD =1, ∴OC =1. ∴OA=2, ∴P(2,6).把P(2,6)分别代入y =kx +2与y =mx ,可得一次函数解析式为:y =2x +2,反比例函数解析式为:y =12x(x>0).(3)由图象知x>0时,一次函数值大于反比例函数的值的x 的取值范围为x>2.题型专项(四) 二次函数知识的综合运用本专项主要考查二次函数与一次函数的综合运用,二次函数的图象与字母系数之间的关系,二次函数在实际生活中的应用,以选择题、填空题、解答题形式呈现.类型1 二次函数的图象与字母系数的关系(2015·黔东南)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,给出下列四个结论:①abc=0;②a+b +c>0;③a>b;④4ac-b 2<0.其中正确的结论有( C )A .1个B .2个C .3个D .4个【思路点拨】二次函数图象与a 、b 、c 之间关系问题解决:可以从一些特殊形式考虑:(1)含a +b +c 代数式,考虑当x =1时求y 值;(2)含a -b +c 代数式,考虑当x =-1时求y 值;(3)含4a +2b +c 代数式,考虑当x =2时求y 值;(4)含4a -2b +c 代数式,考虑当x =-2时求y值;(5) 含b 2-4ac 代数式,考虑由图象与x 轴交点个数来判断.1.(2015·毕节)二次函数y =ax 2+bx +c 的图象如图所示,则下列关系式错误的是( )A .a <0B .b >0C .b 2-4ac >0 D .a +b +c <02.(2015·枣庄)如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为x =12,且经过点(2,0),有下列说法:①abc<0;②a+b =0;③4a+2b +c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( )A .①②④B .③④C .①③④D .①②3.(2014·黔东南)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a +c ;③4a+2b +c >0;④b 2-4ac >0.其中正确结论的有( )A .①②③B .①②④C .①③④D .②③④4.(2013·遵义)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若M =a +b -c ,N =4a -2b +c ,P =2a -b ,则M 、N 、P 中,值小于0的数有( )A .3个B .2个C .1个D .0个5.(2014·达州)下图是二次函数y =ax 2+bx +c 的图象的一部分,对称轴是直线x =1.① b 2>4ac ;②4a-2b +c <0;③不等式ax 2+bx +c >0的解集是x≥3.5;④若(-2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是( )A .①②B .①④C .①③④D .②③④6.(2014·安顺)如图,二次函数y =ax 2+bx +c(a>0)的图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C ,在下面五个结论中:①2a -b =0;②a+b +c>0;③c=-3a ;④只有当a =12时,△ABD 是等腰直角三角形;⑤使△ACB为等腰三角形的a 值可以有四个.其中正确的结论是________.(只填序号)类型2 二次函数与一次函数的综合运用(2013·贵阳)已知:直线y =ax +b 过抛物线y =-x 2-2x +3的顶点P ,如图所示.(1)顶点P 的坐标是______;(2)若直线y =ax +b 经过另一点A(0,11),求出该直线的表达式; (3)在(2)的条件下,若有一直线y =mx +n 与直线y =ax +b 关于x 轴成轴对称,求直线y =mx +n 与抛物线y =-x 2-2x +3的交点坐标.【思路点拨】 (3)求出直线y =ax +b 与x 轴的交点坐标和点A 关于x 轴的对称点的坐标,求出y =mx +n 的解析式,再与y =-x 2-2x +3组成方程组,求出交点坐标.【解答】 (1) ∵a=-1,b =-2,c =3,∴-b 2a =--22×(-1)=-1,4ac -b 24a =4×(-1)×3-(-2)24×(-1)=-12-4-4=4. ∴顶点坐标为P(-1,4).(2) ∵直线y =ax +b 经过顶点P(-1,4)和A(0,11),∴⎩⎪⎨⎪⎧4=-a +b ,11=a×0+b. 解得⎩⎪⎨⎪⎧a =7,b =11.∴直线y =ax +b 表达式为y =7x +11.(3)∵直线y =7x +11与x 轴,y 轴交点坐标分别为(-117,0),(0, 11),∴与x 轴成轴对称的直线y =mx +n 与x 轴,y 轴交点坐标分别为(-117,0),(0, -11).∴⎩⎪⎨⎪⎧0=-117m +n ,-11=m×0+n.解得⎩⎪⎨⎪⎧m =-7,n =-11.∴直线y =mx +n 表达式为y =-7x -11.∵直线y =-7x -11与抛物线y =-x 2-2x +3相交,∴⎩⎪⎨⎪⎧y =-7x -11,y =-x 2-2x +3. 解得⎩⎪⎨⎪⎧x 1=7,y 1=-60. ⎩⎪⎨⎪⎧x 2=-2,y 2=3.∴直线y =-7x -11与抛物线y =-x 2-2x +3的交点坐标为(7,-60),(-2, 3).二次函数与一次函数的综合运用中,常常需要求出两函数图象的交点坐标,只需联立两函数的解析式,即可求得结果;同时,二次函数图象中几个特殊点的坐标,往往是函数综合题中考查的重点内容.1.(2014·遵义)已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图所示,其中正确的是( )2.(2015·安徽)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )3.(2015·泰州)已知二次函数y =x 2+mx +n 的图象经过点P(-3,1),对称轴是经过(-1,0)且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数y =kx +b 的图象经过点P ,与x 轴相交于点A ,与二次函数的图象相交于另一点B ,点B 在点P 的右侧,PA ∶PB =1∶5,求一次函数的表达式.类型3 利用二次函数求最值(2015·毕节)某商场A 、B 两种商品,若买2件A 商品和1件B 商品,共需80元;若买3件A 商品和2件B 商品,共需135元,(1)设A 、B 两种商品每件售价分别为a 元、b 元,求a ,b 的值;(2)B 商品的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若按销售单价每上涨1元,B 商品每天的销售量就减少5件,①求每天B 商品的销售利润y(元)与销售单价x(元)之间的函数关系式? ②求销售单价为多少元时,B 商品的销售利润最大,最大利润是多少?【思路点拨】 (1)由2件A 商品和1件B 商品需要80元,3件A 商品和2件B 商品需要135元,列二元一次方程组求解.(2)①根据利润=(售价-成本)×销量列出y 关于x 的函数关系式;②利用二次函数最值确定最大利润.【解答】 (1)根据题意,列方程得⎩⎪⎨⎪⎧2a +b =80,3a +2b =135,解得⎩⎪⎨⎪⎧a =25,b =30. 答:a 、b 的值分别为25,30. (2)①∵销售单价为x 元,∴销售量为100-5(x -30)件,根据题意得y =(x -20)[100-5(x -30)]=-5x 2+350x -5 000,即y 关于x 的函数关系式为y =-5x 2+350x -5 000(30≤x≤50).②由抛物线对称轴为x=-3502×(-5)=35,可知当售价为35元时,B商品每天的销售利润最大,最大利润为y=-5×352+350×35-5 000=1 125(元).答:当B商品定价为35元时,B商品每天的利润最大,最大利润为1 125元.此题主要考查了二次函数的应用以及用配方法求最大值,准确分析题意,列出y与x 之间的二次函数关系式是解题关键.1.(2015·黔南)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流速度密度x的一次函数.(1)求彩虹桥上车流密度为100辆/小时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大小40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.2.(2015·贵阳模拟)乐乐童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.(1)童装店降价前每天销售该童装可盈利多少元?(2)如果童装店想每天销售这种童装盈利1 200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(3)每件童装降价多少元童装店可获得最大利润,最大利润是多少元?3.(2015·黔西南模拟)某服装经销商发现某款新型运动服市场需求量较大,经过市场调查发现年销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系,而该服装的进价z(元)与销售量y(件)之间的关系如下表所示.已知每年支付员工工资和场地租金等费用总计2万元.(1)求y 关于x 的函数关系式.(2)写出该经销商经销这种服装的年获利w(元)关于销售单价x(元)的函数关系式.当销售单价x 为何值时,年获利最大?并求出这个最大值.(3)若经销商希望该服装一年的销售获利不低于2.2万元,请你根据图象帮助确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?参考答案类型1 1.D 2.A 3.B 4.A 5.B 6.③④ 类型2 1.D 2.A3.(1)∵二次函数对称轴是经过(-1,0)且平行于y 轴的直线, ∴-m2=-1,解得m =2.∵二次函数过点P(-3,1), ∴1=9-6+n , 解得n =-2.(2)二次函数解析式为y =x 2+2x -2.过P 作PC⊥x 轴于点C ,过B 作BD⊥x 轴于点D ,PC ∥BD ,∴△APC ∽△ABD. 又∵PA∶PB=1∶5, ∴PC BD =PA AB =PA PA +PB =16. ∵PC =1, ∴BD =6. ∴y B =6.∵B 在二次函数上,设B 点横坐标为x , ∴x 2+2x -2=6,解得x 1=2,x 2=-4(舍去).∴B 点坐标为(2,6),将B 、P 点代入一次函数得⎩⎪⎨⎪⎧2k +b =6,-3k +b =1,解得⎩⎪⎨⎪⎧k =1,b =4. ∴一次函数的表达式是y =x +4.类型3 1.(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b ,解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x≤220时,v =-25x +88.当x =100时,v =48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60.解得70<x<120.∴应控制大桥上的车流密度在7<x<120范围内.(3)设车流量为y 与x 之间的关系式为y =vx ,当20≤x≤220时,y =(-25x +88)x =-25(x -110)2+4 840,∴当x =110时,y 最大=4 840.∴当车流密度是110辆/千米时,车流量y 取得最大值是4 840辆/小时. 2.(1)童装店降价前每天销售该童装可盈利:(100-60)×20=800(元). (2)设每件童装降价x 元,根据题意,得(100-60-x)(20+2x)=1 200. 解得x 1=10,x 2=20.∵要使顾客得到较多的实惠, ∴x =20.答:童装店应该降价20元. (3)设每件童装降价x 元,可获利y 元,根据题意,得y =(100-60-x)(20+2x)=-2x 2+60x +800=-2(x -15)2+1 250. ∴当x =15时,y 最大=1 250.答:每件童装降价15元童装店可获得最大利润,最大利润是1 250元.3.(1)设y 关于x 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧500=300k +b ,400=400k +b ,解得⎩⎪⎨⎪⎧k =-1,b =800.∴y =-x +800.。
2016中考数学试题及答案解析2016年中考数学已经结束,本文将对本次考试试题出现的知识点进行解析,帮助考生对数学考点更加清晰明确。
2016年中考数学试题及答案解析一、单项选择题1.斐波那契数列(第n项满足公式 Fn=Fn-1+Fn-2)中,第25项的值为(A. 1250B. 1280C. 1290D. 1300答案:D,解析:F1=1,F2=1,F3=2,那么F25=F24+F23=750+550=1300。
2.若复数z=(6-3i)*(2+i),z的共轭复数为(A. 8-3iB. 8+3iC. 6-iD. 6+i答案: B. 8+3i,解析:z的共轭复数即为z的根号共轭复数,即(6-3i)(2+i)的根号共轭复数为(6+3i)(2-i),得到结果8+3i。
3.下列函数中的值正确的连续12点的解析式是(A. y=x^2-3x+7B. y=3x^2+2x-1C. y=(x-2)^2-5x+7D. y=x^2+7答案: C,解析:根据函数y=(x-2)^2-5x+7,它的x取值为0,1,2,3,4,5,6,7,8,9,10,11,且y均为正数,因此其值正确。
二、解答题4.一家公司把罐装蜂蜜装入木箱,每个木箱里装有六个罐装蜂蜜,每罐蜂蜜重1.5Kg,请计算出20个木箱装蜂蜜重量是多少答案:20*6*1.5kg=180kg。
解析:每个木箱里装6个罐装蜂蜜,每个蜂蜜罐重1.5Kg,20个木箱装蜂蜜重量计算为:20*6*1.5kg=180kg。
5.若△ABC的面积为40,AB=4,BC=6,则BC角度数是(答案:60°. 解析:△ABC的面积为40,AB=4,BC=6,则AB:BC=2:3,可利用海伦公式求出其BC角α,即:α=arccos(2/3)=60°。
目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (13)拓展类型数式规律 (16)题型一规律探索题类型一探索图形累加规律针对演练1. (2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为()第1题图A. 34B. 37C. 42D. 462. (2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为()第2题图A. 33B.32C. 31D. 303. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28D. 264. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A. 18B. 19C. 20D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n =()第6题图A. 10B. 12C. 14D. 167. (2016重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是()第7题图A. 53B. 54C. 55D. 568. (2016重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (2016重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有()第9题图A. 160B. 161C. 162D. 16310. (2016重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为()第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (2016重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有()第11题图A. 80个B. 73个C. 64个D. 72个12. (2016重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为()A. 70B. 71C. 72D. 7313. (2016大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为()第13题图A. 115B. 122C. 127D. 13914. (2016重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为()第14题图A. 61B. 63C. 76D. 7815. (2016重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()第15题图A. 60B. 61C. 62D. 6316. (2016重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为()第16题图A. 48B. 56C. 61D. 6317. (2016徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (2016安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (2016龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1. B【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3.B【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n有2+3(n-1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4.C【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n个图形中三角形的个数为:6n-4,故第五个图形中三角形的个数为:6×5-4=26.5. C【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n个图形的周长为6+(n-1)×2,所以第⑧个图形的周长为6+7×2=20.6. D【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n中有n(n-1)+5个“○”,则可得方程n(n-1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n个图形中有2×(1+2+…+n)个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm2.11. A【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13. C【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14. A【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n +3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1)【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).18. 45【解析】根据题意,可得序号 1 2 3 4钢管数 3 9 18 30找规律3×1 3×3=3×(1+2)3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19. 90【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n +2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m 停下,则这个微型机器人停在()第1题图A. A点B. B点C. C点D. E点2.(2016重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线F A开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O2016所在射线是()第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D (1, -2),把一根长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B【解析】∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为6 m,∵2017÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m 停下,则这个微型机器人停在B点.2. C【解析】观察图形可知12个点依次排列在射线F A、CD、AB、DE、BC、EF、CD、F A、DE、AB、EF、BC上,依此规律循环,又因2016÷12=168,则点O2016在第12条射线BC上,故选C.3. 505【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵2017÷4=504……1,∴前2017个梅花图案中,共有505个“”图案.4. 3【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵2014÷4=503……2,∴滚动2014次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵2016÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型数式规律针对演练1. (2016张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是() A. 9 B. 7 C. 6 D. 02. (2016丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (2016贵港)已知a1=tt-1,a2=11-a1,a3=11-a2,…,a n+1=11-a n(n为正整数,且t≠0,1),则a2016=________(用含有t的代数式表示).4. (2016泉州)指出下列各图形中数的规律,依此,a的值为________.第4题图5. (2016南宁)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2016在第________层.答案拓展类型 数式规律1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为2016÷4=504,所以71+72+73+…+72016的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t 111-=1-t t ,…,∴每3个一次循环,∵2016÷3=672,∴a 2016的值为t1. 4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<2016<452,∴2016位于第44层.。
2016年中考数学试题最后一题汇编(1)1如图,对称轴为直线21=x 的抛物线经过B (2,0)、C (0,4)两点,抛物线与x 轴的另一交点为A .(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上一点,设四边形COBP 的面积为S ,求S 的最大值;(3)如图①,若M 是线段BC 上一动点,在x 轴上是否存在这样有点Q ,使∆MQC 为等腰三角形且∆MQB 为直角三角形?若存在,求出Q 点坐标;若不存在,请说明理由.2矩形的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(10,8),沿直线OD 折叠矩形,使点A 正好落在BC 上的E 处,E 点坐标为(6,8),抛物线y=ax 2+bx+c 经过O 、A 、E 三点.(1)求此抛物线的解析式;(2)求A D 的长;(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.3如图,在平面直角坐标系中,矩形OCDE 的顶点C 和E 分别在y 轴的正半轴和x 轴的正半轴上,OC=8,OE=17,抛物线y=x 2﹣3x+m 与y 轴相交于点A ,抛物线的对称轴与x 轴相交于点B ,与CD 交于点K .(1)将矩形OCDE 沿AB 折叠,点O 恰好落在边CD 上的点F 处.①点B 的坐标为( 、 ),BK 的长是 ,CK 的长是 ;②求点F 的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE 沿着经过点E 的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG 的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.4.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C (0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P 的坐标;若不能,请说明理由.5(2016•宜昌)已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x ﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小..6如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.7如图,在平面直角坐标系中,有抛物线y=a(x﹣h)2.抛物线y=a(x﹣3)2+4经过原点,与x轴正半轴交于点A,与其对称轴交于点B,P是抛物线y=a(x﹣3)2+4上一点,且在x 轴上方,过点P作x轴的垂线交抛物线y=(x﹣h)2于点Q,过点Q作PQ的垂线交抛物线y=(x﹣h)2于点Q′(不与点Q重合),连结PQ′,设点P的横坐标为m.(1)求a的值;(2)当抛物线y=a(x﹣h)2经过原点时,设△PQQ′与△OAB重叠部分图形的周长为l.①求的值;②求l与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O,A,Q,Q′为顶点的四边形是轴对称图形?直接写出h的值.8若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.9已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.。
2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨A.18户B.20户C.22户D.24户2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学了整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,404.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2016年全国各地中考数学试题分类解析汇编(第一辑)第10章数据的收集、整理与描述参考答案与试题解析一.选择题(共10小题)1.(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.2.(2016•泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学整)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40【分析】先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【点评】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4.(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.5.(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.6.(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.【点评】此题考查了频数与频率,弄清题中的数据是解本题的关键.8.(2016•盐城)下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对我国初中学生视力状况的调查,人数太多,调查的工作量大,适合抽样调查,故此选项错误;B、对量子科学通信卫星上某种零部件的调查,关系到量子科学通信卫星的运行安全,必须全面调查,故此选项正确;C、对一批节能灯管使用寿命的调查具有破坏性,适合抽样调查,故此选项错误;D、对“最强大脑”节目收视率的调查,人数较多,不便测量,应当采用抽样调查,故本选项错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.(2016•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解:A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.10.(2016•山西)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查某班学生每周课前预习的时间适合全面调查;调查某中学在职教师的身体健康状况适合全面调查;调查全国中小学生课外阅读情况适合抽样调查,不适合全面调查;调查某校篮球队员的身高适合全面调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
江苏省中考数学试题研究第一部分考点研究第三章函数第14课时二次函数的应用试题(5年真题)函数第14课时二次函数的应用江苏近5年中考真题精选(2013~2017)命题点1二次函数的实际应用(盐城1考,淮安1考,宿迁1考)考向一最大利润问题1. (2016徐州26题8分)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)2. (2013盐城25题10分)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2题图3. (2017扬州27题12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克) 30 35 40 45 50日销售量p(千克) 600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a值.(日获利=日销售利润-日支出费用) 考向二费用问题4. (2016宿迁24题8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.考向三 几何图形面积问题5. (2014淮安25题10分)用长为32 m 的篱笆围一个矩形养鸡场,设围成的矩形一边长为x m ,面积为y m 2.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60 m 2?(3)能否围成面积为70 m 2的养鸡场?如果能,请求出其边长;如果不能,请说明理由. 6. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm 2.”他的说法对吗?请说明理由.命题点2 二次函数的综合应用(盐城必考,淮安2考,宿迁必考)7. (2016淮安27题12分)如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.第7题图8. (2013南京26题9分)已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.9. (2016宿迁26题10分)如图,在平面直角坐标系xOy中,将二次函数y=x2-1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.第9题图10. (2013宿迁27题12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx -3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y =t(t为常数)与抛物线交于不同的两点P、Q.(1)求a和b的值;(2)求t 的取值范围;(3)若∠PCQ =90°,求t 的值.第10题图 答案1. 解:(1)设y =kx +b ,将(180,100),(260,60)代入得:⎩⎨⎧=+=+60260100180b k b k , 解得⎪⎩⎪⎨⎧==19021-b k ,(2分) ∴y 与x 之间的函数表达式为y =-12x +190(180≤x ≤300);(4分)(2) 设利润为w ,w =y·x -100y -60(100-y )=x (-12x +190)-100(-12x +190)-60[100-(-12x +190)]=-12x 2+210x -13600=-12(x -210)2+8450,∵180<210<300, (6分)∴当x =210时,w 最大=8450(元),答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.(8分)2. 解:(1)设现在实际购进这种水果每千克a 元,则原来购进这种水果每千克(a +2)元,根据题意,得80(a +2)=88a , 解得a =20.答:现在实际购进这种水果每千克20元; (2)①设y 与x 之间的函数关系式为y =kx +b ,将(25,165),(35,55)代入,得⎩⎨⎧=+=+553516525b k b k ,解得⎩⎨⎧==44011-b k , 故y 与x 之间的函数关系式为y =-11x +440;②设这种水果的销售单价为x 元时,所获利润为w 元, 则w =(x -20)y =(x -20)(-11x +440) =-11x 2+660x -8800 =-11(x -30)2+1100, ∵a =-11<0,∴当x =30时,w 有最大值1100.答:将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元. 3. 解:(1)p 与x 之间满足一次函数关系p =kx +b (k ≠0),因为点(50,0),(30,600)在图象上,所以⎩⎨⎧=+=+60030050b k b k ,解得⎩⎨⎧==150030-b k , ∴p 与x 之间的函数表达式为p =-30x +1500(30≤x ≤50);(2)设日销售价格为x 元/千克,日销售利润为w 元,依题意得w =(-30x +1500)(x -30)=-30x 2+2400x -45000(30≤x ≤50), ∵a =-30<0, ∴w 有最大值,当x =-24002×(-30)=40 (元/千克)时,w 有最大值,即最大值为w 最大=4×(-30)×(-45000)-240024×(-30)=3000(元);答:销售价格为40元/千克时,日销售利润最大;(3)∵w =p (x -30-a)=-30x 2+(2400+30a )x -(1500a +45000), 对称轴为x =-2400+30a 2×(-30)=40+12a ,①若a >10,当x =45时取最大值,(45-30-a )×150=2250-150a <2430(舍去), ②若a <10,当x =40+12a 时取最大值,将x =40+12a 代入,得w =30(14a 2-10a +100),令w =2430,则30(14a 2-10a +100)=2430,解得a =2或a =38(舍去). 综上所述,a =2. 4. 解:(1)由题意得,y =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤<+=≤)<()()()()()()<100-150]30-120[30150--150]30-120[300(1202x m x m m x m x x x x x x x x x ;(4分) (2)由(1)知当0<x ≤30或m <x ≤100时, 函数值都是随着x 的增大而增大, 当30<x ≤m 时,y =x [120-(x -30)]=x(150-x ) =-x 2+150x=-(x 2-150x +752-752) =-(x -75)2+752,∴当30<m ≤75时,收取的总费用随着团队中人数的增加而增加.(8分)5. 解:(1)已知围成的矩形一边长为x m ,则矩形的邻边长为(32÷2-x ) m .依题意得:y =x (32÷2-x )=-x 2+16x ,∴y 关于x 的函数关系式是y =-x 2+16x ;(3分)(2)由(1)知y =-x 2+16x , 当y =60时,-x 2+16x =60,即(x -6)(x -10)=0, 解得 x 1=6,x 2=10,即当x 是6 m 或10 m 时,围成的养鸡场面积为60 m 2;(5分) (3)不能围成面积为70 m 2的养鸡场.(6分) 理由如下:由(1)知,y =-x 2+16x , 当y =70时,-x 2+16x =70, 即x 2-16x +70=0,(8分) ∵b 2-4ac =(-16)2-4×1×70 =-24<0, ∴该方程无解;即不能围成面积为70 m 2的养鸡场.(10分)6. 解:(1)设剪成的较短的一段为x cm ,较长的一段就为(40-x)cm ,由题意得:)4(x 2+(4-40x )2=58, 解得x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm , 当x =28时,较长的为40-28=12<28(舍去), ∴较短的一段为12 cm ,较长的一段为28 cm ;(2)设剪成的较短的一段为m cm ,较长的一段就为(40-m)cm ,由题意得:(4m )2+(4-40m )2=48, 变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416 =-64<0,∴原方程无实数根,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 7. 解:(1)∵二次函数y =-14x 2+bx +c 过A (0,8)、B (-4,0)两点,∴⎪⎩⎪⎨⎧==+⨯804-4-41-2c c b )(, 解得⎩⎨⎧==81c b , ∴二次函数的解析式为y =-14x 2+x +8,当y =0时,解得x 1=-4,x 2=8, ∴C 点坐标为(8,0);(2)①如解图,连接DF 、OF ,设F (m ,-14m 2+m +8),第7题解图∵S 四边形OCFD =S △CDF +S △OCD =S △ODF +S △OCF , ∴S △CDF =S △ODF +S △OCF -S △OCD ,=12×4×m +12×8×(-14m 2+m +8)-12×8×4 =2m -m 2+4m +32-16 =-m 2+6m +16=-(m -3)2+25,∴当m =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 四边形CDEF =2S △CDF =50,∴S 的最大值为50;②18.【解法提示】∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (m -8,-14m 2+m +12), ∵E (m -8,-14m 2+m +12)在抛物线上, ∴-14(m -8)2+(m -8)+8 =-14m 2+m +12, 解得m =7,当m =7时,S △CDF =-(7-3)2+25=9,∴此时S 四边形CDEF =2S △CDF =18.8. (1)证明:y =a (x -m )2-a (x -m )=ax 2-(2am +a )x +am 2+am .∵当a ≠0时,[-(2am +a )]2-4a (am 2+am )=a 2>0.∴方程ax 2-(2am +a )x +am 2+am =0有两个不相等的实数根,∴不论a 与m 为何值且a ≠0时,该函数的图象与x 轴总有两个公共点;(3分)(2)解:①y =a (x -m )2-a (x -m )=a (x -212+m )2-4a ,∴点C 的坐标为(212+m ,-4a).当y =0时,a (x -m )2-a (x -m )=0,解得x 1=m ,x 2=m +1,∴AB =1.当△ABC 的面积等于1时,有12×1×|-4a|=1,∴12×1×(-4a )=1,或12×1×4a=1,∴a =-8或a =8;(6分)②当x =0时,y =am 2+am ,所以点D 的坐标为(0,am 2+am ),当△ABC 的面积与△ABD 的面积相等时,12×1×|-a 4|=12×1×|am 2+am |;即|4a|=|am 2+am |,∵a ≠0,∴14=|m 2+m |,∴m 2+m =±14,即m 2+m +14=0或m 2+m -14=0,∴m =-12或m =-1-22或m =-1+22.(9分) 9. 解:(1)由题意得N 的函数表达式为y =-(x -2)2+9;(3分)(2)∵点P 的坐标为(m ,n),点A 为(-1,0),点B 为(1,0),∴PA 2+PB 2=(m +1)2+(n -0)2+(m -1)2+(n -0)2=m 2+2m +1+n 2+m 2-2m +1+n 2=2m 2+2n 2+2=2(m 2+n 2)+2=2OP 2+2,∴当PA 2+PB 2最大时,要满足OP 最大,即满足直线OP 经过点C ,(5分)又∵点P (m , n )是以点C (1,4)为圆心、1为半径的圆上一动点,∴CP =1,∵OC =12+42=17,∴OP =17+1,∴PA 2+PB 2=2OP 2+2=2(17+1)2+2=38+417;(7分) (3)由⎩⎨⎧+==92--1-22)(x y x y 得两二次函数交点坐标为(-1,0),(3,8). 两曲线围成的封闭图形如解图所示,第9题解图纵坐标的取值范围为:-1≤y ≤9,横坐标的取值范围-1≤x ≤3,∴M 与N 所围成封闭图形内(包括边界)的整点有:(-1,0),(0,-1),(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,8)共25个.(10分)10. 解:(1)将点A (-3,0)、点B (1,0)坐标代入y =ax 2+bx -3中可得: ⎩⎨⎧==+03-3-903-b a b a , 解得⎩⎨⎧==21b a ;(2)由(1)知抛物线的解析式为y =x 2+2x -3,动直线y =t ,联立两个解析式可得:x 2+2x -3=t ,即x 2+2x -(3+t)=0.∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴b 2-4ac =4+4(3+t )>0,解得t >-4;(3)∵y =x 2+2x -3=(x +1)2-4,∴抛物线的对称轴为直线x =-1,当x =0时,y =-3,∴C (0,-3).设点Q 的坐标为(m ,t ),则点P 的坐标为(-2-m ,t),如解图,设PQ 与y 轴交于点D ,第10题解图则CD =t +3,DQ =m ,DP =m +2,∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°,∴∠QCD =∠D P C ,又∵∠PDC =∠QDC =90°,∴△QCD ∽△CPD ,∴DQ DC =DC PD , 即3+t m =23++m t ,整理得:t 2+6t +9=m 2+2m ,∵Q =(m ,t)在抛物线上,∴t =m 2+2m -3,∴m 2+2m =t +3,∴t 2+6t +9=t +3,化简得t 2+5t +6=0,解得t =-2或t =-3,当t =-3时,动直线y =t 经过点C ,故不合题意,舍去,∴t =-2.。
2016中考数学必备试题(有答案)A级基础题1.要使分式1x-1有意义,则x的取值范围应满足()A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为()A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为()A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.分式1.C2.D3.B4.7z36x2yx+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-42=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-611.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.欢迎大家去阅读由小编为大家提供的中考数学必备试题大家好好去品味了吗?希望能够帮助到大家,加油哦!精心整理,仅供学习参考。
【12份】2016年中考数学总复习专题提升测试及答案目录专题提升(一)数形结合与实数的运算 (1)专题提升(二)代数式的化简与求值 (4)专题提升(三)列方程(组)解应用题 (8)专题提升(四)一次函数图象与性质的综合应用 (11)专题提升(五)反比例函数图象与性质的综合应用 (19)专题提升(六)二次函数图象与性质的综合应用 (26)专题提升(七)统计与概率的综合运用 (35)专题提升(八)以特殊三角形为背景的计算与证明 (45)专题提升(九)以特殊四边形为背景的计算与证明 (50)专题提升(十)与圆有关的计算与证明 (60)专题提升(十一)巧用图形变换进行计算与证明 (65)专题提升(十二)以圆为背景的相似三角形的计算与证明 (70)专题提升(一)数形结合与实数的运算1.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(D)(第1题图)A. 2.5B. 2 2C. 3D. 5 2.计算8³12+(2)0的结果为(C ) A. 2+ 2 B. 2+1 C. 3 D. 53.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是(C )(第3题图)A. m >0B. n <0C. mn <0D. m -n >04.定义一种运算☆,其规则为a ☆b =1a +1b ,根据这个规则,计算2☆3的值是(A )A. 56B. 15C. 5D. 65.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是(B )(第5题图)A. 点AB. 点BC. 点CD. 点D6.实数a ,b 在数轴上对应点的位置如图所示,则|a |>|b |(填“>”“<”或“=”).(第6题图)7.计算:|3-23|+(π-2016)0+⎝⎛⎭⎫12-18.已知a -1+|a +b +1|=0,则a b =__1__.9.按下面程序计算:输入x =3,则输出的答案是__12__.10.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0.其中正确结论的序号是__①③__(在横线上填上你认为所有正确结论的序号). 11.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =n 2+2nn +1(用含n 的代数式表示,其中n 为正整数).12.下面两个多位数1248624……,6248624……都是按照如下方法得到的:将第一位数字乘2,若积为一位数,将其写在第2位上;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是495.13.有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4……则第2015次输出的结果是__4__.(第13题图)解:由已知可得:第1次输出的结果为8,第2次输出的结果为4,第3次输出的结果为2,第4次输出的结果为1,第5次输出的结果为4……所以规律为从第2次开始每三次一个循环,(2015-1)÷3=671……1,所以第2015次输出的结果是4.14.计算:(π-5)0+38+(-1)2015-3tan60°. 解:原式=1+2-1-3³3=-1.15.计算:(3-2)0+⎝⎛⎭⎫13-1+4cos 30°-|3-27|.解:原式=1+3+4³32-23=4. 16.我们曾经研究过n ³n 的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n 2.但n 为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0³1+1³2+2³3+…+(n —1)³n =13n (n +1)(n -1)时,我们可以这样做:(1)观察并猜想:12+22=(1+0)³1+(1+1)³2=1+0³1+2+1³2=(1+2)+(0³1+1³2) 12+22+32=(1+0)³1+(1+1)³2+(1+2)³3 =1+0³1+2+1³2+3+2³3 =(1+2+3)+(0³1+1³2+2³3)12+22+32+42=(1+0)³1+(1+1)³2+(1+2)³3+________________ =1+0³1+2+1³2+3+2³3+________________________________________________________________________=(1+2+3+4)+(__________________________) ……(2)归纳结论:12+22+32+…+n 2=(1+0)³1+(1+1)³2+(1+2)³3+…+(1+n -1)³n =1+0³1+2+1³2+3+2³3+…+n +(n -1)³n=(________________)+(______________) =__________________+________________=16³__________________ (3)实践应用:通过以上探究过程,我们就可以算出当n 为100时,正方形网格中正方形的总个数是______________.解:(1)依次填:(1+3)³4;4+3³4;0³1+1³2+2³3+3³4.(2)依次填:1+2+3+…+n ;0³1+1³2+2³3++…+(n -1)³n ;12n (n +1);13n (n+1)(n—1);n(n+1)(2n+1).(3)338350.17.如图,点A,B在数轴上分别表示有理数a,b,且A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=|a-b|.(第17题图)回答下列问题:(1)在数轴上表示2和5的两点之间的距离是__3__,在数轴上表示1和-3的两点之间的距离是__4__.(2)在数轴上表示x和-5的两点之间的距离是|x+5|.(3)若x表示一个有理数,则|x-1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.解:(1)数轴上表示2和5的两点之间的距离是|5-2|=3,数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)根据绝对值的定义知:数轴上表示x和-5的两点之间的距离是|x-(-5)|=|x+5|或|-5-x|=|x+5|.(3)根据绝对值的定义知:|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知:当x在-3与1之间时,|x-1|+|x+3|有最小值4.18.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2²i=(-1)·i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n²i=(i4)n²i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.求i+i2+i3+i4+…+i2015+i2016的值.解:由题意得,i1=i,i2=-1,i3=i2·i=(-1)·i=-i,i4=(i2)2=(-1)2=1,i5=i4·i =i,i6=i5·i=-1,故可发现4次一循环,一个循环内的和为0.∵2016÷4=504,即2016是4的整数倍.∴i+i2+i3+i4+…+i2015+i2016=0.专题提升(二)代数式的化简与求值1.下列计算正确的是(C)A. -3x2y²5x2y=2x2yB. -2x2y3²2x3y=-2x5y4C. 35x3y2÷(5x2y)=7xyD. (-2x-y)(2x+y)=4x2-y22.下列各式的变形中,正确的是(A)A. (-x-y)(-x+y)=x2-y2B. 1x -x =1-x xC. x 2-4x +3=(x -2)2+1D. x ÷(x 2+x )=1x+13.已知1a -1b =13,则2aba -b 的值是(D )A. 16B. -16 C. 6 D. -64.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为(A )(第4题图)A. 7B. -7C. 2a -15D. 无法确定5.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为(C ) A. 9 B. ±3 C. 3 D. 56.化简⎝⎛⎭⎫2x x +2-x x -2÷xx 2-4的结果为x -6.7.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2016+y 2016=__2__.8.若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立,则a =__12__,b=__12__;计算:m =11³3+13³5+15³7+…+119³21=__1021__.解:∵1(2n -1)(2n +1)=12(2n -1)-12(2n +1)=a 2n -1+b 2n +1,∴a =12,b =12.∴m =11³3+13³5+15³7+…+119³21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=12-142=1021. 9.已知|6-3m |+(n -5)2=3m -6-(m -3)n 2,则m -n __-2__.10.观察下列等式:第一个等式:a 1=31³2³22=11³2-12³22; 第二个等式:a 2=42³3³23=12³22-13³23;第三个等式:a 3=53³4³24=13³23-14³24; 第四个等式:a 4=64³5³25=14³24-15³25. 按上述规律,回答以下问题:(1)用含n 的代数式表示第n 个等式: a n =n +2n (n +1)·2n 1=1n ·2n -1(n +1)·2n +1; (2)计算:a 1+a 2+a 3+…+a 20.解:(1)用含n 的代数式表示第n 个等式: a n =n +2n (n +1)·2n +1=1n ³2n -1(n +1)·2(n +1).(2)a 1+a 2+a 3+…+a 20=11³2-12³22+12³22-13³23+13³23-14³24+…+120³220-121³221=12-121³221. 11.先化简,再求值:(a +b )(a -b )+b (a +2b )-b 2,其中a =1,b =-2. 解:原式=a 2-b 2+ab +2b 2-b 2=a 2+ab .当a =1,b =-2时,原式=12+1³(-2)=1-2=-1.12.先化简,再求值:m 2-2m +1m 2-1÷⎝ ⎛⎭⎪⎫m -1-m -1m +1,其中m = 3. 解:原式=m 2-2m +1m 2-1÷(m -1)(m +1)-(m -1)m +1=(m -1)2(m -1)(m +1)·m +1m 2-1-m +1 =m -1m +1·m +1m 2-m =m -1m 2-m =m -1m (m -1)=1m. 当m =3时,原式=1m =13=33.13.先化简,再求值:⎝⎛⎭⎫1x -1-1x +1÷x +2x 2-1,其中x 满足2x -6=0.解:原式=x +1-x +1(x -1)(x +1)÷x +2x 2-1=2(x -1)(x +1)·(x +1)(x -1)x +2=2x +2. ∵2x -6=0,∴x =3. 当x =3时,原式=2x +2=25.14.已知A =x 2+2x +1x 2-1-xx -1.(1)化简A .(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0且x 为整数时,求A 的值.解:(1)A =x 2+2x +1x 2-1-x x -1=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1.(2)解x -1≥0,得x ≥1;解x -3<0,得x <3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab ,其中a ,b 满足a +1+|b -3|=0.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2=⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b 2=ba -b·a (a -b )b 2=ab. ∵a +1+|b -3|=0, ∴a +1=0,b -3=0, 解得a =-1,b = 3.当a =-1,b =3时,原式=-13=-33.16.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k ≤n ),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.解:(1)a k =b n⎝⎛⎭⎫1-1n k -1.(2)∵a k =b n ⎝⎛⎭⎫1-1n k -1,a k +1=b n ⎝⎛⎭⎫1-1n k,∴a k +1=⎝⎛⎭⎫1-1n a k <a k , 说明排名越靠前获得的奖学金越多.专题提升(三) 列方程(组)解应用题一、一元一次方程的应用1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是(A ) A. 100元 B. 90元 C. 810元 D. 819元2.某品牌电动车经销商一月份销售该品牌电动车100辆,二月份的销售量比一月份增加10%,二月份每辆电动车的售价比一月份每辆电动车的售价低80元,二月份的销售总额比一月份销售总额多12200元,问:一月份每辆电动车的售价是多少元?解:设一月份每辆电动车的售价是x 元,根据题意,得 100x +12200=(x -80)³100³(1+10%), 解得x =2100.答:一月份每辆电动车的售价是2100元.3.现有甲、乙两种金属的合金10 kg ,如果加入甲种金属若干,那么重新熔炼后的合金中乙种金属占2份,甲种金属占3份,如果加入的甲种金属是第一次加入的2倍,那么重新熔炼后的合金中乙种金属占3份,甲种金属占7份,第一次加入的甲种金属多少?原来这块合金中甲种金属的百分比是多少?解:设原来这块合金中甲种金属的百分比是x ,则甲种金属有10x (kg),乙种金属有(10-10x )kg ,根据题意,得(10-10x )÷310-10=2³[(10-10x )÷25-10],解得x =40%.则(10-10³40%)÷25-10=5(kg).答:第一次加入的甲种金属是5 kg ,原来这块合金中甲种金属的百分比是40%. 二、二元一次方程(组)的应用4.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(B )A. 7,6,1,4B. 6,4,1,7C. 4,6,1,7D. 1,6,4,7 5某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付1118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得①⎩⎪⎨⎪⎧12x +10y =1118,8(x +y )=816,解得⎩⎪⎨⎪⎧x =49,y =53. ②⎩⎪⎨⎪⎧12x +10y =1118,10(x +y )=816,解得⎩⎪⎨⎪⎧x =151,y =-69.4.(不合题意舍去) 答:七年级(1)班有49人、七年级(2)班有53人. (2)七年级(1)班节省的费用为(12-8)³49=196(元), 七年级(2)班节省的费用为(10-8)³53=106(元).6.由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.解:本题的答案不唯一.问题:1辆大车与1辆小车一次可以运货多少吨?解:设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得⎩⎪⎨⎪⎧3x +4y =22,2x +6y =23,解得⎩⎪⎨⎪⎧x =4,y =2.5.则x +y =4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨. 三、一元二次方程的应用7.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是(B )A. (1+x )2=1110B. (1+x )2=109C. 1+2x =1110D. 1+2x =1098.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?(第8题图)解:设矩形猪舍垂直于住房墙一边长为x (m),则平行于墙的一边的长为(25-2x +1)m ,由题意,得x (25-2x +1)=80,化简,得x 2-13x +40=0,解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去); 当x =8时,26-2x =10<12,答:所围矩形猪舍的长为10 m 、宽为8 m.9.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元. 解:(1)设增长率为x ,根据题意,得 2500(1+x )2=3025,解得x =0.1=10%或x =-2.1(不合题意,舍去). 答:这两年投入教育经费的平均增长率为10%. (2)3025³(1+10%)=3327.5(万元).答:根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费3327.5万元. 四、分式方程的应用10.现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满,这时,桶中纯农药与水的体积之比为3∶5,则桶的容积为40升.11.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)棵.由题意,得1200x -1200(1+20%)x=2,解得x =100.经检验,x =100是原分式方程的解,且符合题意. 答:原计划每天种树100棵.12.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600 m 道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10 h 完成任务.(1)按原计划完成总任务的13时,已抢修道路_________________m.(2)问:原计划每小时抢修道路多少米?解:(1)按原计划完成总任务的13时,已抢修道路3600³13=1200(m),故答案为1200.(2)设原计划每小时抢修道路x (m), 根据题意,得1200x +3600-1200[(1+50%)x ]=10,解得x =280.经检验,x =280是原方程的解,且符合题意. 答:原计划每小时抢修道路280 m.专题提升(四) 一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__. 解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0,解得x =1n +1.∴S n =12·1n +1·1n +2=12⎝⎛⎭⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12³⎝⎛12-13+13-14+14-15+…+12013-⎭⎫12014=12³⎝⎛⎭⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10(1)求y 关于x 的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =³6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =kx 的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD .(1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan ∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =kx 的图象过点A (6,2),∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x .∵点B (-4,n )在 y =12x 的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1. ∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x ,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12³|-12|³|-1|+12³|-12|³|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40³1=40. ∴a =40,m =1. (2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度³车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25³100+88=48(千米/小时).(2)由题意,得⎩⎨⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =v x , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆. 14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,设享受医保的某居民一年的大病住院医疗费用为x 元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)³50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)³50%+(x -30000)³60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5³30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000³0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得⎩⎪⎨⎪⎧y =x +3,100x =160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000³92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10, ∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90³5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.专题提升(五) 反比例函数图象与性质的综合应用(第1题图)1.反比例函数y =mx 的图象如图所示,有以下结论:①常数m <-1;②在每个象限内,y 随x 的增大而增大;③若点A (-1,h ),B (2,k )在图象上,则h <k ;④若点P (x ,y )在图象上,则点P ′(-x ,-y )也在图象上. 其中正确的是(C ) A. ①② B. ②③ C. ③④ D. ①④2.下列函数中,当x >0时,y 随x 的增大而增大的是(B ) A. y =-x +1 B. y =x 2-1 C. y =1xD. y =-x 2+13.已知圆柱的侧面积是20π cm 2,若圆柱底面半径为r (cm),高为h (cm),则h 关于r 的函数图象大致是(A )(第4题图)4.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为(A )A. -4B. 4C. -2D. 2(第5题图)5.如图,在反比例函数y =-6x (x <0)的图象上任取一点P ,过点P 分别作x 轴,y 轴的垂线,垂足分别为M ,N ,那么四边形PMON 的面积为__6__.6.反比例函数y =2a -1x 的图象有一支位于第一象限,则常数a 的取值范围是__a >12__.(第7题图)7.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数y =kx (x >0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(6,8),则点F 的坐标是⎝⎛⎭⎫12,83.(第8题图)8.如图,反比例函数y =kx 的图象经过点(-1,-22),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .(1)k(2)在点A 运动过程中,当BP 平分∠ABC 时,点C(第9题图)9.如图,在直角坐标系xOy 中,一次函数y =k 1x +b 的图象与反比例函数y =k 2x 的图象交于A (1,4),B (3,m )两点.(1)求一次函数的表达式. (2)求△AOB 的面积.解:(1)把点A (1,4)代入y =k 2x 得,k 2=4.∴反比例函数的表达式为y =4x .把点B (3,m )代入y =4x 得,m =43∴点B 的坐标为(3,43).把点A (1,4),B (3,43)的坐标代入y =k 1x +b 得,⎩⎪⎨⎪⎧k 1+b =4,3k 1+b =43,解得⎩⎨⎧k 1=-43,b =163. ∴一次函数的表达式为y =-43x +163.(2)∵直线y =-43x +163与x 轴的交点坐标为(4,0),∴S △AOB =12³4³4-12³4³43=163.10.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50 km/h 时,视野为80度.如果视野f (度)是车速v (km/h)的反比例函数,求f ,v 之间的关系式,并计算当车速为100 km/h 时视野的度数.解:设f ,v 之间的关系式为f =kv (k ≠0). ∵v =50时,f =80,∴80=k 50. 解得k =4000. ∴f =4000v .当v =100时,f =4000100=40(度).答:f =4000v ,当车速为100 km/h 时视野为40度.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万m 3.(1)写出运输公司完成任务所需的时间y (天)与平均每天的工作量x (万m 3)之间的函数表达式,并给出自变量x 的取值范围.(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000 m 3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?解:(1)由题意,得y =360x .把y =120代入y =360x ,得x =3;把y =180代入y =360x ,得x =2.∴自变量x 的取值范围是2≤x ≤3. ∴y =360x(2≤x ≤3).(2)设原计划平均每天运送土石方x (万m 3),则实际平均每天运送土石方(x +0.5)万m 3, 由题意,得360x -360x +0.5=24化简,得x 2+0.5x -7.5=0.解得x 1=2.5,x 2=-3,经检验,x 1=2.5,x 2=-3均为原方程的根,但x 2=-3不符合实际意义,故舍去. 又∵2≤x ≤3,∴x 1=2.5满足条件,即原计划平均每天运送土石方2.5万m 3,实际平均每天运送土石方3万m 3.(第12题图)12.工匠制作某种金属工具需要进行材料煅烧和锻造两道工序,即需要将材料烧到800 ℃,然后停止煅烧进行锻造操作,经过8 min 时,材料温度降为600 ℃.煅烧时温度y (℃)与时间x (min)成一次函数关系;锻造时,温度y (℃)与时间x (min)成反比例函数关系(如图).已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y 关于x 的函数表达式,并且写出自变量x 的取值范围. (2)根据工艺要求,当材料温度低于480 ℃时,须停止操作.那么锻造的操作时间有多长?解:(1)停止加热时,设y =kx(k ≠0),由题意,得600=k8,解得k =4800,∴y =4800x.当y =800时,4800x=800,解得x =6,∴点B 的坐标为(6,800).材料加热时,设y =ax +32(a ≠0), 由题意,得800=6a +32, 解得a =128.∴材料加热时,y 关于x 的函数表达式为y =128x +32(0≤x ≤6). 停止加热进行操作时,y 关于x 的函数表达式为y =4800x (6<x ≤20).(2)把y =480代入y =4800x ,得x =10,10-6=4(min).答:锻造的操作时间为4 min.(第13题图)13.如图,已知点A ,P 在反比例函数y =kx (k <0)的图象上,点B ,Q 在直线y =x -3上,点B 的纵坐标为-1,AB ⊥x 轴(点A 在点B 下方),且S △OAB =4.若P ,Q 两点关于y 轴对称,设点P 的坐标为(m ,n ).(1)求点A 的坐标和k 的值.(2)求n m +mn的值.解:(1)∵点B 在直线y =x -3上,点B 的纵坐标为-1, ∴当y =-1时,x -3=-1,解得x =2, ∴点B (2,-1).设点A 的坐标为(2,t ),则t <-1,AB =-1-t . ∵S △OAB =4, ∴12(-1-t )³2=4, 解得t =-5,∴点A 的坐标为(2,-5).∵点A 在反比例函数y =kx (k <0)的图象上,∴-5=k2,解得k =-10.(2)∵P ,Q 两点关于y 轴对称,点P 的坐标为(m ,n ), ∴点Q (-m ,n ), ∵点P 在反比例函数y =-10x的图象上,点Q 在直线y =x -3上, ∴n =-10m ,n =-m -3,∴mn =-10,m +n =-3,∴n m +m n =m 2+n 2mn =(m +n )2-2mn mn =(-3)2-2³(-10)-10=-2910.(第14题图)14.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (时)变化的函数图象,其中BC 段是反比例函数y =kx 图象的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度为18 ℃的时间有多少小时? (2)求k 的值.(3)当x =16时,大棚内的温度约为多少度?解:(1)恒温系统在这天保持大棚温度18 ℃的时间为10 h.(2)∵点B (12,18)在反比例函数y =kx 的图象上,∴18=k12,∴解得k =216.(3)当x =16时,y =21616=13.5,∴当x =16时,大棚内的温度约为13.5 ℃.15.已知双曲线y =1x (x >0),直线l 1:y -2=k (x -2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y =-x + 2.(1)若k =-1,求△OAB 的面积S .(2)若AB =522,求k 的值.(第15题图)(3)设N (0,22),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM +PN 最小值,并求PM +PN 取得最小值时点P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB =(x 1-x 2)2+(y 1-y 2)2.解:(1)当k =-1时,l 1:y =-x +22,联立⎩⎪⎨⎪⎧y =-x +22,y =1x ,化简,得x 2-22x +1=0,解得x 1=2-1,x 2=2+1.设直线l 1与y 轴交于点C ,则C (0,22). S △OAB =S △BOC -S △AOC =12³22(x 2-x 1)=2 2.(2)根据题意,得⎩⎪⎨⎪⎧y -2=k (x -2),y =1x,整理,得kx 2+2(1-k )x -1=0(k <0),∵Δ=[2(1-k )]2-4³k ³(-1)=2(1+k 2)>0, ∴x 1,x 2 是方程的两个根,∴⎩⎨⎧x 1+x 2=2(k -1)k ①,x 1·x 2=-1k ,∴AB =(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+⎝⎛⎭⎫1x 1-1x 22=(x 1-x 2)2⎝⎛⎭⎫1+1x 12·x 22 =[(x 1+x 2)2-4x 1·x 2]⎝⎛⎭⎫1+1x 12·x 22将①代入,得AB =2(k 2+1)2k 4=2(k 2+1)k 2(k <0), ∴2(k 2+1)k 2=522,解得k =63(舍去),或 k =-63.(第15题图解)(3)易得点F (2,2),如解图: 设点P ⎝⎛⎭⎫x ,1x , 则点M ⎝⎛⎭⎫-1x +2,1x , 则PM =x +1x - 2=⎝⎛⎭⎫x +1x -22=x 2+1x2-22⎝⎛⎭⎫x +1x +4. ∵PF =(x -2)2+⎝⎛⎭⎫1x -22=x 2+1x2-22⎝⎛⎭⎫x +1x +4, ∴PM =PF .∴PM +PN =PF +PN ≥NF =2,当点P 在NF 上时等号成立,此时NF 对应的函数表达式为y =-x +22, 由(1)知此时点P (2-1,2+1),∴当点P 的坐标是(2-1,2+1)时,PM +PN 的值最小,最小值是2.专题提升(六) 二次函数图象与性质的综合应用(第1题图)1.如图是二次函数y =ax 2+bx +c 的图象,下列结论: ①二次三项式ax 2+bx +c 的最大值为4;②4a +2b +c <0;③一元二次方程ax 2+bx +c =1的两根之和为-1; ④使y ≤3成立的x 的取值范围是x ≥0. 其中正确的个数有(B ) A. 1个 B. 2个 C. 3个 D. 4个(第2题图)2.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②b 2-4ac 4a >0;③ac -b +1=0;④OA ·OB =-ca .其中正确结论的个数是(B )A. 4B. 3C. 2D. 13.对于抛物线y =-12(x +1)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x >1时,y 随x 的增大而减小.其中正确结论的个数为(C )A. 1B. 2C. 3D. 4(第4题图)4.二次函数y =-x 2+bx +c 的图象如图所示,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是(B )A. y 1 ≤y 2B. y 1 <y 2C. y 1 ≥y 2D. y 1 >y 25.已知A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y =-(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为(A )A. y 1>y 2>y 3B. y 1>y 3>y 2C. y 3>y 2>y 1D. y 3>y 1>y 26.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是(A )。
2016数学中考试题及答案2016年的数学中考试题目是许多学生所关注的焦点。
本文将为您提供2016年数学中考试题目的详细内容以及相应的答案。
以下是数学试题的题目和答案:1. 选择题1.1 问题:已知直角三角形 ABC 中,∠B = 90°,BC = 4 cm,AC = 3 cm,则∠A 的值是多少?选项:A. 30°B. 45°C. 60°D. 90°1.2 问题:已知 a + b = 7,a - b = 3,则 a 和 b 的值分别是多少?选项:A. a = 5,b = 2B. a = 2,b = 5C. a = 7,b = 0D. a = 0,b = 7答案:1.1 答案:C1.2 答案:A2. 填空题2.1 问题:将两个相邻的自然数的平方相加,结果为 365,这两个自然数分别是多少?答案:13 和 142.2 问题:已知 x = -2 是方程 3x - 4 = 5x + 2 的解,求另一个解。
答案:-33. 计算题3.1 问题:已知函数 f(x) = x^2 + 3x + 2,求 f(-1) 的值。
答案:23.2 问题:某商品原价为 80 元,现在打折 30%,请计算折扣后的价格。
答案:56 元4. 解答题4.1 问题:请解答如下等式,求出变量 x 的值:2(x + 3) = 4x + 6答案:x = 34.2 问题:请解答如下问题,计算三个连续自然数的和,其中最小的自然数是 x:x + (x + 1) + (x + 2) = 60答案:x = 19以上便是2016年数学中考试题目的详细内容以及相应的答案。
希望对您复习和准备考试有所帮助。
祝您取得好成绩!。
实际应用问题针对演练类型一方程、不等式的实际应用1. (2015泰州10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?2. (2015福州9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?3. (2015崇左8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?4. (2015丹东10分)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?5. (2015贺州8分)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月9台的销售额与第二个月10台的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?6. (2015抚顺12分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元;并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?7. (2015宁夏6分)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?类型二函数的实际应用1. (2015邵阳8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式;(利润=销售额-成本)(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?2. (2015新疆建设兵团9分)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如下表所示,设购进A种T恤x件,且所购进的两种T恤能全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式.(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)3. (2015衡阳8分)某药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?第3题图4. (2015德州10分)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)根据图象求y与x的函数关系式;(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?5. (2015威海9分)为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:________________________________________;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6. (2015辽阳12分)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共40台,并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.【答案】题型二实际应用问题类型一方程、不等式的实际应用1. 解:设每件衬衫降价x元,(2分)根据题意得400×120+(500-400)(120-x)=500×80×(1+45%),(6分) 解得x=20,(9分)答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.(10分)2. 解:设有x支篮球队和y支排球队参赛,由题意得x+y=4810x+12y=520,(5分)解得x=28y=20.(8分)答:篮球队有28支参赛,排球队有20支参赛.(9分)3. 解:(1)设投资的增长率为x,根据题意得3(1+x)2=6.75,(3分)解得x1=0.5,x2=-2.5(不符合题意,舍去),答:每年市政府投资的增长率为50%;(5分)(2)根据题意得12×(1+0.5)2=18(万平方米),(6分)答:2015年建设了18万平方米廉租房.(8分)4. 解:设普通列车平均速度为每小时x千米,则高速列车平均速度为每小时3x千米,(1分)根据题意得2401803x x-=2,(5分) 解这个方程得x =90,(7分)经检验,x =90是所列方程的根且符合题意.(8分)∴3x =3×90=270.(9分)答:高速列车平均速度为每小时270千米.(10分)5. 解:(1)设第一月每台彩电的售价为x 元,则第二个月每台彩电的售价为(x -500)元,(1分)由题意得9x =10(x -500),(2分)解得x =5000,(3分)答:第一个月每台彩电的销售价格为5000元.(4分)(2)设这批彩电有y 台,由第(1)问可得x =5000,(5分)由题意得5000×50+(5000-500)(y -50)>400000,(6分)解得y >8313,(7分)∵y 为整数,∴y ≥84.答:这批彩电最少有84台.(8分)6. 解:(1)设乙礼品的单价为x 元,则甲礼品的单价为(x +40)元. 根据题意列方程得60036040x x=+,(3分) 解得x =60,(5分)经检验x =60是原方程的根且符合题意.∴x +40=100,答:甲礼品的单价为100元,乙礼品的单价为60元.(8分)(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30-m)个.根据题意得100m+60(30-m)≤2000,(10分)解得m≤5,答:最多可购买5个甲礼品.(12分)7. 解:(1)设原计划购买男款书包x个,则购买女款书包y个,根据题意x+y=6050x+70y=3400,(2分)解得=40y=20,答:原计划购买男款书包40个,购买女款书包20个.(3分)(2)设最多能买女款书包x个,则可购买男款书包(80-x)个,由题意得70x+50(80-x)≤4800,(5分)解得x≤40,答:最多能买女款书包40个.(6分)类型二函数的实际应用1. 解:(1)∵每件成本40元,每件单价为x元,∴每件利润为(x-40)元,(2分)∴S=(x-40)y=(x-40)(-10x+1200)=-10x2+1600x-48000,即S=-10x 2+1600x -48000(x >40).(4分)(2)∵a =-10<0,x >40,∴函数在对称轴x =1600220b a -=--=80有最大值, 即售价定为80元时利润最大;(6分)∴当x =80时,S =16000元.答:当销售单价定为80元时,该公司每天获得利润最大,最大利润为16000元. (8分)2. 解:(1)设购进A 种T 恤x 件,则购进B 种T 恤(200-x )件,(2分) 则所购进的两种T 恤全部卖出时,获得的总利润为W =(80-50)x +(65-40)(200-x )=5x +5000(0<x <200);(4分)(2)∵购进两种T 恤的总费用不超过9500元,∴50x +40(200-x )≤9500,∴x ≤150,(6分)∵W =5x +5000,∴W 随x 的增大而增大,∴当x =150时,W 取得最大值,且最大值为5×150+5000=5750.(8分) 答:超市进A 种T 恤150件,B 种T 恤50件时,超市获得最大利润,且最大利润为5750元.(9分)3. 【思路分析】(1)根据图象可知上升阶段是正比例函数,下降阶段是反比例函数,分别设出对应的函数解析式,代入点(4,8)即可;(2)将y =4分别代入正比例函数解析式和反比例函数解析式,得到对应的x的值,两者相减即可得到结论.解:(1)根据题意,当0≤x≤4时,函数为正比例函数,设函数解析式为y=kx,将点(4,8)代入解得k=2,∴当0≤x≤4时,函数解析式为y=2x;当4<x≤10时,函数为反比例函数,,设函数解析式为y=mx将点(4,8)代入解得m=32,,∴当4<x≤10时,函数解析式为y=32x∴所求函数解析式为y= 2x,0≤x≤432,4<x≤10. (4分)x(2)对于函数y=2x,令y=4得x=2,,令y=4得x=8,对于函数y=32x∴当2≤x≤8时,血液中药物浓度不低于4微克/毫升,∴持续时间为8-2=6小时.答:血液中药物浓度不低于4微克/毫升的持续时间为6小时.(8分) 4. 解:(1)设y与x的函数关系式为y=kx+b(k≠0),将点(40,160),(120,0)代入y=kx+b中,得40k+b=160120k+b=0,(2分)解得k=-2b=240.(4分)∴y与x的函数关系式为y=-2x+240(40≤x≤120).(5分)(2)由题意,销售成本不超过3000元,则40(-2x+240)≤3000,解不等式得x≥82.5,∴82.5≤x≤120,(7分)根据销售利润达到2400元,列方程得(x-40)(-2x+240)=2400,(8分) 即x2-160x+6000=0,解得x1=60,x2=100,(9分)∵60<82.5,故舍去,答:销售单价应该定为100元/千克.(10分)5. 解:(1)y=-20x+1890.(3分)【解法提示】由题意可表示出A种树苗为(21-x)棵,结合题意可得y=70x+90(21-x)=-20x+1890.(2)由题意知x<21-x,解得x<10.5,(5分)∵x≥1,∴x的取值范围是1≤x<10.5且x为整数,(6分)由(1)知,对于函数y=-20x+1890,y随x的增大而减小,∴当x=10时,y有最小值,y最小值=-20×10+1890=1690.(8分)∴21-x=21-10=11.因此,使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.(9分)6. 解:(1)设一台A型换气扇的售价为x元,一台B型换气扇的售价为y元,根据题意得+3y=2753x+2y=300,(2分)解得x=50y=75,(4分)答:一台A型换气扇的售价为50元,一台B型换气扇的售价为75元;(5分)(2)设购进A型换气扇z台,则购进B型换气扇(40-z)台,总费用为w 元,则有z≤3(40-z),(7分)解得z≤30,∵z为A型换气扇的台数,∴z≤30且z为正整数,w=50z+75(40-z)=-25z+3000,(9分)∵-25<0,∴w随着z的增大而减小,∴当z=30时,w最小=-25×30+3000=2250,(10分)此时40-z=40-30=10,(11分)答:最省钱的方案是购进30台A型换气扇,10台B型换气扇.(12分)。