一元二次不等式的解法及其应用及均值不等式
- 格式:doc
- 大小:187.50 KB
- 文档页数:4
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
不等式知识集结知识元一元二次不等式、分式不等式、绝对值不等式知识讲解1.一元二次不等式及其应用【概念】含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式.【特征】当△=b2﹣4ac>0时,一元二次方程ax2+bx+c=0有两个实根,那么ax2+bx+c可写成a(x﹣x1)(x﹣x2)当△=b2﹣4ac=0时,一元二次方程ax2+bx+c=0仅有一个实根,那么ax2+bx+c可写成a(x﹣x1)2.当△=b2﹣4ac<0时.一元二次方程ax2+bx+c=0没有实根,那么ax2+bx+c与x轴没有交点.【实例解析】例1:一元二次不等式x2<x+6的解集为.解:原不等式可变形为(x﹣3)(x+2)<0所以,﹣2<x<3故答案为:(﹣2,3).这个题的特点是首先它把题干变了形,在这里我们必须要移项写成ax2+bx+c<0的形式;然后应用了特征当中的第一条,把它写成两个一元一次函数的乘积,所用的方法是十字相乘法;最后结合其图象便可求解.【一元二次不等式的常见应用类型】①一元二次不等式恒成立问题:一元二次不等式ax2+bx+c>0的解集是R的等价条件是:a>0且△<0;一元二次不等式ax2+bx+c<0的解集是R的等价条件是:a<0且△<0.②分式不等式问题:>0⇔f(x)•g(x)>0;<0⇔f(x)•g(x)<0;≥0⇔;≤0⇔.2.其他不等式的解法【知识点的知识】不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例:①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则.(3)无理不等式:转化为有理不等式求解.(4)指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式①应用分类讨论思想去绝对值;②应用数形思想;③应用化归思想等价转化.注:常用不等式的解法举例(x为正数):3.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0a=0a<0 |x|<a{x|﹣a<x<a}∅∅|x|>a{x|x>a,或x<﹣a}{x|x≠0}R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m(m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.例题精讲一元二次不等式、分式不等式、绝对值不等式例1.不等式(x-1)(x-2)>0的解集是()A.{x|x≥2,或x≤1}B.{x|x>2,或x<1}C.{x|1<x<2}D.{x|1≤x≤2}例2.已知不等式mx2+nx-3<0的解集为(-3,1),若曲线|y|=n x+1与直线y=b没有公共点,则b的取值范围是________.例3.不等式-x2+2x+8>0的解集是____________基本不等式知识讲解1.基本不等式及其应用【概述】基本不等式主要应用于求某些函数的最值及证明不等式.其可表述为:两个正实数的几何平均数小于或等于它们的算术平均数.公式为:≥(a≥0,b≥0),变形为ab≤()2或者a+b≥2.常常用于求最值和值域.【实例解析】例1:下列结论中,错用基本不等式做依据的是.A:a,b均为负数,则.B:.C:.D:.解:根据均值不等式解题必须满足三个基本条件:“一正,二定、三相等”可知A、B、D均满足条件.对于C选项中sin x≠±2,不满足“相等”的条件,再者sin x可以取到负值.故选:C.A选项告诉我们正数的要求是整个式子为正数,而不是式子当中的某一个组成元素;B分子其实可以写成x2+1+1,然后除以分母就可换成基本不等式.这个例题告诉我们对于一个式子也是可以用基本不等式的,而且求最值也很方便.例2:利用基本不等式求的最值?当0<x<1时,如何求的最大值.解:当x=0时,y=0,当x≠0时,=,用基本不等式若x>0时,0<y≤,若x<0时,﹣≤y<0,综上得,可以得出﹣≤y≤,∴的最值是﹣与.这是基本不等式在函数中的应用,他的解题思路是首先判断元素是否大于0,没有明确表示的话就需要讨论;然后把他化成基本不等式的形式,也就是化成两个元素(函数)相加,而他们的特点是相乘后为常数;最后套用基本不等式定理直接求的结果.【基本不等式的应用】1、求最值例1:求下列函数的值域.2、利用基本不等式证明不等式3、基本不等式与恒成立问题4、均值定理在比较大小中的应用【解题方法点拨】技巧一:凑项点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值.技巧二:凑系数例2:当0<x<4时,求y=x(8﹣2x)的最大值.解析:由0<x<4知,8﹣2x>0,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到2x+(8﹣2x)=8为定值,故只需将y=x(8﹣2x)凑上一个系数即可.y=x(8﹣2x)=[2x•(8﹣2x)]≤()2=8当2x=8﹣2x,即x=2时取等号,当x=2时,y=x(8﹣x2)的最大值为8.评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值.技巧三:分离例3:求y=的值域.解:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离.y===(x+1)++5,当x>﹣1,即x+1>0时,y≥2+5=9(当且仅当x=1时取“=”号)技巧四:换元对于上面例3,可先换元,令t=x+1,化简原式在分离求最值.技巧五:结合函数f(x)=x+的单调性.技巧六:整体代换点评:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.技巧七:取平方点评:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件.总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.例题精讲基本不等式例1.当a>0时,2a+的最小值为____例2.若直线(a>0,b>0)过点(1,2),则a+b的最小值为______.线性规划知识讲解1.简单线性规划【概念】线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值.【例题解析】例:若目标函数z=x+y中变量x,y满足约束条件.(1)试确定可行域的面积;(2)求出该线性规划问题中所有的最优解.解:(1)作出可行域如图:对应得区域为直角三角形ABC,其中B(4,3),A(2,3),C(4,2),则可行域的面积S==.(2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z,则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z得截距最小,此时z最小为z=2+3=5,当直线经过点B(4,3)时,直线y=﹣x+z得截距最大,此时z最大为z=4+3=7,故该线性规划问题中所有的最优解为(4,3),(2,3)这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值.【典型例题分析】题型一:二元一次不等式(组)表示的平面区域典例1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是()A.B.C.D.分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平面区域面积的条件即可.解答:不等式组表示的平面区域如图所示.由于直线y=kx+过定点(0,).因此只有直线过AB中点时,直线y=kx+能平分平面区域.因为A(1,1),B(0,4),所以AB中点D(,).当y=kx+过点(,)时,=+,所以k=.答案:A.点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.题型二:求线性目标函数的最值典例2:设x,y满足约束条件:,求z=x+y的最大值与最小值.分析:作可行域后,通过平移直线l0:x+y=0来寻找最优解,求出目标函数的最值.解答:先作可行域,如图所示中△ABC的区域,且求得A(5,2)、B(1,1)、C(1,),作出直线l0:x+y=0,再将直线l0平移,当l0的平行线l1过点B时,可使z=x+y达到最小值;当l0的平行线l2过点A时,可使z=x+y达到最大值.故z min=2,z max=7.点评:(1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.题型三:实际生活中的线性规划问题典例3:某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()A.50,0B.30,20C.20,30D.0,50分析:根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化为线性规划问题.解析设种植黄瓜x亩,韭菜y亩,则由题意可知求目标函数z=x+0.9y的最大值,根据题意画可行域如图阴影所示.当目标函数线l向右平移,移至点A(30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大.故答案为:B点评:线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题,再按如下步骤完成:(1)作图﹣﹣画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条l;(2)平移﹣﹣将l平行移动,以确定最优解的对应点A的位置;(3)求值﹣﹣解方程组求出A点坐标(即最优解),代入目标函数,即可求出最值.题型四:求非线性目标函数的最值典例4:(1)设实数x,y满足,则的最大值为.(2)已知O是坐标原点,点A(1,0),若点M(x,y)为平面区域上的一个动点,则|+|的最小值是.分析:与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.解答:(1)表示点(x,y)与原点(0,0)连线的斜率,在点(1,)处取到最大值.(2)依题意得,+=(x+1,y),|+|=可视为点(x,y)与点(﹣1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(﹣1,0)向直线x+y=2引垂线的垂足位于该平面区域内,且与点(﹣1,0)的距离最小,因此|+|的最小值是=.故答案为:(1)(2).点评:常见代数式的几何意义有(1)表示点(x,y)与原点(0,0)的距离;(2)表示点(x,y)与点(a,b)之间的距离;(3)表示点(x,y)与原点(0,0)连线的斜率;(4)表示点(x,y)与点(a,b)连线的斜率.【解题方法点拨】1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距的最值间接求出z的最值时,要注意:当b>0时,截距取最大值时,z也取最大值;截距取最小值时,z也取最小值;当b<0时,截距取最大值时,z取最小值;截距取最小值时,z取最大值.例题精讲线性规划例1.设x,y满足约束条件,则z=x+y的最小值为()A.3B.4C.5D.10例2.若实数x,y满足不等式组,则z=2|x|-y的最小值是()A.-1B.0C.1D.2例3.已知实数x,y满足1≤y≤x+y≤ax+3,若y-2x的最大值是3,则实数a的取值范围是()A.(-∞,3]B.[1,3]C.(-∞,2]D.[2,+∞)不等式综合知识讲解1.不等式的综合【知识点的知识】1、不等式的性质2、不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.3、利用重要不等式求函数最值:“一正二定三相等,和定积最大,积定和最小”.4、常用不等式5、证明不等式的方法:比较法、分析法、综合法和放缩法.比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论.常用的放缩技巧有:6.常系数一元二次不等式的解法:判别式﹣图象法步骤:(1)化为一般形似:ax2+bx+c≥0,其中a>0;(2)求根的情况:ax2+bx+c=0△>0(=0,<0);(3)由图写解集:考虑y=ax2+bx+c(a>0)图象得解.7.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根右上方依次通过每一点画曲线(奇穿偶回);(3)根据曲线显现的符号变化规律,写出不等式的解集.8.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解.解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母.9.绝对值不等式的解法:(了解)(1)分域讨论法(最后结果应取各段的并集)(2)利用绝对值的定义;(3)数形结合;(4)两边平方.10、含参不等式的解法:通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意:①解完之后要写上:“综上,原不等式的解集是…”.②按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.含参数的一元二次不等式的解法:三级讨论法.一般地,设关于x的含参数a的一元二次形式的不等式为:.(1)第一级讨论:讨论二次项系数f(a)是否为零;(2)第二级讨论:若f(a)≠0时,先观察其左边能否因式分解,否则讨论△的符号;(3)第三级讨论:若f(a)≠0时,△>0时,先观察两根x1,x2大小是否确定,否则讨论两根的大小.注意:每一级的讨论中,都有三种情况可能出现,即“>”,“=”,“<”,应做到不重不漏.11.不等式的恒成立、能成立、恰成立等问题常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法.1)恒成立问题若不等式f(x)>A在区间D上恒成立,则等价于在区间D上f(x)min>A,若不等式f(x)<B在区间D上恒成立,则等价于在区间D上f(x)max<B.例题精讲不等式综合例1.已知a,b,c为正数,关于x的一元二次方程ax2+bx+c=0有两个相等的实数根.则方程(a+1)x2+(b+2)x+c+1=0的实数根的个数是()A.0或1B.1或2C.0或2D.不确定例2.做一个容积为256,底为正方形的长方体无盖水箱,它的高为___时最省料。
一、引言一元二次不等式是高中数学中的重要知识点,也是考试中常见的题型之一。
掌握一元二次不等式的解法及基本不等式的运用,对于提高学生的数学水平和解题能力有着重要的作用。
本文将重点讲解一元二次不等式及基本不等式的常见题型及解题方法,希望能够帮助读者更好地理解和掌握这一知识点。
二、一元二次不等式的基本概念1. 一元二次不等式的定义一元二次不等式是形如ax^2+bx+c>0(或<0、≥0、≤0)的不等式,其中a、b、c为常数,x为未知数,且a≠0。
一元二次不等式的解就是使不等式成立的x的取值范围。
2. 一元二次不等式的常见形式一元二次不等式的常见形式包括ax^2+bx+c>0、ax^2+bx+c≥0、ax^2+bx+c<0和ax^2+bx+c≤0等,需要根据具体情况选择合适的解题方法来解决。
三、一元二次不等式的解法及常见题型1. 一元二次不等式的解法解一元二次不等式的常用方法有:利用一元二次函数的图像法、利用一元二次函数的根式关系法、利用配方法、利用因式分解法等。
需要根据具体不等式的形式和题目的要求选择合适的解题方法。
2. 一元二次不等式的常见题型及讲解(1) 一元二次不等式的根的情况讨论当一元二次不等式的根的情况为实数时,解法与一元二次方程类似,可以利用一元二次函数的图像法或根式关系法求解。
当根的情况为虚数时,需要利用配方法或因式分解法进行求解。
(2) 一元二次不等式的恒成立条件讨论对于一元二次不等式ax^2+bx+c>0(或<0、≥0、≤0),当a>0时,条件为Δ<0;当a<0时,条件为Δ>0。
根据恒成立条件的讨论,可以快速判断一元二次不等式的解的范围。
(3) 一元二次不等式的应用题针对一元二次不等式的应用题,需要根据具体问题建立相应的不等式模型,再利用所学的解题方法进行求解,并得出相应的结论。
四、基本不等式的概念及应用1. 基本不等式的定义基本不等式是指在一定条件下成立的不等式,常见的基本不等式有算术平均-几何平均不等式、柯西-施瓦兹不等式等。
一元二次不等式及其解法1.一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.2..含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 3.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.1.(2016·全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A .⎝⎛⎭⎫-3,-32 B .⎝⎛⎭⎫-3,32 C .⎝⎛⎭⎫1,32 D .⎝⎛⎭⎫32,3 2.(2018·浙江高考)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________3.不等式(x +3)(1-x )≥0的解集为________4.对于任意实数x ,不等式mx 2+mx -1<0恒成立,则实数m 的取值范围是________5.ax 2-(a +1)x +1<0(a >0)。
6.(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数。
二次不等式的解法二次不等式是数学中经常遇到的问题,解决这类问题需要运用一些特定的解法和技巧。
本文将介绍几种常见的二次不等式的解法。
一、一元对于形如ax²+bx+c>0或ax²+bx+c<0的一元二次不等式,可以利用函数图像法或配方法来求解。
1. 函数图像法:将二次不等式转化为函数的不等式。
首先,将二次不等式中的二次项系数a视为函数的开口方向和图像开口方向的相关系数。
若a>0,则函数的图像开口向上;若a<0,则函数的图像开口向下。
其次,可以利用函数的图像来判断二次不等式的解集。
2. 配方法:将二次不等式进行配方,即将ax²+bx+c转化为a(x+m)²+n或a(x-m)²-n的形式。
然后,根据配方法的原理,我们可以根据a的正负和常数项n的正负来确定二次不等式的解集。
二、二元对于形如ax²+by²+2hxy+2gx+2fy+c≥0或ax²+by²+2hxy+2gx+2fy+c≤0的二元二次不等式,我们可以运用二次函数图像法或化简法来求解。
1. 二次函数图像法:将二元二次不等式转化为二元二次函数的图像来进行求解。
对于给定的二次不等式,可以求出关于x和y的二次函数的图像,然后利用图像的特征判断二次不等式的解集。
2. 化简法:对于给定的二次不等式,可以通过一系列的化简操作将其转化为简化形式,从而求解。
这些化简操作包括配方法、均值不等式、柯西-施瓦茨不等式等。
三、综合运用不等式解法在实际问题中,常常会遇到复杂的不等式问题,此时可以综合运用多种不等式解法。
1. 约束条件法:对于有约束条件的二次不等式问题,可以将约束条件和二次不等式联立求解。
通过求解方程组来确定不等式的解集。
2. 辅助变量法:对于一些复杂的二次不等式问题,可以引入辅助变量,通过辅助变量的引入和化简,将问题转化为简化的形式来求解。
3. 数学归纳法:对于一些数列或数学模型中的不等式问题,可以利用数学归纳法来进行求解。
基本不等式解法基本不等式是数学中常用的解题方法之一,通过不等式的性质和变形,可以推导出一些有用的结论,帮助我们解决各种实际问题。
在本文中,我们将介绍基本不等式的一些常见形式和解题技巧。
一、基本不等式的定义基本不等式是指在一定条件下,不等式中的变量所满足的最小或最大值。
基本不等式可以用来描述实际问题中的约束条件,从而得到最优解。
二、基本不等式的性质1. 加法性质:若a>b,则a+c>b+c。
2. 减法性质:若a>b,则a-c>b-c。
3. 乘法性质:若a>b,且c>0,则ac>bc;若a>b,且c<0,则ac<bc。
4. 除法性质:若a>b,且c>0,则a/c>b/c;若a>b,且c<0,则a/c<b/c。
三、基本不等式的常见形式1. 一元一次不等式:形如ax+b>0,其中a和b是已知数,x是未知数。
2. 一元二次不等式:形如ax^2+bx+c>0,其中a、b和c是已知数,x是未知数。
3. 分式不等式:形如f(x)/g(x)>0,其中f(x)和g(x)是已知函数,x 是未知数。
4. 绝对值不等式:形如|f(x)|>g(x),其中f(x)和g(x)是已知函数,x 是未知数。
四、基本不等式的解题方法1. 一元一次不等式的解法:1) 将不等式化简为ax>0的形式,确定a的正负性。
2) 根据a的正负性确定解集的范围。
2. 一元二次不等式的解法:1) 将不等式化简为ax^2+bx+c>0的形式,确定a的正负性。
2) 根据a的正负性和判别式的值,确定解集的范围。
3. 分式不等式的解法:1) 找出分子和分母的零点,并确定它们的正负性。
2) 根据分子和分母的正负性确定解集的范围。
4. 绝对值不等式的解法:1) 将不等式化简为两个不等式,并分别求解。
2) 将两个不等式的解集合并得到最终的解集。
高中不等式公式大全及范围
高中不等式的公式和范围较多,以下是一些常见的不等式公式和范围:1. 一元二次不等式的解:一般地,用不等式的基本性质将一个一元二
次不等式化成形如ax^2+bx+c>0(a>0)或ax^2+bx+c<0(a<0)的形式,即
求出二次函数图像的交点,然后根据二次函数的开口方向确定不等式
的解集。
2. 均值不等式:对于任意实数a、b,都有(a+b)/2≥√ab(当且仅当
a=b时取“=”),即当且仅当a=b时,等号成立。
3. 基本不等式:一元二次不等式的解集可以转化为相应的一元二次方
程的根的分布问题。
4. 一元二次不等式有唯一解时,其对应的二次函数的图像与x轴的交
点就是解集中的唯一解。
5. 含绝对值的不等式有四种解法:去绝对值号转化为不含绝对值的不
等式求解;零点分区间法;数轴标根法;三角换元法。
6. 大于号小与号的证明即反证法在数学中的广泛应用,比如柯西不等式、排序不等式、切线不等式等都是反证法的成功应用。
至于不等式的范围,一般而言,一元一次不等式的解集为数轴上的点
表示的范围;一元二次不等式的解集为对应的一元二次方程的实数根
的分布范围;对于多元不等式,应结合数轴标根法、数轴穿头法、数
轴穿心法等灵活求解不等式的范围。
以上内容仅供参考,建议到相关网站查询或请教他人。
第二章等式与不等式本章小结学习目标能够从函数的观点认识方程和不等式,感悟函数和方程、不等式之间的联系,认识函数的重要性.掌握等式与不等式的性质.重点提升数学抽象、逻辑推理和数学运算素养.自主预习{等式式与不等关系实数大小的比较依据——次不等式及其解法{{课堂探究任务一:不等式的基本性质的应用例1下列结论中正确的是()①a>b>0,d>c>0⇒ac>bd;②a>b,c>d⇒a-c>b-d;③ac2>bc2⇒a>b;④a>b⇒a n>b n(n∈N,n>1).A.①②③B.①③C.②③④D.①③④任务二:一元二次不等式的解法及其应用例2解下列不等式:(1)x-1x≥2;(2)2x3+x2-5x+2>0.例3解关于x的不等式(x-2)(ax-2)>0.解一元二次不等式的步骤:任务三:二次函数、一元二次方程、一元二次不等式之间的关系例4当实数m取何范围的值时,方程x2+(m-3)x+m=0的两根满足:(1)都是正根;(2)都在(0,2)内?思考:根的分布问题应该从哪几个方面考虑?例5已知一元二次不等式ax2+bx+1>0的解集为{x|-2<x<1},则a= ,b= .任务四:基本不等式的应用例6已知3a2+2b2=5,试求y=(2a2+1)(b2+2)的最大值.例7如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求点B在AM上,点D在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积最小?并求出最小值.课堂练习1.若a ∈R 且a ≠0,比较a 与1a 的大小.2.求函数y=x 4+3x 2+3x 2+1的最小值.核心素养专练对任意x ∈[1,2],不等式1-mx ≤√1+x≤1-nx 恒成立,试求n 的最大值与m 的最小值.参考答案自主预习略 课堂探究例1 思路分析:判断不等关系的真假,要紧扣不等式的性质,应注意条件与结论之间的联系. 【解析】∵d>c>0⇒1c >1d>0,又a>b>0,∴a c >bd,∴①对;∵a>b ,-c<-d 不同向,不等式不可加,∴②错; ∵ac 2>bc 2,c 2>0,∴a>b ,∴③对;只有当a>b>0时,才有a n >b n ,∴④错,故选B .答案:B例2 【思路分析】对于(1),要先移项、通分化为f(x)g(x)≥0(或f(x)g(x)≤0)的形式,再化为整式不等式,转化必须保持等价;对于(2),要因式分解后借助穿根法处理.【解】(1)原不等式可化为x -1x -2≥0,∴-x -1x>0,∴{x(x +1)≤0,x ≠0,∴-1≤x<0.∴原不等式的解集为{x|-1≤x<0}.(2)原不等式可化为(x-1)(x+2)(2x-1)>0. 利用数轴标根法或穿根法(如图所示),∴-2<x<12或x>1.∴不等式的解集为{x |-2<x <12或x >1}.例3 【思路分析】不等式中含有参数a ,因此需要先判断参数a 对方程(x-2)(ax-2)=0的解的影响,然后求解.【解】(1)当a=0时,原不等式化为x-2<0,∴x<2,∴原不等式的解集为{x|x<2}.(2)当a<0时,原不等式化为(x-2)(x -2a )<0.方程(x-2)(x -2a )=0的两根为2,2a ,又2>2a,∴原不等式的解集为{x |2a<x <2}.(3)当a>0时,原不等式化为(x-2)(x -2a )>0.方程(x-2)(x -2a )=0的两根为2,2a .当0<a<1时,2a >2,原不等式的解集为{x |x >2a 或x <2}. 当a=1时,原不等式化为(x-2)2>0,解集为{x ∈R |x ≠2}. 当a>1时,2>2a >0,原不等式的解集为{x |x >2或x <2a }. 综上所述,不等式解集为当a=0时,{x ∈R |x<2};当a=1时,{x ∈R |x ≠2};当a<0时,{x |2a<x <2};当0<a<1时,{x |x >2a 或x <2};当a>1时,{x |x >2或x <2a }.解一元二次不等式的步骤: 1.若能因式分解,则用数轴穿根法; 2.若不能因式分解,则用配方法. 配方法的步骤:(1)把一元二次不等式的二次项系数化为1;(2)一元二次不等式通过配方变为(x-h )2>k 或(x-h )2<k 的形式; (3)根据k 值情况确定不等式的解集.例4 【思路分析】对于(1),可利用判别式及根与系数的关系求解;对于(2),可构造二次函数,结合二次函数的图像求解.【解】(1)设方程的两根为x 1,x 2.则由题意可得{Δ=m 2-10m +9≥0,x 1+x 2=3-m >0,x 1x 2=m >0.解得m 的取值范围是(0,1]. (2)(由对应的函数几何意义求解) 设f (x )=x 2+(m-3)x+m ,由题意得{Δ=m 2-10m +9≥0,f(0)=m >0,0<3-m2<2,f(2)=3m -2>0.解得23<m ≤1. 思考:根的分布问题应该从哪几个方面考虑? 1.开口方向; 2.判别式Δ; 3.对称轴;4.区间端点函数值的正负.例5 【思路分析】由于一元二次不等式解集的分界点是相应一元二次方程的两根,所以解答就从这个关系入手.【解析】由于ax 2+bx+1>0的解集为{x|-2<x<1},所以-2和1是方程ax 2+bx+1=0(a ≠0)的两根. 由根与系数的关系,得 {-2+1=-ba ,-2×1=1a ,解得a=b=-12. 答案:-12-12例6 【思路分析】要求积的最大值,关键是结合条件配凑出和为定值,然后利用基本不等式求解. 【解】∵2a 2+1>0,b 2+2>0,y=(2a 2+1)(b 2+2),∴√12y =√3(2a 2+1)·4(b 2+2)≤6a 2+3+4b 2+82.∵3a 2+2b 2=5,∴6a 2+4b 2=10. ∴√12y ≤212,可得√y ≤7√34.∴y 的最大值为14716.例7 【思路分析】对于(1),首先建立矩形AMPN 的面积y 与DN 的长x 的函数关系式,然后利用不等式求解;对于(2),根据(1)中建立的函数关系式结合基本不等式求解.【解】(1)设DN 的长为x (x>0)米,则AN 的长为(x+2)米,如图所示.∵DN AN =DC AM ,∴AM=3(x+2)x.∴矩形花坛AMPN 的面积y=AN ·AM=3(x+2)2x.由y>32,得3(x+2)2x>32.∵x>0,∴3x 2-20x+12>0.解得0<x<23或x>6,即DN 长的取值范围是(0,23)∪(6,+∞). (2)由(1)知矩形花坛AMPN 的面积为y=3(x+2)2x=3x 2+12x+12x=3x+12x +12≥2√3x ·12x +12=24.当且仅当3x=12x,即x=2时,矩形花坛AMPN 的面积取得最小值24平方米.故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 课堂练习1.【思路分析】可以利用作差比较法比较两个代数式的大小. 【解】a-1a =(a -1)(a+1)a.当a=±1时,(a -1)(a+1)a=0,则a=1a ;当-1<a<0或a>1时,(a -1)(a+1)a>0,则a>1a . 当a<-1或0<a<1时,(a -1)(a+1)a<0,则a<1a .2.【思路分析】从函数解析式结构上看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,怎么办呢?事实上,我们可以把分母视为一个整体,用它来表示分子,原式即可展开.【解】令t=x 2+1,则t ≥1,且x 2=t-1.∴y=x 4+3x 2+3x 2+1=(t -1)2+3(t -1)+3t =t 2+t+1t=t+1t +1.∵t ≥1,∴t+1t ≥2√t ·1t =2,当且仅当t=1t ,即t=1时,等号成立.∴当x=0时,函数取得最小值3.核心素养专练【思路分析】对任意x ∈[1,2],不等式恒成立,且m 与n 都是一次的,因此可考虑分离参数m 和n. 【解】∵1-mx ≤√1+x≤1-nx 恒成立,∴-mx ≤√1+x -1≤-nx ,∴-mx ≤√1+x√1+x ≤-nx ,∴-mx ≤√1+x(1+√1+x)≤-nx.又∵x ∈[1,2],∴n ≤(√1+x)2+√1+x≤m 恒成立. 设y=(√1+x)2+√1+x,x ∈[1,2],令√1+x =t ,则t ∈[√2,√3],y=1t 2+t . 可求得y min =3-√36,y max =2-√22,∴m=2-√22,n=3-√36.故所求n 的最大值为3-√36,m 的最小值为2-√22.学习目标1.梳理等式的性质,理解不等式的概念,掌握不等式的性质,通过类比理解等式与不等式的共性与差异;2.会解常见的方程和不等式及不等式组,如一元二次方程、一元二次不等式、绝对值不等式、二元及三元方程组等;3.掌握基本不等式,结合具体实例,能用基本不等式解决简单的最大值和最小值问题. 本章重点:绝对值不等式的解法、一元二次不等式的解法、均值不等式的应用.本章难点:均值不等式的灵活应用及不等式的证明.重点提升数学抽象、逻辑推理和数学运算素养.培养学生类比思想、分类讨论思想和数形结合的数学思想等.知识点梳理课堂探究●不等式性质的应用例1(1)(多选)下列命题正确的有()A.若a>1,则1a<1B.若a+c>b,则1a <1 bC.对任意实数a,都有a2≥aD.若ac2>bc2,则a>b(2)已知2<a<3,-2<b<-1,求ab,b2a的取值范围.◎跟踪训练1(多选)已知a,b,c∈R,那么下列命题中错误的是() A.若a>b,则ac2>bc2B.若ac >bc,则a>bC.若a3>b3且ab<0,则1a >1 bD .若a 2>b 2且ab>0,则1a <1b●不等式组的解法 例21.解不等式组:{5x-1<3(x +1),2x-13-1≤5x +12.2.已知关于x 的不等式组{x +a ≤0,3+2x >5的整数解只有3个,求a 的取值范围.3.解下列关于x 的不等式. (1)-1<x 2+2x-1≤2; (2)m 2x 2+2mx-3<0.◎跟踪训练2 解下列不等式. (1)x -1x+2≤0; (2)-3x 2-2x+8≥0; (3)ax 2-(a+1)x+1<0.●绝对值不等式的解法 例3 解下列不等式. (1)|2x-5|>3; (2)|2x-1|+|2x+1|≤6.◎跟踪训练3解下列不等式.(1)|2x+1|-2|x-1|>0;(2)|x+3|-|2x-1|<x2+1.●均值不等式例4若x>0,y>0,且x+2y=5,求9x +2y的最小值,并求出取得最小值时x,y的值.◎跟踪训练41.函数y=x(3-2x)(0≤x≤1)的最大值是.2.当x>1时,不等式x+1x-1≥a恒成立,当x= 时等号成立,实数a的取值范围是.●等式与不等式的应用例5某单位用2 160万元购得一块空地,计划在该空上建造一栋至少10层,每层2 000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积.课堂练习1.已知集合M={x|-4≤x ≤7},N={x|x 2-x-12>0},则M ∩N=( ) A.{x|-4≤x<-3或4<x ≤7} B.{x|-4<x ≤-3或4≤x<7} C.{x|x ≤-3或x>4} D.{x|x<-3或x ≥4}2.(多选)已知a>b>0,下列不等式不成立的是( ) A.a+1b >b+1aB.a+1a ≥b+1bC.b a >b+1a+1D.b-1b>a-1a3.不等式|x+1|-|x-2|≥1的解集是 .4.已知x>0,y>0,且满足8x +1y=1,xy= 时,x+2y 的最小值为 .核心素养专练[A 基础达标]1.(多选)如果a ,b ,c 满足c<b<a ,且ac<0,那么下列不等式中一定成立的是( ) A .ab>ac B .c (b-a )>0 C .cb 2<ab 2 D .ac (a-c )<02.若a>0,b>0,且a 2+3b 2=6,则ab 的最大值为( ) A .1B .√2C .√3D .23.设m>1,P=m+4m -1,Q=5,则P ,Q 的大小关系为( ) A .P<QB .P=QC .P ≥QD .P ≤Q4.不等式1+x>11-x 的解集为( ) A .{x|x>0} B .{x|x ≥1} C .{x|x>1} D .{x|x>1或x=0} 5.设a ,b 是不相等的正数,x=√a+√b2,y=√a+b 2,则x ,y 的大小关系是 (用“>”“<”或“=”连接).6.设m+n>0,则关于x 的不等式(m-x )(n+x )>0的解集是 .7.已知0<x<12,则y=12x (1-2x )的最大值为 ,此时x= . 8.解下列不等式: (1)0<|x-2|≤|4x+2|; (2)2x+1x -5≥-1.9.已知x ,y 都是正数.(1)若3x+2y=12,求xy 的最大值;(2)若x+2y=3,求1x +1y 的最小值.[B 能力提升]10.不等式4x -2≤x-2的解集是( )A .(-∞,0]∪(2,4]B .[0,2)∪[4,+∞)C .[2,4)D .(-∞,2]∪(4,+∞)11.已知实数x ,y ,若x ≥0,y ≥0且x+y=3,则x+1x+2+y y+1的最大值为 ,此时xy= . 12.解不等式3x -7x 2+2x -3≥2.13.解关于x 的不等式ax 2+(1-a )x-1>0(a<0).14.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE=CE ,AB>AD ,矩形的周长为8 cm .(1)设AB=x cm,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽?参考答案课堂探究例1 (1)AD (2)-6<ab<-213<b 2a <2跟踪训练1 ABD例2 1.解集为[-1,2) 2.(-5,-4]3.解:(1){x 2+2x -1≤2,x 2+2x -1>-1⇒{x 2+2x -3≤0,x 2+2x >0⇒{-3≤x ≤1,x >0或x <-2,不等式的解集为{x|-3≤x<-2或0<x ≤1}.(2)当m=0时,-3<0恒成立,解集为R .当m ≠0时,二次项系数m 2>0,Δ=16m 2>0.不等式化为(mx+3)(mx-1)<0.当m>0时,解集为{x |-3m <x <1m }; 当m<0时,解集为{x |1m <x <-3m }.跟踪训练2 (1)(-2,1](2)[-2,43] (3)解:当a=0时,x>1,解集为(1,+∞);当a ≠0时,方程化简为(ax-1)(x-1)<0.当a<0时,方程整理为(x -1a )(x-1)>0,(1a <0), ∴x>1或x<1a ,解集为(-∞,1a )∪(1,+∞);当a>0时,方程整理为(x -1a )(x-1)<0,(1a>0), 当0<a<1时,1a >1,∴1<x<1a ,解集为(1,1a); 当a=1时,1a =1,∴方程无解,解集为空集;当a>1时,1a <1,∴1a <x<1,解集为(1a ,1). 例3 (1)(-∞,-1)∪(4,+∞)(2)[-32,32]跟踪训练3(1)不等式的解集为{x |x >14}.(2)不等式的解集为{x |x <-25或x >2}.例4 解:因为x>0,y>0,且x+2y=5, 所以9x +2y =15(x+2y )(9x +2y ) =15(13+18y x +2x y ) ≥15(13+2√18y x ·2x y )=5,当且仅当{x +2y =5,18y x =2x y,即{x =3,y =1时等号成立. 所以9x +2y 的最小值为5,此时x=3,y=1. 跟踪训练41.982.2 a ≤3例5 解:设将楼房建为x 层,平均综合费用设为y 元. 则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y=560+48x+10 800x =560+48(x +225x ). 当x+225x取最小值时,y 有最小值. ∵x>0,∴x+225x ≥2√x ·225x =30. 当且仅当x=225x ,即x=15时,上式等号成立.∴当x=15时,y 有最小值2 000元.因此该楼房建为15层时,每平方米的平均综合费用最少. 课堂练习1.A2.BCD3.[1,+∞)4.36 18 核心素养专练A 基础达标1.ABD2.C3.C4.C5.x<y6.(-n ,m )7.116 148.(1){x |x ≤-43或x ≥0且x ≠2} (2){x |x >5或x ≤43}9.(1)6 (2)1+23√2B 能力提升10.B11.43 212.(-3,1)13.当-1<a<0时,解集为{x |1<x <-1a } 当a=-1时,解集为⌀ 当a<-1时,解集为{x |-1a <x <1} 14.解: (1)设DE=y cm,则AE=CE=(x-y )cm, 由矩形周长为8 cm,可得AD=(4-x )cm . 在三角形ADE 中,由勾股定理可得(4-x )2+y 2=(x-y )2, 整理得y=4-8x ,由AB>AD 可得x>2,由周长为8可得x<4, 综上DE 长度为(4-8x )cm,2<x<4. (2)S=12(4-x )×y ,由y=4-8x 可得S=12(4-x )·(4-8x )=2(4-x )(1-2x )=2(6-x -8x), 由2<x<4可得x+8x ≥2√8=4√2,当且仅当x=2√2时取到等号, 因此S max =2(6-4√2)=12-8√2,此时队徽的长为2√2 cm,宽为(4-2√2)cm .。
不等式知识点总结及题型归纳一、解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅2、简单的一元高次不等式的解法: 标根法:其步骤是:1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <二、线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域;3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解.三、基本不等式2a bab +≤1、若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫⎝⎛+b a ,当且仅当a=b 时取等号.3、如果a,b ∈R+,a·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S .注:1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. 2)求最值的重要条件“一正,二定,三取等” 4、常用不等式有:12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ; 2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); 3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。
第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = b a -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b<1⇔a < b (a ∈R ,b >0).2.等式的性质性质1:如果a =b ,那么b =a ;性质2:如果a =b ,b =c ,那么b =c ; 性质3:如果a =b ,那么a ±c=b ±c ; 性质4:如果a =b ,那么a c=bc ; 性质5:如果a =b ,c 0≠那么cbc a =;3.不等式的性质性质1 a b >⇔ ________;(对称性) 性质2 a b >,b c >⇒ ________;(传递性)性质3 a b >⇒ ______________;(可加性) 推论:a b c >⇒+___________;(移项法则) 性质4 a b >,0c >⇒ __________,(可乘性)a b >,0c ac bc <⇒<;(乘负反序性) 性质5 a b >,c d >⇒ ______________;(同向可加性) 性质6 0a b >>,0c d >>⇒ __________;(同正同向可乘性) 性质7 0a b >>⇒ __________()2n N n ∈≥,.(可乘方性)性质8 ①a >b ,ab >0⇒1a < 1b . ②a <0<b ⇒1a < 1b.(可倒性)典例例1 某矿山车队有4辆载重为10t 的甲型卡车和7辆载重为6t 的乙型卡车,且有9名驾驶员,此车队每天至少要运360t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.例2 已知a ,b +例3 若0a b <<,则下列结论正确的是( )A .22a b <B 2ab b < C .11a b> D .22ac bc > 例4 已知1025m <<,3015n -<<-,求m+n ,m n -与mn 的取值范围.例5 已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.课时作业1.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A.b -a>0 B.a 3+b 3<0 C.a 2-b 2<0 D.b+a>02、当1x ≤时,比较大小:33x 231x x -+.3、设1≤a -b ≤2, 2≤a +b ≤4,求4a -2b 的取值范围.4、已知a ∈R ,且a ≠1,比较a+2与31-a的大小.2.2 基本不等式1. 重要的不等式:a 2+b 2≥2ab (a ,b ∈R ).2.基本不等式:ab ≤a +b2:两个正数的几何平均数不大于它们的算术平均数.(a+b ≥2ab )注意:(1)此结论运用前提:一正、二定、三相等典例例1.(1)函数y =x +1x(x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞) (2).已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243(3).已知x <0,则y =2+4x+x 的最大值为_______例2、当x >0时,则y =2xx 2+1的最大值为________.例3、若x >1,则x +4x -1的最小值为________.例4、已知a >0,b >0,且a +b =1,求1a +2b的最小值.例5、函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2例6 如图所示动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)要使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?课时作业一、选择题1、已知x >0,函数y=x+的最小值是( ) A .2 B .4C .6D .82、当x ∈R 时,x+的取值范围是( )A .(﹣∞,﹣4]B .(﹣∞,﹣4)∪(4,+∞)C .[4,+∞)D .(﹣∞,﹣4]∪[4,+∞)3、已知x >0,y >0,且2x+y=1,则xy 的最大值是( ) A .B .C .4D .84、的最小值为)(函数)0(2>+=ab abb a y A .B.12C .4D .65、函数15(1)1y x x x =++>-的最小值为A .5B .6C 7 D.86、已知正数x,y 满足431x y +=,则x+3y 的最小值为A .5B .12C .13D .25 7、设,,若,则的最小值为 A . B .6 C . D .8、已知y=,其中x≥0,则y 的最小值为( )A .1B .C .D .9.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x>1),求公园ABCD所占面积S 关于x 的函数解析式;(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?1a >0b >2a b +=121a b+-3+2.3 二次函数与一元二次方程、不等式一、形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式. 二、“三个二次”之间的对应关系设()00022≠<++>++a c bx ax c bx ax 或相应的一元二次方程()002≠=++a c bx ax 的两根为1x ,2,则不等式的解的各种情况如下表:0>∆ 0=∆0<∆c bx ax y ++=2cbx ax y ++=2cbx ax y ++=2三、一元二次不等式的解法: (1)化二次项系数为正;(2)令左边=右边,求出两根x 1 , x 2; (当0<∆时,需另作考虑) (3)大于取两根之外,小于取两根之间。
高考数学中的不等式相关知识点详解数学是高考必考科目之一,而在数学中,不等式是重要的内容。
不等式是数学中的一个分支,是许多数学理论和应用中的核心。
在高考中,不等式占有很高的比重,因此,在高考中,掌握不等式相关知识点是非常重要的。
本文将详细解析高考中的不等式相关知识点。
一、基本不等式在学习不等式的时候,我们首先要了解基本不等式。
基本不等式是比较基本的不等式,是许多不等式的基础。
基本不等式的表达式为:a2+b2≥2ab。
其中,a和b为任意实数。
利用基本不等式可以解决很多的不等式问题。
我们可以通过基本不等式来证明很多与不等式有关的结论。
例如,证明平均值不小于几何平均值,证明勾股定理等等。
二、一元二次不等式及其解法一元二次不等式就是带有二次项的一元不等式,它的一般形式为:ax2+bx+c>0或ax2+bx+c<0。
其中,a、b和c为常数,且a≠0。
一元二次不等式的解法有以下方式:1. 求解线性方程组对一元二次不等式的方程左边进行变形得到:ax2+bx+c≥0。
然后再根据二次函数图像上跨过X轴的方法,画出图像并求出x的取值范围。
最后,将图像左侧和右侧的值代入不等式,进而解出不等式的解。
2. 二次函数图像法通过画出二次函数图像,找到函数图像上跨过X轴的点,并根据函数图像上跨过X轴的点,解出不等式的解。
3. 公式法通过求出方程式ax2+bx+c=0的根,即可解出不等式的解。
当a>0时,方程的根为: x1=(-b+√(b2-4ac))/(2a) 和 x2=(-b-√(b2-4ac))/(2a)。
当 a<0时,方程的根为: (-b+√(b2-4ac))/(2a)<x<(-b-√(b2-4ac))/(2a)。
三、二元不等式二元不等式是指包含两个变量的不等式式子,它的一般形式为:f(x,y)≥0或f(x,y)≤0。
其中,x和y是变量,称为未知数,f(x,y)是由x和y组成的表达式。
二元不等式的解法有以下方式:1.用集合表示法通过用集合表示法定义不等式的解集,可以清晰地看到不等式的解集。
版权所有 翻版必究1中公学员内部专用各类不等式求解集的方法在管理类联考中,方程与不等式在历年考试中都是非常重要的一个考点,不等式考试中可能会单独考查,或者会在应用题中考查,考查方式很灵活。
比较重要的是一元二次不等式,绝对值不等式,无理不等式,均值不等式,以及分式不等式。
接下来我给大家讲解一下各类不等式的解法。
一、一元二次不等式解题步骤:①一看:看二次项系数是否为正,若为负化为正②二算:算∆及对应方程的根③三写:写解集,大于号取两端,小于号取中间1. 不等式21(1)37x x x -<-<+的整数解的个数为().(A )1(B )2(C )3(D )4(E )5二、分式不等式解题步骤:①移项、通分将不等号右侧化为0②化除为乘,最后求解(注意舍去使分母为零的情况) 2. 设01x <<,则不等式223211x x ->-的解集是(). (A )02x <(B 12x <<(C )203x <<(D 213x <(E )以上选项均不正确三、无理不等式解题步骤:()g x①将等号两边平方得到2()()f x g x <并求解得到x 的范围②限定()f x 与()g x 的范围,即令()0()0f x g x ≥⎧⎨>⎩并求解得到x 的范围 ③将得到的x 的范围(I )和(II )联立,求交集,即为无理不等式的解集版权所有 翻版必究2中公学员内部专用 3. 1x +.(1)[1,0]x ∈-(2)10,2x ⎤⎛∈ ⎥⎝⎦四、绝对值不等式解题步骤分段讨论法:根据()()0()()()0f x f x f x f x f x ≥⎧=⎨-<⎩,,去绝对值符号,然后再求解。
4. 25|21|x x x -->-.(1)4x >(2)1x <-五、均值不等式集体步骤:①一正:判断是为正值②二定:判断积是否为定值,和是否为定值③三相等:取等求最值5. 若m x =,4n x =-且0m >,0n >,则当x =()时,mn 可以取到最大值为(). (A )2,2(B )2,3(C )1,3(D )2,2-(E )2,4。
一元二次不等式及其解法(1)<基础知识><基本训练>1、不等式(x+2)(1+x)>0的解集是 。
2、若关于X 的不等式x-ax+1>0的解集为(-∞,-1)∪(4,+∞),则实数a = .3、已知不等式ax 2+2x+c>0的解集为-13<x<12,则a+c= . 4、若关于x 的方程2k x 2-2x -9k=0两实根有一个大于2,而另一个根小于2,则实数k 的取值范围是 。
<典型例题讲练>例1、 解下列不等式:(1) -x 2+3x+18<0 (2) 4≤x 2-3x<18(3) 2x-1x+2<1 (4) (x-3)(x-2)(x-1)2(x-4)≥0<课堂检测>1、不等式 2x-13x+1>0的解集是 。
2不等式组⎩⎪⎨⎪⎧︱x-2︱<2log 2(x 2-1)>1的解集是 。
3、x(x-5)2>6(x-5)2解集是 。
4、函数f(x)=3ax+1-2a在(-1,1)上存在X0,使f(X0)=0,则a的取值范围是5、解下列不等式:(1) 4x2+4x+1>0 (2) x2-3x+5>0(3) (x+3)(x+2)(x-1)2(x-4)<0 (4) 2x2-5x-1x2-3x+2>1一元二次不等式及其解法<典型例题讲练>例1.当a为何值时,不等式(a2-1)x2-(a-1)x-1<0的解是全体实数。
练习:已知常数a∈R,解关于x的不等式ax2-2x+a<0.<课后作业>1、解不等式:(1) –x2+2x-23>0 (2) 9x2-6x+1≤0(3) (2x2-3x+1)(3x2-7x+2)>0 (4)3x-52x-3≤22、已知不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数X恒成立,求实数m的取值范围。
含参一元二次不等式的解法及推广一:一元二次不等式的解法(含参)思路①数性结合---利用二次函数图像读出解集(最常用的方法可同理写出开口向下的) 思路②利用不等式性质求解集(可推广到指对数等两根的不等式)类型一:二次不等式含参数问题(利用图像法,只需利用开口,判别式,两根大小画图草图即可,不需要y 轴,对称轴,所以二次不等式含参数问题主要围绕上述三个方面讨论)例题1 解关于x 的不等式ax 2-(a +1)x +1<0.解:(1)当a =0时,原不等式可化为-x +1<0,∴x>1.(2)当a ≠0时,原不等式可化为(ax -1)(x -1)<0,①当a<0时,不等式可化为(x -1a)(x -1)>0, ∵1a <1,∴x<1a或x>1. ②当a>0时,不等式可化为(x -1a)(x -1)<0, 若1a <1,即a>1,则1a<x<1; 若1a=1,即a =1,则x ∈∅; 若1a >1,即0<a<1,则1<x<1a. 综上所述,当a<0时,原不等式的解集为{x|x<1a或x>1}; 当a =0时,原不等式的解集为{x|x>1};当0<a<1时,原不等式的解集为{x|1<x<1a}; 当a =1时,原不等式的解集为∅;当a>1时,原不等式的解集为{x|1a<x<1}. 例2.解关于x 的不等式:()2220mx m x +-->.解:当0m =时,不等式化为220x -->,解得1x <-;当0m >时,不等式化为()()210mx x -+>,解得1x <-,或2x m >; 当20m -<<时,21m <-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m <<-;当2m =-时,不等式化为()210x +<,此时无解;当2m <-时,21m >-,不等式化为2(1)0x x m ⎛⎫-+< ⎪⎝⎭, 解得21x m-<<; 综上,0m =时,不等式的解集是{}1x x <-;0m >时,不等式的解集是{|1x x <-或2x m ⎫>⎬⎭; 20m -<<时,不等式的解集是21x x m ⎧⎫<<-⎨⎬⎩⎭; 2m =-时,不等式无解;2m <-时,不等式的解集是21x x m ⎧⎫-<<⎨⎬⎩⎭. 例3.已知不等式()20ax a b x b -++>(1)若不等式的解集为{|1x x <或}x b >,求实数a 的值;(2)若2b =,解该不等式.解:(1)因为不等式()20ax a b x b -++>的解集为{|1x x <或}x b >,所以1x =和x b =是方程()20ax a b x b -++=的两个根, 由根与系数关系得11a b b a b b a +⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得1a =; (2)当2b =时,不等式为()2220ax a x -++>,当0a =时,不等式为220x -+>,可得:1x <;当0a ≠时,不等式可化为()()210ax x -->,方程()2220ax a x -++=的两根为11x =,22x a=, 当0a <时,可得:21x a <<; 当0a >时, ①当21a <时,即2a >时,可得:1x >或2x a <; ②当21a 即2a =时,可得:1x ≠;③当21>a,即02a <<时,可得1x <或2x a >; 综上:当0a <时,不等式解集为21x x a ⎧⎫<<⎨⎬⎩⎭; 当0a =时,不等式解集为{}1x x <;当02a <<时,不等式解集为{|1x x <或2x a ⎫>⎬⎭; 当2a =时,不等式解集为{}1x x ≠;当2a >时,不等式解集为{1x x 或2x a ⎫<⎬⎭. 例4.(1)当5a =-时,求不等式2320ax x ++>的解集;(2)求关于x 的不等式2321ax x ax ++>--(其中0a >)的解集.解(1)由题意,当5a =-时,不等式2320ax x ++>,即为25320x x -++>,可得()()1520x x -+<,所以原不等式的解集为2,15⎛⎫- ⎪⎝⎭. (2)不等式2321ax x ax ++>--可化为()2330ax a x +++>,即()()310ax x ++>,即()310x x a ⎛⎫++> ⎪⎝⎭, 当0<<3a 时,31a -<-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; 当3a =时,31a-=-,不等式的解集为()(),11,-∞--+∞; 当3a >时,31a ->-,不等式的解集为()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭, 综上所述,原不等式解集为①当0<<3a 时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭; ②当3a =时,()(),11,-∞--+∞;③当3a >时,()3,1,a ⎛⎫-∞-⋃-+∞ ⎪⎝⎭. 例5.解关于x 的不等式x 2-(a +a 2)x +a 3>0.解: 原不等式可化为(x -a)(x -a 2)>0.则方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2,由a 2-a =a(a -1)可知,(1)当a<0或a>1时,a 2>a.∴原不等式的解为x>a 2或x<a.(2)当0<a<1时,a 2<a ,∴原不等的解为x>a 或x<a 2.(3)当a =0时,原不等式为x 2>0,∴x ≠0.(4)当a =1时,原不等式为(x -1)2>0,∴x ≠1.综上可知:当a<0或a>1时,原不等式的解集为{x|x<a 或x>a 2};当0<a<1时,原不等式的解集为{x|x<a 2或x>a};当a =0时,原不等式的解集为{x|x ≠0};当a =1时,原不等式的解集为{x|x ≠1}.类型二:二次不等式恒成立求参数范围问题二次不等式ax 2+bx +c>0(a ≠0)恒成立两种解法①最小值大于0②图像始终位于x 轴上方常见题目又分为R 上恒成立和在给定区间上恒成立解题思路分三类①最值②图像③分离参数后重复1和2(前提参数好分离)例1:函数f(x)=x 2+ax +3,当x ∈R 时,f(x)≥a 恒成立,求实数a 的取值范围;解法1:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立,即g(x)=x 2+ax +3-a ≥0恒成立,需且只需Δ=a 2-4(3-a)≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,即a 的范围是[-6,2].解法2:设g(x)=f(x)-a =x 2+ax +3-a ,当x ∈R 时,f(x)≥a 恒成立即g(x)=x 2+ax +3-a ≥0恒成立, 只需g(x)的最小值2244(3)044ac b a a a ---=≥, 解得-6≤a ≤2,即a 的范围是[-6,2]解法3:分离出a ,2(1)(3)a x x -≥-+当1x =时,易得恒成立;当1x >时, 22(3)(1)2(1)44(12)(1)(1)1x x x a x x x x +-+-+≥-=-=--++---由均值不等式得-6≤a ,同理当1x <时,22(3)(1)2(1)4412(1)(1)1x x x a x x x x +-+-+≤-=-=-+----由均值不等式得a ≤2小结:二次恒成立定义域R 用图像(法一),定义域非R 用最值(法二)分参数容易就用法3变式练习一、解答题例2.已知2(1)1y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.解:(1)当5m =时,2651y x x =-+,不等式0y >即26510x x -+>,即()()31210x x -->, 故不等式的解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭; (2)由题意得2(1)10m x mx +-+>的解集为R ,当10m +=时,该不等式的解集为{}1x x >-,不符合题意,舍去;当10m +≠时,根据二次函数图象特征知,开口向上且∆<0,即()210410m m m +>⎧⎨-+<⎩,解得22m -<+综上所述,实数m 的取值范围是{22m m -<+.例3.设a 为实数,若关于x 的不等式220x ax a -->恒成立,求a 的取值范围.因为关于x 的不等式220x ax a -->恒成立,故二次函数22y x ax a =--的判别式即280a a +<,解得()8,0a ∈-.例4.已知二次函数()()21f x kx k x k =--+.若关于x 的不等式()0f x <的解集为R ,求实数k 的取值范围.解:因为()0f x <的解集为R ,所以()210kx k x k --+<,对x ∈R 恒成立,由二次函数知识得00k <⎧⎨∆<⎩,即()220140k k k <⎧⎪⎨--<⎪⎩, 解得1k <-.例5.已知不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求a 、b 的值;(2)m 为何值时,230ax mx ++≥的解集为R ?(3)解不等式()20ax ac b x bc -++<.解:(1)由题意知,1和b 是方程2320ax x -+=的两根,则320a -+=,得1a =,方程为2320x x -+=,由韦达定理可得12b ⨯=,解得2b =;(2)由题意可知,关于x 的不等式230x mx ++≥的解集为R ,所以,2120m ∆=-≤,解得m -≤(3)不等式()20ax ac b x bc -++<,即为()2220x c x c -++<,即()()20x x c --<.①当2>c 时,原不等式的解集为{}2x x c <<;②当2c <时,原不等式的解集为{}2x c x <<;③当2c =时,原不等式无解.综上知,当2>c 时,原不等式的解集为{}2x x c <<;当2c <时,原不等式的解集为{}2x c x <<;当2c =时,原不等式的解集为∅.例6.已知y =x 2+ax +3-a ,若-2≤x ≤2,x 2+ax +3-a ≥0恒成立,求a 的取值范围. 解:设函数y =x 2+ax +3-a 在-2≤x ≤2时的最小值为关于a 的一次函数,设为g(a),则当对称轴x =-2a <-2,即a>4时,g(a)=(-2)2+(-2)a +3-a =7-3a ≥0,解得a ≤73,与a>4矛盾,不符合题意.当-2≤-2a ≤2,即-4≤a ≤4时,g(a)=3-a -24a ≥0,解得-6≤a ≤2,此时-4≤a ≤2. 当-2a >2,即a<-4时,g(a)=22+2a +3-a =7+a ≥0,解得a ≥-7,此时-7≤a<-4. 综上,a 的取值范围为-7≤a ≤2.例7.(1)解关于x 的不等式()()22442x a x a a R -++≤-∈.(2)若14x <≤时,不等式()2241x a x a -++≥--恒成立,求实数a 的取值范围.解解:(1)因为2(2)442x a x a -++-,即2(2)20x a x a -++,所以()(2)0x a x --,当2a <时,2a x ,当2a =时,2x =,当2a >时,2x a .综上所述,当2a <时,不等式的解为{|2}x a x ,当2a =时,不等式的解为{|2}x x =,当2a >时,不等式的解为{|2}x x a .(2)对于任意的14x <≤,()2241x a x a -++≥--恒成立,即2(2)50x a x a -+++恒成立,对任意的14x <≤,2(1)25a x x x --+恒成立,当14x <时,2254(1)11x x a x x x -+=-+--恒成立, 因为14x <时,所以013x <-,所以4(1)2(1)41x x x -+--,当且仅当411x x -=-,即3x =时等号成立, 所以4a ≤,所以实数a 的取值范围为(],4-∞.例8.已知函数2()(1)f x x a x a =-++.(1)当2a =时,求关于x 的不等式()0f x >的解集;(2)求关于x 的不等式()0f x <的解集;(3)若()20f x x +≥在区间(1,)+∞上恒成立,求实数a 的取值范围.解析:(1)当2a =时,则2()32f x x x =-+,由()0f x >,得2320x x -+>,令2320x x -+=,解得1x =,或2x =∴原不等式的解集为(-∞,1)(2⋃,)+∞(2)由()0f x <得1(0)()x a x --<,令()(1)0x a x --=,得1x a =,21x = ;当1a >时,原不等式的解集为(1,)a ;当1a =时,原不等式的解集为∅;当1a <时,原不等式的解集为(,1)a ;(2)由()20f x x +即20x ax x a -++在(1,)+∞上恒成立,得21x x a x +≤-令1(0)t x t =->, 则22(1)1232231x x t t t x t t++++==+++-, ∴223a +故实数a 的取值范围是(,3-∞⎤⎦例9.已知关于x 的不等式210ax x a -+-≤.(1)当a ∈R 时,解关于x 的不等式;(2)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围.解:(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤,当0a =时,不等式化为10x -≥,解得1≥x ,当0a <时,不等式化为()110a x x a -⎛⎫--≥ ⎪⎝⎭, 解得1a x a-≤,或1≥x ; 当0a >时,不等式化为()110a x x a -⎛⎫--≤ ⎪⎝⎭; ①102a <<时,11a a ->,解不等式得11a x a -≤≤, ②12a =时,11a a -=,解不等式得1x =, ③12a >时,11a a -<,解不等式得11a x a-≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≥, 当0a <时,不等式的解集为{1|a x x a -≤或1}x ≥, 102a <<时,不等式的解集为1{|1}a x x a-≤≤, 12a =时,不等式的解集为{}|1x x =, 12a >时,不等式的解集为1{|}1a ax x ≤≤-. (2)由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设()()()211f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需:()()222021030320f x x f x x ⎧≤⎧--≤⎪⇒⎨⎨≤--≤⎪⎩⎩, 解得:112x -≤≤, 所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 例10.(1)当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求实数m 的取值范围.(2)对任意-1≤x ≤1,函数y =x 2+(a -4)x +4-2a 的值恒大于0,求a 的取值范围. 解:(1)令y =x 2+mx +4.∵y<0在1≤x ≤2上恒成立.∴y =0的根一个小于1,另一个大于2.如图所示:可得504240m m +<⎧⎨++<⎩,∴m 的取值范围是{m|m<-5}. (2)∵x 2+(a -4)x +4-2a>0恒成立,即x 2+ax -4x +4-2a>0恒成立.∴(x -2)·a>-x 2+4x -4.∵-1≤x ≤1,∴x -2<0.∴()22244222x x x a x x x --+-<=-=---. 令y =2-x ,则当-1≤x ≤1时,y 的最小值为1,∴a<1.故a 的取值范围为{a|a<1}. 类型三:分式,高次不等式的解法分式不等式:此类不等式求解,要先移项通分化为f x g x >0(或f x g x<0)的形式,再等价转化为整式不等式,特别的如果分母的正负容易判断,则可两边同乘以分母化正式例题1 解下列不等式:(1)3x -22x +1>0; (2)x +12-x≥3. .[解析] (1)3x -22x +1>0⇔(3x -2)(2x +1)>0⇔{x|x>23或x<-12}.(2)x +12-x ≥3⇔x +12-x -3≥0⇔4x -52-x ≥0⇔4x -5x -2≤0, ⇔⎩⎪⎨⎪⎧ 4x -5x -2≤0x -2≠0⇔{x|54≤x<2}. ∴原不等式的解集为{x|54≤x<2}. 例2解下列不等式:(1)x +1x -3≥0;(2)5x +1x +1<3. [解析] (1)不等式x +1x -3≥0可化为⎩⎪⎨⎪⎧ x +1x -3≥0x -3≠0,∴x ≤-1或x>3.∴原不等式的解集为{x|x ≤-1或x>3}.(2)不等式5x +1x +1<3可化为5x +1x +1-3<0, 即2x -1x +1<0,∴2(x -1)(x +1)<0, ∴-1<x<1.∴原不等式的解集为{x|-1<x<1}.简单高次不等式解法:把分式不等式转化为高次整式不等式,然后用“穿根法”求解 例题3:解下列不等式:(1)x 2+2x 3-x ≥0; (2)2x 2-5x +13x 2-7x +2≤1. -[解析] (1)原不等式⇔⎩⎪⎨⎪⎧ x 2+2x 3-x ≥03-x ≠0⇔⎩⎪⎨⎪⎧ x x +2x -3≤0,①x -3≠0.②将①式的三个根-2,0,3在数轴上标出来,然后用一条曲线穿根(从最大的根右上方穿起),如图所示,①式的解为x ≤-2,或0≤x ≤3.由②式知x ≠3,∴原不等式的解为{x|x ≤-2,或0≤x<3}.(2)2x 2-5x +13x 2-7x +2≤1⇔2x 2-5x +1-3x 2+7x -23x 2-7x +2≤0⇔-x 2+2x -13x 2-7x +2≤0⇔x 2-2x +13x 2-7x +2≥0⇔ ⎩⎪⎨⎪⎧ x -123x -1x -2≥0,①3x -1x -2≠0.②①式中三个根为13,1,2,其中1为二重根.由图知,①式的解为x ≤13,或x ≥2,或x =1.由②式知x ≠13,且x ≠2, ∴原不等式的解为{x|x<13,或x>2,或x =1}. 『规律总结』 穿根法求高次不等式的解集:(1)求解过程概括为:化正⇒求根⇒标根⇒穿根⇒写集(注意端点值能否取到). (2)“化正”指不等式中未知数最高项的系数为正值.(3)奇(奇次根)过,偶(偶次根)返回.例4:不等式:x(x -1)2(x +1)3(x -2)>0的解集为__{x|-1<x<0,或x>2}__.[解析] 原不等式可化为⎩⎪⎨⎪⎧ x x +1x -2>0x -1≠0 ⇔⎩⎪⎨⎪⎧ -1<x<0,或x>2x ≠1⇔-1<x<0,或x>2.∴原不等式的解集为{x|-1<x<0,或x>2}.例5:已知集合631x M x x +⎧⎫=≥⎨⎬+⎩⎭,2324850221x x N x x x x ⎧⎫--=≤⎨⎬-+-⎩⎭,求M N ⋃,(∁R M )∩N . 解:由631x x +≥+得,2301x x -≤+,则312x -≤<,即312M x x ⎧⎫=-≤⎨⎬⎩⎭<; 由2324850221x x x x x --≤-+-得,()()()()22125011x x x x x +-≤--+,则12x ≤-或512x <≤, 即15122N x x x ⎧⎫=≤-≤⎨⎬⎩⎭或<; ∴52M N x x ⎧⎫⋃=≤⎨⎬⎩⎭,312R C M x x x ⎧⎫=≤-⎨⎬⎩⎭或>,()35122R C M N x x x ⎧⎫⋂=≤-≤⎨⎬⎩⎭或<. 例6:解关于x 的不等式11ax a x +≤+. 21(1)110ax a x ax a x x-+++≤+⇔≤ 即(1)(1)0ax x x--≤等价于(1)(1)00ax x x x --≤⎧⎨≠⎩1.0a =时,即()[)(1)0,01,0x x x x -≥⎧⇒∈-∞⋃+∞⎨≠⎩2.0a ≠时,三次不等式对应的方程的三个根分别为0,1和1a ; ⑴0a <时,利用数轴标根法,大致图像为:[)1,01,x a ⎡⎫∴∈+∞⎪⎢⎣⎭;⑵0a >时,草图为:需要判断1a 和1的大小①01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ②1a =时,解集为(){},01-∞;③1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦. 综上:①0a <时,解集为[)1,01,a ⎡⎫+∞⎪⎢⎣⎭; ②0a =时,解集为()[),01,-∞+∞;③01a <<时,解集为()1,01,a ⎡⎤-∞⎢⎥⎣⎦; ④1a =时,解集为(){},01-∞;⑤1a >时,解集为()1,0,1a ⎡⎤-∞⎢⎥⎣⎦.例7.解关于x 的不等式()2201x x a R ax -->∈-. 由原不等式可得()()1201x x ax +->-,所以 ()()()1120ax x x -+-> 当0a =时,不等式的解集为:12x -<<;当0a ≠时,方程()()()1120ax x x -+-=解为:1x a=,1-,2; 当0a <时:()()1120x x x a ⎛⎫-+-< ⎪⎝⎭ ①11a <-,10a -<<时,其解集为:()1,1,2a ⎛⎫-∞⋃- ⎪⎝⎭ ②11a=-,1a =-时,其解集为:()(),11,2-∞-⋃- ③110a -<<,1a <-时,其解集为()1,1,2a ⎛⎫-∞-⋃ ⎪⎝⎭当0a >时:()()1120x x x a ⎛⎫-+-> ⎪⎝⎭ ①12a >,102a <<时,其解集为:()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭②12a=,12a =时,其解集为:()()1,22,-+∞ ③102a <<,12a >时,其解集为()11,2,a ⎛⎫-⋃+∞ ⎪⎝⎭。
期末章节复习攻略➢ 均值定理:又称“基本不等式”,在求最值问题中有十分频繁的运用.❖ 均值定理的公式.定义若()R a a ∈≥02,则()R b a ab b a ∈≥+,222,当且仅当b a =时等号成立. 定义若0>a ,0>b ,则ab b a ≥+2,当且仅当b a =时等号成立. 定义若0>a ,0>b ,则ab b a 2≥+,当且仅当b a =时等号成立.定义若0>a ,0>b ,则22⎪⎭⎫ ⎝⎛+≤b a ab ,当且仅当b a =时等号成立. 【注意】利用均值定理求最值时,一定要紧扣一正、二定、三相等这三个条件,即每项都是正值、和或积为定值、所有的项可同时取等值.★【积固定类问题】【例1】若0>x ,0>y ,且9=xy ,则y x 2+的最小值为 .【同步巩固】若0>x ,0>y ,且6=xy ,则y x 23+的最小值为 .★【和固定类问题】【例2】若0>x ,0>y ,且92=+y x ,则xy 的最大值为 .【同步巩固】若0>x ,0>y ,且122=+y x ,则xy 3的最大值为 .【例3】若100<<x ,则()x x -10的最 值为 .【变式训练】若50<<x ,则()x x 210-的最 值为 . ★【“x x 1+”型问题】 【例4】若0>x ,则xx 1+的最 值为 . 【例5】若0<x ,则xx 1+的最 值为 . 【变式训练1】若0>x ,则xx 42--的最 值为 . 【变式训练2】若1>x ,则14-+x x 的最 值为 . 【变式训练3】若0<x ,则xx 42--的最 值为 . ★【其他类型问题】【例6】若0>x ,0>y ,且12=+y x ,则yx 11+的最小值为 .➢ 一元二次不等式的解法❖ 一元二次函数、一元二次方程、一元二次不等式三者之间的关系.❖ 一元二次不等式与一元二次方程的关系:【注意】对一元二次不等式先检查二次项系数a ,若0<a ,先两边乘以“1-”,化二次项系数大于0.【例1】已知不等式032≤+-bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤231x x ,求a ,b 的值. 【例2】已知对任意R x ∈,不等式022<+-m x mx 恒成立,求m 的取值范围.【同步巩固1】已知不等式052≤+-bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤251x x ,求b a +. 【同步巩固2】已知不等式()042≤+-+m x m mx 的解集为R ,求实数m 的取值范围.。
一元二次不等式的解法及其应用 1.不等式组2
142x a x a
⎧->⎨-<⎩有解,则实数a 的取值范围是 ( )
A.(1,3)-
B. (3,1)-
C. (,1)(3,)-∞-+∞
D. (,3)(1,)-∞-+∞
2.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是 ( )
A .31a -<<
B .20a -<<
C .10a -<<
D .02a <<
3.若不等式1
(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的取值范围是 ( ) A. 3[2,)2- B. 3(2,)2- C. 3[3,)2- D. 3(3,)2- 4.若关于x 的不等式(a 2-1)x 2
-(a -1)x -1<0对于x ∈R 成立,则实数a 的取值范围是( ) A.(-
53,1] B.[-53,1] C.(-53,1) D.(-∞,-5
3)∪[1,+∞) 5.已知b a <<0且1a b +=,下列不等式 ①2log 1a >- ②22log log 2a b +>- ③2log ()0b a -< ④2log ()1b a a b
+> 其中一定成立的不等式的序号是
A .①②
B .②③
C .③④
D .①④ 6设集合{}{}2450,0P x x x Q x x a =--<=-≥,则能使P ∩Q=φ成立的a 的值是( )
A .{}5a a >
B .{}5a a ≥
C .{}15a a -<<
D .{}
1a a > 7.不等式2
)1()3(2--+x x x ≤0的解集是 -------------- 8.若不等式20x ax b --<的解集为{x|2<x<3}则不等式2
10bx ax -->的解集为 __________.
9.不等式|x 2-3x|>4的解集是________.
10.已知集合23(1)23211331|2,|log (9)log (62)2x x x A x B x x x ---⎧⎫⎧⎫⎪⎪⎛⎫=<=-<-⎨⎬⎨⎬ ⎪⎝⎭⎪⎪⎩⎭⎩⎭
, 又{}
2|0A B x x ax b =++< , a b += ———————————————— 11.已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2≤,若,求的范围.0}B A a ⊆
12.已知函数22(45)(54)3y k k x k x =+-+-+的图象都在直线y x =的上方,求实数k 的取值范围。
13.设函数()2
1f x mx mx =--,若(1)对一切实数x,()0f x <恒成立,求m 的取值范围.(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围.
14.解关于x 的不等式:ax 2-(a +1)x +1<0(a >0).
基本不等式
1.下列结论正确的是 ( )
A .当0x >且1x ≠时,1lg
lg x x +2≥ B.0x >当2≥ C .当2x ≥时,1x x +的最小值为2 D.02x <≤时,1x x
-无最大值 2.已知4
254)(,252-+-=≥x x x x f x 则有 ( ) A .最大值45 B .最小值
4
5 C .最大值1 D .最小值1 3如果存在实数x ,使x x 212cos +=α成立,那么实数x 的取值范围是( ) A .{-1,1}
B .}10|{=<x x x 或
C .}10|{-=>x x x 或
D .}11|{≥-≤x x x 或
4.已知0,0a b >>,则
11a b ++ )
A .2
B .
C .4
D .5 5.若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( )
A.2∈M ,0∈M ;
B.2∉M ,0∉M ;
C.2∈M ,0∉M ;
D.2∉M ,0∈M .
6. x 、y >0, x +y =1, 且 y x +≤a 恒成立, 则a 的最小值为( )。
(A )2/2 (B )22 (C )2 (D )2
7.已知正整数b a ,满足304=+b a ,使得b
a 11+取最小值时,则实数对(),
b a 是________ 8.已知,,x y z R +
∈,230x y z -+=,则2
y xz 的最小值 . 9.已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .
10若a >2,b >3,则a +b +)
3)(2(1--b a 的最小值为
11①2,210x R x x ∀∈-+>;②“1x >且2y >”是“3x y +>”的充要条件;③ 函数
y =2 其中假命题的为_________(将你认为是假命题的序号都填上) 12(1)已知x ,y +∈R ,且 2x+8y-xy=0, 求 x+y 的最小值
(2)求的值域
13求函数45
)(22++=x x x f 的最小值
14.总长为24m 的铁丝剪成若干段,焊成一个长方体容器的框架。
若底面长方形邻边之比为3∶2,试问长方体的高为多少时,其容积有最大值。