力与物体平衡
- 格式:doc
- 大小:360.00 KB
- 文档页数:24
物体的平衡与力的平衡物体的平衡是指物体在受到外力作用时,保持静止或者作匀速直线运动的状态。
而力的平衡是指物体受到的合力为零的状态。
在力的平衡下,物体不会发生变形或者转动,保持稳定的姿态。
物体的平衡与力的平衡密切相关,下面将从物体的平衡和力的平衡两个角度进行论述。
一、物体的平衡物体的平衡分为静平衡和动平衡两种情况。
静平衡是指物体在受到外力作用时,保持静止的状态。
在静平衡下,物体受到的合力和合力矩都为零。
合力为零是指物体受到的所有力的合力合成为零,即外力与物体本身受到的支撑力平衡。
合力矩为零是指物体受到的所有力对物体一个点产生的力矩之和为零,即所有力矩的代数和为零。
只有当合力和合力矩都为零时,物体才能处于静平衡状态。
动平衡是指物体在受到外力作用时,保持匀速直线运动的状态。
在动平衡下,物体受到的合力不为零,但合力矩为零。
合力不为零是由于物体受到的外力与物体本身的摩擦力相平衡,使物体能够保持匀速直线运动。
合力矩为零是由于物体受到的所有力对物体一个点产生的力矩之和为零。
只有当合力矩为零时,物体才能处于动平衡状态。
二、力的平衡力的平衡是指物体受到的合力为零的状态。
在力的平衡下,物体不会发生加速度变化,保持静止或匀速直线运动。
力的平衡可以分为平行力的平衡和力偶的平衡两种情况。
平行力的平衡是指物体受到多个平行作用力时,合力为零的状态。
在平行力的平衡下,物体受到的作用力的代数和为零。
根据力的平衡条件,可以得出平行力的平衡方程:ΣF = 0,其中ΣF表示所有作用力的代数和。
力偶的平衡是指物体受到一个力偶时,合力和合力矩都为零的状态。
在力偶的平衡下,物体受到的力矩与力偶的力矩相平衡,使物体保持稳定。
根据力的平衡条件,可以得出力偶的平衡方程:ΣM = 0,其中ΣM表示所有力矩的代数和。
三、物体的平衡与力的平衡的应用物体的平衡与力的平衡在日常生活和工程领域有着广泛的应用。
在建筑工程中,设计和建造高楼大厦需要考虑物体的平衡和力的平衡。
力学中的受力与物体的平衡力学是物理学的一个重要分支,研究物体运动的原因以及力的作用和效果。
在力学中,我们经常涉及到受力与物体平衡的问题。
本文将详细探讨力学中的受力和物体平衡的概念、原理和相关应用。
一、受力的基本概念受力是使物体发生变化的原因,是物体之间相互作用的结果。
力的作用可以改变物体的运动状态,包括速度、方向和形状等。
强度、方向和作用点是描述力的基本特征。
强度是力的大小,通常用牛顿(N)作为单位。
方向是力的作用方式,可以是向上、向下、向左、向右等各个方向。
作用点是力作用的具体点位,也可以是物体的质心。
力可分为接触力和非接触力。
接触力是通过物体之间的接触传递的,如推、拉、摩擦力等;非接触力则是无需接触即可产生作用的力,如重力、电磁力等。
二、物体的平衡条件物体的平衡是指物体处于静止状态或匀速直线运动状态,不受力的干扰。
物体的平衡分为平衡在小尺度上的受力和平衡在大尺度上的受力。
在小尺度上,物体平衡的必要条件是合力为零。
合力是所有作用于物体上的力的矢量和,可以通过力的分解和合成的方法求得。
只有合力为零,物体才能保持静止或匀速直线运动。
在大尺度上,物体平衡的必要条件是合力和合力矩均为零。
合力矩是由力对物体某一点产生的力矩的矢量和。
当合力和合力矩均为零时,物体才能保持平衡状态。
三、物体平衡的应用物体的平衡条件在许多实际问题中都有广泛的应用。
以下是几个常见的应用示例:1.建筑物结构设计:在设计建筑物的结构时,需要保证各个构件处于平衡状态,以确保建筑物的稳定性和安全性。
2.桥梁设计:桥梁是交通运输的重要结构,设计桥梁时需要考虑桥梁的平衡条件,确保桥梁能够承受荷载并平稳运行。
3.机械设计:在机械设计中,需要考虑机械装置的平衡条件,以保证机械的正常运转和工作效率。
4.物体悬挂和固定:在日常生活中,悬挂物体和固定物体都需要考虑平衡条件,以防止物体掉落或意外倾斜。
以上仅为一些力学中受力与物体平衡应用的简单例子,实际应用非常广泛。
力和物体的平衡力和物体的平衡是物理学中的一个基本概念。
平衡是指物体处于稳定的状态,不会发生运动或变形。
而力是指物体所受到的作用力,它可以改变物体的状态,使其运动或变形。
在本文中,我们将探讨力和物体的平衡,并解释它们在现实生活中的应用。
力和物体的平衡是牛顿力学的基本原理之一。
牛顿第一定律指出,一个物体如果不受到外力的作用,它将保持静止或匀速直线运动。
这意味着力是改变物体状态的关键。
如果一个物体受到两个或多个力的作用,它将处于力的平衡状态。
这种平衡状态可以是静止的,也可以是匀速直线运动的。
物体的平衡有两种类型:静态平衡和动态平衡。
静态平衡是指物体处于静止状态,没有任何运动。
它是通过物体所受到的各种力的平衡来实现的。
动态平衡是指物体处于匀速直线运动的状态。
在这种情况下,物体所受到的各种力的合力为零。
物体的平衡状态取决于所受到的各种力的大小和方向。
如果物体所受到的各种力相等且方向相反,它将处于静态平衡状态。
如果物体所受到的各种力的合力为零,它将处于动态平衡状态。
这意味着物体将以匀速直线运动的方式移动,而不会改变方向或速度。
物体的平衡状态可以用力的图像来表示。
力的图像是一种用箭头表示力大小和方向的图形。
当物体受到外力时,力的图像将显示物体所受到的各种力的大小和方向。
这将帮助我们确定物体的平衡状态,并计算出所受到的各种力的大小和方向。
力和物体的平衡在现实生活中有很多应用。
例如,在建筑和工程中,工程师需要考虑物体的平衡状态,以确保建筑物和结构的稳定性。
他们必须计算出建筑物所受到的各种力,以确定它们是否处于静态平衡状态。
如果建筑物不处于静态平衡状态,它将不稳定,可能会发生倒塌或崩溃。
另一个例子是机械工程领域。
机械工程师必须考虑物体的平衡状态,以确保机器的正常运行。
他们必须计算出机器所受到的各种力,以确定它们是否处于动态平衡状态。
如果机器不处于动态平衡状态,它将不稳定,可能会发生事故或故障。
总之,力和物体的平衡是物理学中的基本概念。
第1讲 力与物体的平衡 专题复习目标学科核心素养 高考命题方向 1.本讲主要解决力学和电学中的受力分析和共点力的平衡问题,涉及的力主要有重力、弹力、摩擦力、电场力和磁场力等。
2.掌握力的合成法和分解法、整体法与隔离法、解析法和图解法等的应用。
科学思维:用“整体和隔离”的思维研究物体的受力。
科学推理:在动态变化中分析力的变化。
高考以生活中实际物体的受力情景为依托,进行模型化受力分析。
主要题型:受力分析;整体法与隔离法的应用;静态平衡问题;动态平衡问题;电学中的平衡问题。
一、五种力的理解1.弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解。
(2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向。
2.摩擦力(1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力的增大有一个限度,具体值根据牛顿运动定律或平衡条件来求解。
(2)方向:沿接触面的切线方向,并且跟物体的相对运动或相对运动趋势的方向相反。
3.电场力(1)大小:F =qE 。
若为匀强电场,电场力则为恒力;若为非匀强电场,电场力则与电荷所处的位置有关。
点电荷间的库仑力F =k q 1q 2r 2。
(2)方向:正电荷所受电场力方向与电场强度方向一致,负电荷所受电场力方向与电场强度方向相反。
4.安培力(1)大小:F =BIL ,此式只适用于B ⊥I 的情况,且L 是导线的有效长度,当B∥I时,F=0。
(2)方向:用左手定则判断,安培力垂直于B、I决定的平面。
5.洛伦兹力(1)大小:F=q v B,此式只适用于B⊥v的情况。
当B∥v时,F=0。
(2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力不做功。
二、共点力的平衡1.平衡状态:物体静止或做匀速直线运动。
2.平衡条件:F合=0或F x=0,F y=0。
物体的平衡与力的平衡物体的平衡与力的平衡是物理学中很重要的概念。
平衡是指物体处于稳定的状态,既不向任何方向倾斜,也不发生任何运动。
力的平衡则是指物体上施加的各个力以及它们之间的关系使得物体保持平衡。
本文将探讨物体的平衡以及力的平衡的相关概念和原理。
一、物体的平衡物体的平衡是指物体在各个方向上的受力之和为零,既不受到任何外力的作用,也不受到任何外力的影响而发生运动。
物体的平衡可以分为静态平衡和动态平衡两种情况。
1. 静态平衡静态平衡是指物体处于静止的状态,并且不发生任何运动。
在静态平衡下,物体的受力之和为零,既不受到任何合力的作用,也不受到任何合力的影响。
2. 动态平衡动态平衡是指物体处于匀速直线运动的状态,并且受到的合力等于零。
在动态平衡下,物体的受力之和也为零,但是物体会保持一定的运动状态。
二、力的平衡力的平衡是指物体上施加的各个力以及它们之间的关系使得物体保持平衡。
力的平衡可以分为平行力的平衡和非平行力的平衡两种情况。
1. 平行力的平衡平行力的平衡是指作用在物体上的各个平行力以及它们之间的关系使得物体保持平衡。
在平行力的平衡下,各个力的大小、方向和作用点之间需要满足平衡条件。
根据平衡条件,可以求解平行力的大小和作用点位置。
2. 非平行力的平衡非平行力的平衡是指作用在物体上的各个非平行力以及它们之间的关系使得物体保持平衡。
在非平行力的平衡下,各个力的大小、方向和作用点之间需要满足平衡条件。
一般情况下,非平行力的平衡需要通过向量分解和求解力矩的方法来进行分析。
三、平衡条件和力矩物体的平衡和力的平衡需要满足一定的条件,即平衡条件。
平衡条件包括力的平衡条件和力矩的平衡条件。
1. 力的平衡条件力的平衡条件是指作用在物体上的合力等于零。
即物体受到的所有力的矢量和为零,力的平衡条件可以用方程表示为∑F=0。
2. 力矩的平衡条件力矩的平衡条件是指作用在物体上的合力矩等于零。
力矩是力对于某一点的转动效果的量度,力矩的平衡条件可以用方程表示为∑M=0。
物体的运动与力的平衡物体的运动与力的平衡是物理学中一个重要的概念。
在力学中,物体的运动是由作用在其上的各种力所决定的。
而在某些情况下,物体处于平衡状态,即受到的合力为零,此时物体将保持静止或匀速直线运动。
本文将从力的概念、平衡、力的分析等角度来探讨物体的运动与力的平衡。
力是物体运动和形态改变的原因。
它可以改变物体的运动状态,使物体加速、减速或改变运动方向。
力的大小可通过测量物体受力产生的加速度来确定。
合力是作用在物体上的所有力的矢量和,当合力为零时,物体处于平衡状态。
物体的平衡可以分为静态平衡和动态平衡。
静态平衡是指物体在静止状态下的平衡,其中物体所受合力为零,同时力的矩也为零。
力的矩是力乘以力臂的乘积,力臂是力作用点与物体转轴之间的垂直距离。
动态平衡是指物体在匀速直线运动状态下的平衡,此时物体所受合力为零,同时力的矩也为零。
为了更好地分析物体的运动和力的平衡,我们可以使用牛顿第一定律和牛顿第二定律。
牛顿第一定律也被称为惯性定律,它指出一个物体将保持静止或匀速直线运动状态,直到有外力作用于其上。
这意味着如果一个物体处于平衡状态,那么它将保持这种状态直到受到外力的影响。
牛顿第二定律描述了物体的加速度与施加在其上的合力之间的关系。
它可以用以下公式表示:F = ma,其中F是合力,m是物体的质量,a是物体的加速度。
根据这个公式,我们可以计算物体所受力的大小,进而判断物体是否处于平衡状态。
在物体的运动与力的平衡中,还有一些其他重要的概念需要考虑,如重力、摩擦力和弹力等。
重力是物体受到的由地球或其他天体引起的力,它的大小与物体的质量成正比。
摩擦力是物体与其他物体之间接触面上的相互作用力,它的大小与物体间的粗糙程度及受力对象间垂直压力的大小相关。
弹力是物体受到的由弹性体产生的力,它的大小与物体的形变程度相关。
总结起来,物体的运动与力的平衡是一个复杂而重要的物理概念。
了解力的概念、平衡、力的分析以及运用牛顿定律等原理可以帮助我们更好地理解和解释物体的运动状态以及力的平衡。
物体的平衡与力的平衡条件物体的平衡是指物体处于静止状态或在匀速直线运动中没有受到外力的干扰。
在力学中,平衡被分为静平衡和动平衡两种情况。
本文将探讨物体的平衡以及力的平衡条件。
一、物体的平衡物体处于平衡状态时,可以分为两种情况:静平衡和动平衡。
1. 静平衡静平衡是指物体处于静止状态,在这种状态下,物体的位置和姿态不发生变化。
要实现静平衡,物体必须满足以下两个条件:(1)合力为零:物体受到的所有外力的合力等于零。
如果合力不为零,物体就会沿着合力的方向产生加速度,从而改变其状态。
(2)力矩为零:物体受到的所有外力对物体中心的力矩之和等于零。
力矩是指力在物体上产生的转动效果,它由两个因素决定:力的大小和力的臂长。
当一个物体受到的力矩为零时,它不会发生旋转。
2. 动平衡动平衡是指物体处于匀速直线运动中,但没有受到外力的干扰。
在动平衡状态下,物体不会改变其速度和方向。
二、力的平衡条件要实现物体的平衡,力也必须满足一定的平衡条件。
下面是力的平衡条件:1. 合力为零合力是指作用在物体上的所有外力的矢量和。
当物体受到的合力为零时,物体处于平衡状态。
2. 分力为零除了合力为零外,物体受到的每一个分力的矢量和也必须为零。
分力是指作用在物体上的每一个单独力的矢量。
当每一个分力的矢量和都为零时,物体才能保持平衡。
3. 力矩为零力矩是指力在物体上产生的转动效果。
当物体受到的所有外力对物体中心的力矩之和等于零时,物体处于平衡状态。
三、力的平衡与物体结构的关系物体的形状和结构对力的平衡起着重要的影响。
以下是一些常见的示例:1. 杆的平衡当在杆的一侧施加一个重力或其他力,要使杆处于平衡状态,需要在相应的位置施加一个与之相等的力。
这是因为杆的平衡要求力矩为零。
2. 悬挂物体的平衡当悬挂一个重物时,需要使悬挂点和重力的垂直作用线重合,这样才能保持稳定。
如果悬挂点与重心不重合,就会产生一个力矩,物体将会发生旋转。
四、结论物体的平衡与力的平衡条件密切相关。
力 物体的平衡【基本内容】:1、力学中常见的几种力重力 由于地球的吸引而使物体受到的力,方向竖直向下。
重力实际上是地球对物体引力的一个分力,另一个分力提供提供物体随地球自转所需的向心力。
弹力 物体发生弹性形变时,由于要恢复原状,会对跟它接触的物体产生力的作用,这种力叫弹力。
在弹性限度内,弹簧的弹力与弹簧的形变量(伸长量或缩短量)成正比。
F kx =-,k 为劲度系数,x 为形变量。
摩擦力 摩擦力分为滑动摩擦力和静摩擦力两种,当一个物体在另一个物体表面有相对运动或相对运动趋势时,所产生的阻碍相对运动或相对运动趋势的力,方向沿接触面的切线且与相对运动或相对运动趋势相反。
滑动摩擦力的大小由公式f N μ=计算,动摩擦因数μ是由接触面的情况和材料决定。
2、共点力作用下物体的平衡如果几个力作用在物体上,且交于一点或几个力的作用线交于一点,这几个力叫做共点力。
如果物体只受三个力作用,一般根据两个力的合力同第三个力等值反向做出平行四边形,解决问题,处理方法有勾股定理、正弦定理和余弦定理,有时也根据根据相似三角形的关系列方程。
如果物体受到三个以上的共点力作用,一般可用正交分解法。
物体的平衡包括静平衡和动平衡,即有静止、匀速直线运动、匀速转动三种平衡状态。
3、有固定转动轴物体的平衡力矩 力与力臂(转动轴到力的作用线之间的距离)的乘积称为力矩,记为M Fd =,它是使物体绕轴转动状态发生改变的原因,单位为N m ⋅。
力偶与力偶矩 作用在物体上的大小相等、方向相反、作用线平行的两个力组成的一对力偶。
力偶对物体只有转动作用,其转动作用的大小由力偶矩来度量。
力偶矩的大小等于力与力偶臂的乘积,力偶臂等于两个平行力的作用线之间的距离。
4、一般物体的平衡力对物体的作用效果可以改变物体的运动状态,物体所受的合力对物体的平动有影响,而合力矩对物体的转动有影响,当这两种影响都不存在时,物体处于平衡状态。
所以受任意的(共点的)平面力系作用的物体,平衡条件为000()x y i F F M ⎧=⎪⎪=⎨⎪=⎪⎩∑∑∑对任一转轴 这三个方程组成平面内任意力系的平衡方程式。
专题一力与物体的平衡1.力的效果(1)力的静力学效应:力能使物体发生形变.(2)力的动力学效应:a.瞬时效应:使物体产生加速度F=ma;b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化I=△p;c.空间积累效应:做功W=Fs,使物体的动能发生变化W=△Ek.2.中学物理中常见的几种力3.受力分析的步骤(1)明确研究对象:研究对象可以是一个点、一个物体或物体系等.(2)按顺序找力:按一重力、二弹力(分析有多少个接触点,然后根据弹力产生的条件分析是否产生弹力)、三摩擦力、四其他力(如电场力、磁场力等)的顺序来分析物体受力.防止多力或漏力.(3)画出力的示意图:每个力都要标明表示力的符号探究点一三力平衡问题1.如图所示的装置处于静止状态.已知A、B两点在同一水平面上,轻绳OA、OB与水平方向的夹角均为θ,物体所受重力为G,求轻绳OA和OB所受的拉力.2.如图所示,在电线杆的两侧常用钢丝绳把它固定在地上.如果钢丝绳与地面的夹角∠A=∠B=60°,每条钢丝绳的拉力都是300N,求两根钢丝绳作用在电线杆上的合力.(双)3.如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角α不变(α>90°),物体保持静止状态.在旋转过程中,设绳OA的拉力为T1,绳OB的拉力为T2,则( ).(A)T1先减小后增大(B)T1先增大后减小(C)T2逐渐增大(D)T2最终变为零探究点二多力平衡问题2.如图X2-2所示,A、B两物体紧靠着放在粗糙水平面上.A、B间接触面光滑.在水平推力F作用下两物体一起加速运动,物体A恰好不离开地面,则物体关于A、B()A.A受3个力,B受4个力B.A受4个力,B受3个力C.A受3个力,B受3个力D.A受4 个力,B受4个力C.水平面对C的摩擦力方向一定向左D.水平面对C的支持力与B、C的总重力大小相等探究点三物体组的平衡问题1.如图1-1-5所示,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力( )面以速度vA.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右2:如图1-1-6所示,倾角为θ的三角滑块及其斜面上的物块静止在粗糙水平地面上.现用力F垂直作用在物块上,物块及滑块均未被推动,则滑块受到地面的静摩擦力大小为( )A.0 B.F cosθC.F sinθD.F tanθ探究点四 动态平衡问题1.国家大剧院外部呈椭球型.假设国家大剧院的屋顶为半球形,一保洁人员为执行保洁任务,必须在半球形屋顶上向上缓慢爬行(如图所示),他在向上爬的过程中( )A .屋顶对他的支持力不变B .屋顶对他的支持力变大C .屋顶对他的摩擦力不变D .屋顶对他的摩擦力变大探究点五:电磁学中的物体的平衡问题1.如图所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为m 、带正电的小球悬于电容器内部.闭合电键S ,小球静止时受到悬线的拉力为F .调节R 1、R 2,关于F 的大小判断正确的是( )A .保持R 1不变,缓慢增大R 2时,F 将变大B .保持R 1不变,缓慢增大R 2时,F 将变小C .保持R 2不变,缓慢增大R 1时,F 将变大D .保持R 2不变,缓慢增大R 1时,F 将变小变式.(双选)如图所示,A 、B 两带电小球,质量分别为m A 、m B ,电荷量分别为q A 、q B ,用绝缘不可伸长的细线如图悬挂,静止时A 、B 两球处于同一水平面.若B 对A 及A 对B 的库仑力分别为F A 、F B ,则下列判断正确的是( )A .FA <FB B .OC 细线的拉力F TC =(m A +m B )gC .AC 细线对A 的拉力F TA =2g m A D .同时烧断AC 、BC 细线后,A 、B 在竖直方向的加速度相同探究六:电磁感应中的平衡问题1.如图甲中abcd 为导体做成的框架,其平面与水平面成θ角,质量为m 的导体棒PQ 与ab 、cd 垂直且接触良好,回路的电阻为R ,整个装置放于垂直框架平面的变化的磁场中,磁感应强度B 随时间变化规律如图乙所示,棒PQ 始终静止,在时间0~t0内,棒PQ 受到的静摩擦力的大小变化是 ( ) 思路:安培力方向?A.一直增大B.一直减小C.先减小后增大D.先增大后减小1.如图1-1-1所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止.下列判断正确的是( )A .F 1>F 2>F 3B .F 3>F 1>F 2C .F 2>F 3>F 1D .F 3>F 2>F 12.图1-1-4为节日里悬挂灯笼的一种方式,A 、B 点等高,O 为结点,轻绳AO 、BO 长度相等,拉力分别为F A 、F B ,灯笼受到的重力为G .下列表述正确的是( )A .FA 一定小于GB .F A 与F B 大小相等C .F A 与F B 是一对平衡力D .F A 与F B 大小之和等于G3.在2010年广州亚运会上,我国运动员陈一冰在吊环项目中取得了冠军.如图所示是比赛中的一个场景,此时人静止不动,两根吊带对称并与竖直方向有一定夹角.下列判断正确的是( )A .两根吊带受到环的拉力大小不等B .手对吊环作用力方向竖直向下C .每根吊带受到环的拉力大小都等于人重量的一半D .两根吊带受到环的拉力合力一定竖直向下4.如图所示,清洗楼房玻璃的工人常用一根绳索将自己悬在空中,工人及其装备的总重量为G ,悬绳与竖直墙壁的夹角为α,悬绳对工人的拉力大小为F 1 ,墙壁对工人的弹力大小为F2 , 则( )A .F 1=G sin αB .F 2=G tan αC .若缓慢减小悬绳的长度,F 1与F 2的合力变大D .若缓慢减小悬绳的长度,F 1减小,F 2增大5.如图X 2-8所示,一光滑斜面固定在地面上,重力为G 的物体在一水平推力F 的作用下处于静止状态.若斜面的倾角为θ,则( )A .F =G cos θB .F =G sin θC .物体对斜面的压力F N =G cos θD .物体对斜面的压力F N =G cos θ6.某同学在研究性学习中,利用所学的知识解决了如下问题:一轻质弹簧竖直悬挂于某一深度为h=30.0 cm且开口向下的小筒中(没有外力作用时弹簧的下端位于筒内,用测力计可以同弹簧的下端接触),如图X2-7甲所示,若本实验的和弹簧的长度测量工具只能测量露出筒外弹簧的长度l,现要测出弹簧的原长l劲度系数,该同学通过改变l而测出对应的弹力F,作出F-l图象如图乙所示,则弹簧的劲度系数为k=________ N/m,弹簧的原长l0=_________.甲乙图X2-77.如图所示,一质量为m=1.0×10-2kg,带电荷量为q=1.0×10-6C的小球,用绝缘细线悬挂在水平向右的匀强电场中,假设电场足够大,静止时悬线向左与竖直方向成60°角.小球在运动过程电荷量保持不变,重力加速度g=10m/s2.(结果保留2位有效数字)求:(1)画出小球受力图并判断小球带何种电荷;(2)求电场强度E;(3)若在某时刻将细线突然剪断,求经过1s时小球的速度v.。
平衡力与物体的稳定性引言:平衡力和物体的稳定性是物理学中的重要概念。
无论是建筑结构、机械设计还是日常生活中的动作,平衡力和物体的稳定性都扮演着至关重要的角色。
了解这些原理对我们理解自然和应用科学知识都至关重要。
一、平衡力的基本原理平衡力是指物体所受的所有力合力为零时所处的状态。
在物理学中,平衡力可以分为两类:静态平衡和动态平衡。
1. 静态平衡静态平衡是指物体处于静止状态下的平衡。
当物体处于静态平衡状态时,受力的合力为零,即物体所受的所有力的合力相互抵消。
这意味着物体没有加速度,保持在一个位置上。
2. 动态平衡动态平衡是指物体处于运动状态下的平衡。
在动态平衡中,物体所受的所有力合力不仅为零,还需要满足力矩合力为零。
这是因为物体在运动中,可能会有转动的趋势,力矩的平衡可以确保物体保持平衡状态。
二、物体的稳定性物体的稳定性与其重心的位置有关。
重心是物体质量分布的中心点,也是物体所受重力的作用点。
物体的稳定性可以分为以下三种情况:不稳定、稳定和中立。
1. 不稳定当物体的重心往高于支撑基点的一侧倾斜时,物体就处于不稳定的状态。
这时,只需施加微小的作用力,物体就会倾倒。
比如,在将球从斜坡上推下时,球会往下滚动。
2. 稳定当物体的重心位于支撑基点上方,但在基点的同一侧时,物体处于稳定状态。
在这种情况下,物体需要受到较大的外力才能被推翻。
例如,将一个坚固的杯子放在桌子上,只有施加较大力才能使其倾覆。
3. 中立当物体的重心位于支撑基点上方并处于基点中心时,物体处于中立状态。
在这种情况下,物体不会倾倒,但也不会返回原位。
给物体一个微小的推力,它会移动,但不会倾倒。
三、实际应用平衡力和物体的稳定性在我们的日常生活中随处可见,特别是在设计建筑和机械时,考虑到物体的稳固性是非常重要的。
1. 建筑设计在建筑物的设计和施工中,需要考虑到重心的位置、结构的坚固性以及外部环境因素对建筑物的影响。
只有确保建筑物的平衡和稳定,才能保证其安全和长久的使用。
第一章力和物体的平衡第一单元力知识要点概述一.力的概念1.力的概念2.力的基本特征(1)力的物质性力不能离开物体而独立存在产生一个力至少需要两个物体(2)力的相互性力的作用是相互的牛顿第三定律力为矢量,既有大小,又有方向力三要素:大小,方向,作用点力的表示:力的图示和力的示意图力的计算法则:平行四边形定则(4)力的独立性一个力作用于某个物体上产生的效果,与这个物体是否受到其它力的作用无关力对物体的作用效果①使物体发生形变②改变物体的运动状态(或者说产生加速度)力的积累效果:对时间的积累为冲量对空间的积累为功力的瞬时效果:产生加速度(牛顿第二定律)3.力的分类按性质划分:重力、弹力、摩擦力、分子力、电场力、磁场力、核力按作用效果划分:动力,阻力,向心力,回复力,支持力,压力等按研究对象划分:内力和外力※效果和性质无必然联系:按力的作用效果命名的不同名称的力,性质可能相同。
例如,支持力,压力按力的作用效果命名的相同名称的力,性质可能不同。
例如,摩擦力,重力都可充当动力※对物体受力分析,必须找按性质命名的力二.重力1.重力的产生由于地球的吸引而使物体受到的力重力与万有引力的关系:为万有引力的一个分力在地球表面附近(不考虑地球的自转效应)近似认为二者相等。
2.重力的大小重力的大小与物体的质量成正比G=mg重力加速度g值的特点:与物体所在的高度和纬度有关3.重力的方向方向总是竖直向下的4.重力的作用点作用点叫物体的重心重心的位置与物体的质量分布和形状有关。
质量均匀分布,形状规则物体的重心在其几何中心处。
※物体的重心不一定在物体上三.弹力1.弹力的定义发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。
2.弹力的产生条件两个物体互相接触且发生弹性形变3.弹力的方向弹力的方向和受力物体形变的方向相同,和施力物体形变的方向相反;和使物体产生弹性形变的外力方向相反弹力的方向一定和接触面垂直,也一定和摩擦力的方向垂直(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点曲面的切面;点面接触处产生的弹力,其方向垂直于面。
物体的平衡和力的平衡物体的平衡是物理学中的重要概念,它与力的平衡密切相关。
本文将探讨物体的平衡以及力的平衡的基本原理和应用。
一、物体的平衡物体的平衡是指物体处于静止状态或匀速直线运动状态时,各部分之间的力矩和力的合力为零。
根据力矩的定义,力矩是由作用力和力臂组成,力臂是指作用力相对于物体某一点的距离。
物体的平衡可分为两类:稳定平衡和不稳定平衡。
1. 稳定平衡:当物体受到微小干扰后,能够自动返回原来的平衡位置,即物体重心的垂直投影落在支撑点的范围内。
例如,摆放在平面上的杯子如果没有外力干扰,会始终保持直立的状态。
2. 不稳定平衡:当物体受到微小干扰后,不能自动返回原来的平衡位置,即物体重心的垂直投影不再落在支撑点的范围内。
例如,将一个笔立在桌面上,稍微触动一下,它就会倒下。
二、力的平衡力的平衡是指物体受到的合力为零的状态。
当物体受到多个力的作用时,我们可以利用力的平衡原理解析这些力。
1. 静力学平衡条件物体处于静止状态时,力的合力和力矩都为零。
首先,力的合力为零意味着物体受到的内力和外力平衡,没有产生加速度。
这可以通过牛顿第一定律来解释。
其次,力矩为零表示物体各部分之间的力矩相互抵消,物体不会发生旋转。
这可以通过力矩的定义和力的均衡条件来推导。
2. 动力学平衡条件物体处于匀速直线运动状态时,力的合力为零。
当物体受到多个力的作用时,通过合力的分解和合力为零可以推导出物体的运动状态。
只有当物体受到的合力为零时,物体才能保持匀速直线运动。
三、平衡的应用平衡理论在实际应用中具有广泛的用途。
1. 建筑物结构设计在建筑物结构设计中,平衡原理是保证建筑物稳定和安全的基础。
通过合理设计结构和确定支撑点的位置,可以使建筑物达到稳定平衡的状态。
2. 车辆运动在车辆运动中,平衡原理也是重要的。
例如,汽车行驶时,驱动力和阻力相互平衡,使汽车能够匀速行驶。
同时,车辆转弯时,通过控制转向角度和速度,保持平衡,避免发生侧翻。
3. 机械系统在机械系统中,平衡原理对于机械结构的设计和运行也是至关重要的。
物体平衡与力的平衡主题:物体平衡与力的平衡教案引言:在日常生活和学习中,我们经常会遇到关于力和平衡的问题。
本节课将围绕物体平衡和力的平衡展开探讨。
通过实例和实验,让学生了解平衡的条件和力的平衡的原理。
并通过练习和讨论,加深他们对物体平衡和力的平衡的理解。
一、什么是物体平衡?在物理学中,物体平衡是指物体处于静止状态或匀速直线运动状态时,所受的合力为零。
也就是说,物体没有受到除重力以外的其他力的作用。
只有在平衡状态下,物体才能保持静止或匀速直线运动。
二、平衡的条件在平衡状态下,物体必须同时满足以下三个条件:1. 力的合力为零物体所受的所有力的合力必须为零。
也就是说,物体所受的合力大小和方向应该抵消。
2. 力的合力矩为零物体所受的所有力产生的力矩的合力必须为零。
也就是说,物体所受的合力矩大小和方向应该抵消。
3. 物体的重心在支持点上方垂直下落物体的重心必须在支持点上方垂直下落的竖直线上。
这样,物体受到的重力才能绕着支持点产生一个力矩,与其他合力矩相抵消。
三、力的平衡力的平衡是指物体所受的所有力的合力为零。
力的平衡是物体平衡的前提条件之一。
当物体所受的所有力的合力为零时,物体将保持静止或匀速直线运动。
四、力的平衡的方法和技巧为了实现力的平衡,可以采用以下方法和技巧:1. 调整力的大小通过调整各个力的大小,使得各个力的合力为零。
这样就能实现力的平衡。
2. 调整力的方向通过调整各个力的方向,使得各个力的合力为零。
这样就能实现力的平衡。
3. 调整力的作用点通过调整各个力的作用点,使得各个力的合力为零。
这样就能实现力的平衡。
五、实验部分为了验证力的平衡的原理,我们进行以下实验:实验一:力的平衡材料:一个木块,一个弹簧测力计实验步骤:1. 将木块放在水平桌面上。
2. 用弹簧测力计分别测量木块上下两个方向的力。
3. 记录测得的力的大小和方向,并计算它们的合力。
4. 分析合力是否为零,如果是零,则说明木块处于力的平衡。
力与物体平衡(1)高三物理知识点复习一:力与物体平衡(1)力学中的三类常见的力:重力、弹力、摩擦力,特别是静摩擦力,这是高考中常考的内容。
由于静摩擦力随物体的相对运动趋势发生变化,在分析中非常容易失误,同学们一定要下功夫把静摩擦力弄清楚。
共点力作用下物体的平衡,是高中物理中重要的问题,几乎是年年必考。
单纯考查本章内容多以选择、填空为主,难度适中,与其它章节结合的则以综合题出现,也是今后高考的方向。
二. 夯实基础知识(一)力的概念:力是物体对物体的作用。
1. 力的基本特征(1)力的物质性:力不能脱离物体而独立存在。
(2)力的相互性:力的作用是相互的。
(3)力的矢量性:力是矢量,既有大小,又有方向。
(4)力的独立性:力具有独立作用性,用牛顿第二定律表示时,则有合力产生的加速度等于几个分力产生的加速度的矢量和。
2. 力的分类:(1)按力的性质分类:如重力、电场力、磁场力、弹力、摩擦力、分子力、核力等(2)按力的效果分类:如拉力、推力、支持力、压力、动力、阻力等。
(二)常见的三类力。
1. 重力:重力是由于地球的吸引而使物体受到的力。
(1)重力的大小:重力大小等于mg,g是常数,通常等于9.8N/kg。
(2)重力的方向:竖直向下的。
(3)重力的作用点—重心:重力总是作用在物体的各个点上,但为了研究问题简单,我们认为一个物体的重力集中作用在物体的一点上,这一点称为物体的重心。
①质量分布均匀的规则物体的重心在物体的几何中心。
②不规则物体的重心可用悬线法求出重心位置。
2. 弹力:发生弹性形变的物体,由于要恢复原状,对跟它接触的物体会产生力的作用,这种力叫做弹力。
(1)弹力产生的条件:①物体直接相互接触;②物体发生弹性形变。
(2)弹力的方向:跟物体恢复形状的方向相同。
①一般情况:凡是支持物对物体的支持力,都是支持物因发生形变而对物体产生的弹力;支持力的方向总是垂直于支持面并指向被支持的物体。
②一般情况:凡是一根线(或绳)对物体的拉力,都是这根线(或绳)因为发生形变而对物体产生的弹力;拉力的方向总是沿线(或绳)的方向。
③弹力方向的特点:由于弹力的方向跟接触面垂直,面面接触、点面接触时弹力的方向都是垂直于接触面的。
(3)弹力的大小:①与形变大小有关,弹簧的弹力F=kx。
②可由力的平衡条件求得。
3. 滑动摩擦力:一个物体在另一个物体表面上存在相对滑动的时候,要受到另一个物体阻碍它们相对滑动的力,这种力叫做滑动摩擦力。
(1)产生条件:①接触面是粗糙;②两物体接触面上有压力;③两物体间有相对滑动。
(2)方向:总是沿着接触面的切线方向与相对运动方向相反。
(3)大小:与正压力成正比,即Fμ=μFN4. 静摩擦力:当一个物体在另一个物体表面上有相对运动趋势时,所受到的另一个物体对它的力,叫做静摩擦力。
(1)产生条件:①接触面是粗糙的;②两物体有相对运动的趋势;③两物体接触面上有压力。
(2)方向:沿着接触面的切线方向与相对运动趋势方向相反。
(3)大小:由受力物体所处的运动状态根据平衡条件或牛顿第二定律来计算。
(三)力的合成与分解1. 合力和力的合成:一个力产生的效果如果能跟原来几个力共同作用产生的效果相同,这个力就叫那几个力的合力,求几个力的合力叫力的合成。
2. 力的平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,合力的大小和方向就可以用这个平行四边形的对角线表示出来。
3. 分力与力的分解:如果几个力的作用效果跟原来一个力的作用效果相同,这几个力叫原来那个力的分力。
求一个力的分力叫做力的分解。
4. 分解原则:平行四边形定则。
力的分解是力的合成的逆运算,同一个力F可以分解为无数对大小,方向不同的分力,一个已知力究竟怎样分解,要根据实际情况来确定,根据力的作用效果进行分解。
(四)共点力的平衡1. 共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力。
2. 平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态。
3. 共点力作用下物体的平衡条件:合力为零,即0。
4. 力的平衡:作用在物体上几个力的合力为零,这种情形叫做力的平衡。
(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡。
(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上。
(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:【典型例题】问题1:弄清滑动摩擦力与静摩擦力大小计算方法的不同。
当物体间存在滑动摩擦力时,其大小即可由公式计算,由此可看出它只与接触面间的动摩擦因数及正压力N有关,而与相对运动速度大小、接触面积的大小无关。
正压力是静摩擦力产生的条件之一,但静摩擦力的大小与正压力无关(最大静摩擦力除外)。
当物体处于平衡状态时,静摩擦力的大小由平衡条件来求;而物体处于非平衡态的某些静摩擦力的大小应由牛顿第二定律求。
[例1] 如图1所示,质量为m,横截面为直角三角形的物块ABC,,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为_________。
分析与解:物块ABC受到重力、墙的支持力、摩擦力及推力四个力作用而平衡,由平衡条件不难得出静摩擦力大小为。
[例2] 如图2所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q 之间的动摩擦因数为μ1,Q与斜面间的动摩擦因数为μ2。
当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为()A. 0B. μ1mgcosθC. μ2mgcosθD.(μ1+μ2)mgcosθ分析与解:当物体P和Q一起沿斜面加速下滑时,其加速度为:a=gsinθ-μ2gcosθ。
因为P 和Q相对静止,所以P和Q之间的摩擦力为静摩擦力,不能用公式求解。
对物体P运用牛顿第二定律得:mgsinθ-f=ma所以求得:f=μ2mgcosθ。
即C选项正确。
问题2:弄清摩擦力的方向是与“相对运动或相对运动趋势的方向相反”。
滑动摩擦力的方向总是与物体“相对运动”的方向相反。
所谓相对运动方向,即是把与研究对象接触的物体作为参照物,研究对象相对该参照物运动的方向。
当研究对象参与几种运动时,相对运动方向应是相对接触物体的合运动方向。
静摩擦力的方向总是与物体“相对运动趋势”的方向相反。
所谓相对运动趋势的方向,即是把与研究对象接触的物体作为参照物,假若没有摩擦力研究对象相对该参照物可能出现运动的方向。
[例3] 如图3所示,质量为m的物体放在水平放置的钢板C上,与钢板的动摩擦因素为μ。
由于受到相对于地面静止的光滑导槽A、B的控制,物体只能沿水平导槽运动。
现使钢板以速度V1向右匀速运动,同时用力F拉动物体(方向沿导槽方向)使物体以速度V2沿导槽匀速运动,求拉力F大小。
分析与解:物体相对钢板具有向左的速度分量V1和侧向的速度分量V2,故相对钢板的合速度V的方向如图4所示,滑动摩擦力的方向与V的方向相反。
根据平衡条件可得:F=fcosθ=μmg从上式可以看出:钢板的速度V1越大,拉力F越小。
问题3:弄清弹力有无的判断方法和弹力方向的判定方法。
直接接触的物体间由于发生弹性形变而产生的力叫弹力。
弹力产生的条件是“接触且有弹性形变”。
若物体间虽然有接触但无拉伸或挤压,则无弹力产生。
在许多情况下由于物体的形变很小,难于观察到,因而判断弹力的产生要用“反证法”,即由已知运动状态及有关条件,利用平衡条件或牛顿运动定律进行逆向分析推理。
例如,要判断图5中静止在光滑水平面上的球是否受到斜面对它的弹力作用,可先假设有弹力N2存在,则此球在水平方向所受合力不为零,必加速运动,与所给静止状态矛盾,说明此球与斜面间虽接触,但并不挤压,故不存在弹力N2。
[例4] 如图6所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是()A. 小车静止时,F=mgsinθ,方向沿杆向上B. 小车静止时,F=mgcosθ,方向垂直杆向上C. 小车向右以加速度a运动时,一定有F=ma/sinθD. 小车向左以加速度a运动时,,方向斜向左上方,与竖直方向的夹角为α=arctan(a/g)分析与解:小车静止时,由物体的平衡条件知杆对球的作用力方向竖直向上,且大小等于球的重力mg。
小车向右以加速度a运动,设小球受杆的作用力方向与竖直方向的夹角为α,如图7所示。
根据牛顿第二定律有:Fsinα=ma,Fcosα=mg,两式相除得:tanα=a/g。
只有当球的加速度a=gtanθ时,杆对球的作用力才沿杆的方向,此时才有F=ma/sinθ。
小车向左以加速度a运动,根据牛顿第二定律知小球所受重力mg和杆对球的作用力F的合力大小为ma,方向水平向左。
根据力的合成知三力构成图8所示的矢量三角形,,方向斜向左上方,与竖直方向的夹角为:α=arctan(a/g)。
问题4:弄清合力大小的范围的确定方法。
有n个力F1、F2、F3、……Fn,它们合力的最大值是它们的方向相同时的合力,即Fmax=.而它们的最小值要分下列两种情况讨论:(1)、若n个力F1、F2、F3、……Fn中的最大力Fm大于,则它们合力的最小值是(Fm-)。
(2)若n个力F1、F2、F3、……Fn中的最大力Fm小于,则它们合力的最小值是0。
[例5] 四个共点力的大小分别为2N、3N、4N、6N,它们的合力最大值为,它们的合力最小值为。
分析与解:它们的合力最大值Fmax=(2+3+4+6)N=15N。
因为Fm=6N<(2+3+4)N,所以它们的合力最小值为0。
[例6] 四个共点力的大小分别为2N、3N、4N、12N,它们的合力最大值为,它们的合力最小值为。
分析与解:它们的合力最大值Fmax=(2+3+4+12)N=21N,因为Fm=12N>(2+3+4)N,所以它们的合力最小值为(12-2-3-4)N=3N。
问题5:弄清力的分解的不唯一性及力的分解的唯一性条件。
将一个已知力F进行分解,其解是不唯一的。
要得到唯一的解,必须另外考虑唯一性条件。
常见的唯一性条件有:1. 已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。
2. 已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。
力的分解有两解的条件:1. 已知一个分力F1的方向和另一个分力F2的大小,由图9可知:当F2=Fsin时,分解是唯一的。
当Fsin<F2<F时,分解不唯一,有两解。
当F2>F时,分解是唯一的。
2. 已知两个不平行分力的大小。