学易密卷:段考模拟君之七年级数学下学期期末考试原创模拟卷B卷(河北)(全解全析)
- 格式:pdf
- 大小:562.34 KB
- 文档页数:8
2022-2023学年七年级(下)期末数学试卷一.选择题(共10小题)1.下列计算正确的是()A.=±5B.=﹣3C.D.2.下列语句正确的是()A.平行于x轴的直线上所有点的横坐标都相同B.(﹣3,5)与(5,﹣3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若点P(﹣3,4),则P到x轴的距离为33.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.45.已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2 b6.红领巾公园健走步道环湖而建,以红军长征路为主题,如图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示遵义的点的坐标为(﹣5,7),表示腊子口的点的坐标为(4,﹣1),那么这个平面直角坐标系原点所在位置是()A.泸定桥B.瑞金C.包座D.湘江7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣2≤a<1B.﹣3<a≤﹣2C.﹣2<a<1D.﹣3<a<﹣2 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw・h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160kw・h的该市居民家庭按第一档电价交费,月用电量不小于310kw・h的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110kw•h 其中合理的是()A.①②③B.①②④C.①③④D.②③④二.填空题(共8小题)11.在实数3.14,﹣,﹣,0.13241324…,,﹣π,中,无理数的个数是.12.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在.13.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有(填序号).14.若关于x,y的二元一次方程组的解也是二元一次方程x ﹣3y=6的解,则k=.15.如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=度.17.如表所示,被开方数a的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若=180,且=﹣1.8,则被开方数a的值为.a…0.000001 0.01 1 100 10000 1000000 ……0.001 0.1 1 10 100 1000 …18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示).三.解答题19.计算(1);(2).20.解下列方程组:(1)(2).21.解不等式(1)解不等式组(2)解不等式组,并写出它的所有非负整数解..22.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 ()且∠1=∠CGD(),∴∠2=∠CGD()∴CE∥BF().∴∠BFD=∠C().又∵∠B=∠C()∴∠BFD=∠B()∴AB∥CD().23.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?24.△ABC在平面直角坐标系中,且A(﹣2,1)、B(﹣3,﹣2)、C (1,﹣4).将其平移后得到△A1B1C1,若A,B的对应点是A1,B1,C的对应点C1的坐标是(3,﹣1)(1)在平面直角坐标系中画出△ABC;(2)写出点A1的坐标是,B1坐标是;(3)此次平移也可看作△A1B1C1向平移了个单位长度,再向平移了个单位长度得到△ABC.25.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.26.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60 100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.为了解2020年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了不完整的频数分布表.分数x(分)频数百分比60≤x<70 30 10%70≤x<80 90 n80≤x<90 m40%90≤x≤100 60 20%请根据图表提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m=;n=;(3)根据频数分布表画频数分布直方图;(4)如果比赛成绩在80分以上(含80分)为优秀,那么你估计参加该竞赛项目的的30000人中,优秀人数大约是.28.对于平面直角坐标系xOy中的点P(a,b),若P'(a+kb,ka+b)(其中k为常数,且k≠0),则称点P″为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P(9,6).(1)点P(﹣2,3)的“3属派生点”P''的坐标为.(2)若点P的“5属派生点”P'的坐标为(3,﹣9),求点P的坐标.(3)若点P在x轴的正半轴上,点P的“k属派生点”为P''点,且线段PP'的长度为线段OP长度的2倍,求k的值.2022-2023学年七年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.=±5B.=﹣3C.D.【分析】分别利用平方根、立方根、算术平方根的性质计算即可得出答案.【解答】解:A.=5,故此选项错误;B.=3,故此选项错误;C.=5,故此选项错误;D.=﹣3,故此选项正确.故选:D.2.下列语句正确的是()A.平行于x轴的直线上所有点的横坐标都相同B.(﹣3,5)与(5,﹣3)表示两个不同的点C.若点P(a,b)在y轴上,则b=0D.若点P(﹣3,4),则P到x轴的距离为3【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【解答】解:A.平行于x轴的直线上所有点的纵坐标都相同,此选项错误;B.(﹣3,5)与(5,﹣3)表示两个不同的点,此选项正确;C.若点P(a,b)在y轴上,则a=0,此选项错误;D.若点P(﹣3,4),则P到x轴的距离为4,此选项错误;故选:B.3.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.4【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.5.已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2 b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.6.红领巾公园健走步道环湖而建,以红军长征路为主题,如图是利用平面直角坐标系画出的健走步道路线上主要地点的大致分布图,这个坐标系分别以正东、正北方向为x轴、y轴的正方向,如果表示遵义的点的坐标为(﹣5,7),表示腊子口的点的坐标为(4,﹣1),那么这个平面直角坐标系原点所在位置是()A.泸定桥B.瑞金C.包座D.湘江【分析】直接利用遵义和腊子口的位置进而确定原点的位置.【解答】解:如图所示:平面直角坐标系原点所在位置是瑞金.故选:B.7.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.8.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣2≤a<1B.﹣3<a≤﹣2C.﹣2<a<1D.﹣3<a<﹣2 【分析】表示出不等式组的解集,由不等式组的整数解共有3个,确定出a的范围即可.【解答】解:不等式组整理得:,解得:a≤x<1,由不等式组的整数解有3个,得到整数解为﹣2,﹣1,0,则a的范围为﹣3<a≤﹣2.故选:B.10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw・h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160kw・h的该市居民家庭按第一档电价交费,月用电量不小于310kw・h的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110kw•h 其中合理的是()A.①②③B.①②④C.①③④D.②③④【分析】根据统计图中的数据可以判断各个小题是否成立,从而可以解答本题.【解答】解:由题意可得,抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平,故①合理,在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于510﹣10=500,故②合理,第一档用户数量为:20000×80%=16000户,由1108+8533+6359=16000,故月用电量小于160kw・h的该市居民家庭按第一档电价交费,第三档用户数量为:20000×5%=1000户,由151+181+232+436=1000,故月用电量不小于310kw・h的该市居民家庭按第三档电价交费,故③合理,该市居民家庭月用电量的中间水平(50%的用户)为大于等于110kw•h,小于160kw•h,故④不合理,故选:A.二.填空题(共8小题)11.在实数3.14,﹣,﹣,0.13241324…,,﹣π,中,无理数的个数是 3 .【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:3.14、﹣=﹣0.6、0.13241324…、这四个数是有理数,﹣、和﹣π这三个数是无理数,故答案为:3.12.如果点P(a,2)在第二象限,那么点Q(﹣3,a﹣1)在第三象限.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由题意,得a<0,a﹣1<﹣1,点Q(﹣3,a﹣1)在第三象限,故答案为:第三象限.13.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有①③(填序号).【分析】根据平行线的判定和性质解答即可.【解答】解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.14.若关于x,y的二元一次方程组的解也是二元一次方程x ﹣3y=6的解,则k= 1 .【分析】把k看做已知数表示出方程组的解,代入已知方程求出k 的值即可.【解答】解:,①+②得:2x=6k,即x=3k,②﹣①得:2y=﹣2k,即y=﹣k,把x=3k,y=﹣k代入x﹣3y=6中得:3k+3k=6,解得:k=1,故答案为:115.如图,在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上,则k的值是k=﹣3 .【分析】根据新运算法则得到不等式2x﹣k≥1,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【解答】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥1,∴2x﹣1≥k且2x﹣1≥﹣3,∴k=﹣3.故答案是:k=﹣3.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=30 度.【分析】过C作CF∥AB,根据平行线性质得出∠ACF+∠CAB=180°,∠CDE=∠FCD,求出∠ACF,求出∠DCF即可.【解答】解:过C作CF∥AB,∵DE∥AB,∴AB∥CF∥DE,∴∠ACF+∠CAB=180°,∠CDE=∠FCD,∵∠CAB=135°,∴∠ACF=45°,∵∠ACD=75°,∴∠FCD=30°,∴∠EDC=30°,故答案为:30.17.如表所示,被开方数a的小数点位置移动和它的算术平方根的小数点位置移动规律符合一定的规律,若=180,且=﹣1.8,则被开方数a的值为32400 .a…0.000001 0.01 1 100 10000 1000000 ……0.001 0.1 1 10 100 1000 …【分析】根据题意和表格中数据的变化规律,可以求得a的值.【解答】解:∵=180,且﹣=﹣1.8,∴=1.8,∴=180,∴a=32400,故答案为:32400.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(2n,1)(用n表示).【分析】根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).三.解答题19.计算(1);(2).【分析】(1)利用开立方的运算法则和实数的分配律运算即可;(2)首先进行平方运算,绝对值得化简,开方运算,再进行加减运算即可.【解答】解(1)原式=﹣3+=;(2)原式=﹣9﹣2=﹣8.20.解下列方程组:(1)(2).【考点】98:解二元一次方程组.【专题】11:计算题.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.21.解不等式(1)解不等式组(2)解不等式组,并写出它的所有非负整数解.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,进而求出所有非负整数解即可.【解答】解:(1),由①得:x≥﹣1,由②得:x<3,则不等式组的解集为﹣1≤x<3;(2),由①得:x>﹣2,由②得:x≤,∴不等式组的解集为﹣2<x≤,则不等式组的所有非负整数解为0,1.22.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 (已知)且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换)∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD(内错角相等,两直线平行).【考点】JB:平行线的判定与性质.【专题】551:线段、角、相交线与平行线.【分析】先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2 (已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:已知,对顶角相等,等量代换,同位角相等,两直线平行,BFD,两直线平行,同位角相等,已知,BFD,等量代换,内错角相等,两直线平行.23.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?【考点】22:算术平方根;AD:一元二次方程的应用.【分析】根据矩形的面积公式求出矩形的长和宽,最后进行判断即可得出结论.【解答】解:设长方形场地的长为5xm,宽为2xm,依题意,得,5x•2x=50,∴x=,长为5,宽为2.∵4<5<9,∴2<<3.由上可知2<6,且5>10若长与墙平行,墙长只有10 m,故不能围成满足条件的长方形场地;若宽与墙平行,则能围成满足条件的长方形场地.∴他们的说法都不正确.24.△ABC在平面直角坐标系中,且A(﹣2,1)、B(﹣3,﹣2)、C (1,﹣4).将其平移后得到△A1B1C1,若A,B的对应点是A1,B1,C的对应点C1的坐标是(3,﹣1)(1)在平面直角坐标系中画出△ABC;(2)写出点A1的坐标是(0,4),B1坐标是(﹣1,1);(3)此次平移也可看作△A1B1C1向下平移了 3 个单位长度,再向左平移了 2 个单位长度得到△ABC.【考点】Q4:作图﹣平移变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)根据A,B,C三点坐标画出图形,再作出A,B的对应点A1,B1即可;(2)根据A1,B1的位置写出坐标即可.(3)观察图象利用平移性质解决问题即可.【解答】解:(1)△ABC,△A1B1C1如图所示.(2)点A1的坐标是(0,4),B1坐标是(﹣1,1).故答案为(0,4),(﹣1,1).(3)此次平移也可看作△A1B1C1向下平移了3个单位长度,再向左平移了2个单位长度得到△ABC.故答案为下,3;左,2;25.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【考点】JB:平行线的判定与性质.【专题】14:证明题.【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【解答】证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.26.国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60 100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【考点】9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【专题】521:一次方程(组)及应用;524:一元一次不等式(组)及应用;69:应用意识.【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.为了解2020年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作了不完整的频数分布表.分数x(分)频数百分比60≤x<70 30 10%70≤x<80 90 n80≤x<90 m40%90≤x≤100 60 20%请根据图表提供的信息,解答下列问题:(1)本次调查的样本容量为300 ;(2)在表中:m=120 ;n=30% ;(3)根据频数分布表画频数分布直方图;(4)如果比赛成绩在80分以上(含80分)为优秀,那么你估计参加该竞赛项目的的30000人中,优秀人数大约是18000 .【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【专题】541:数据的收集与整理;542:统计的应用;66:运算能力;69:应用意识.【分析】(1)分数在60≤x<70的频数是30,占调查总数的10%,可求出调查总数,即样本容量;(2)根据频数所占总数的百分比即可求m、n的值;(3)根据频数补全频数分布直方图;(4)样本估计总体,样本中“优秀”的占40%+20%=60%,因此估计总体30000人的60%是“优秀”人数.【解答】解:(1)30÷10%=300(人),故答案为300;(2)m=300×40%=120(人),n=90÷300=30%,故答案为:120,30%;(3)根据频数,画出频数分布直方图;(4)30000×(40%+20%)=18000(人),故答案为:18000.28.对于平面直角坐标系xOy中的点P(a,b),若P'(a+kb,ka+b)(其中k为常数,且k≠0),则称点P″为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P(9,6).(1)点P(﹣2,3)的“3属派生点”P''的坐标为(7,﹣3).(2)若点P的“5属派生点”P'的坐标为(3,﹣9),求点P的坐标.(3)若点P在x轴的正半轴上,点P的“k属派生点”为P''点,且线段PP'的长度为线段OP长度的2倍,求k的值.【考点】D5:坐标与图形性质.【专题】532:函数及其图像.【分析】(1)根据“k属派生点”计算可得;(2)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(3)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP 长度的2倍列出方程,解之可得.【解答】解:(1)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(2)设P点的坐标是(a,b),依题意得;,解得:,∴点P的坐标是(﹣2,1);(2)∵点P在x轴的正半轴上,∴设P点的坐标为(a,0)(a>0)又∵点P的“k属派生点”为P''点,∴设P''的坐标为(a,ka),又∵线段PP''的长度是OP长度的2倍∴PP''=2OP,即:|ka|=|2a|,又∵a>0,∴k=±2.。
2023-2024学年七年级数学下学期期末模拟卷01全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列选项中,可由如图2022年杭州亚运会会徽“潮涌”平移得到的是()A.B.C.D.【分析】根据平移的特征进行判断即可.【解】:由平移的特征可知,能够通过平移得到的是:故选:C.2.如图,已知直线a,b被直线c所截,那么∠1的内错角是()A.∠2B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解】:∠1的内错角是∠3.故选:B.3.下列调查方式中正确的是()A.要了解一大批笔芯的使用寿命,采用全面调查的方式B.为了审核书稿中的错别字,采用抽样调查的方式C.为了解外地游客对湖州景点“原乡小镇”的满意程度,采用全面调查的方式D.要了解某班全体学生的视力情况,采用全面调查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解】:A、要了解一大批笔芯的使用寿命,适合采用抽样调查方式,故不符合题意;B、为了审核书稿中的错别字,适合采用全面调查的方式,故不符合题意;C、为了解外地游客对湖州景点“原乡小镇”的满意程度,适合采用抽样调查的方式,故不符合题意;D、要了解某班全体学生的视力情况,采用全面调查的方式,故符合题意.故选:D.4.已知,则下列式子一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】依据比例的基本性质以及等式的基本性质,即可得到成立的式子.【解】:A.由,可得3x=2y,故x=2,y=3不一定成立,本选项不合题意;B.由,可得3x=2y,故2x=3y不成立,本选项不合题意;C.由,可得﹣1=﹣1,即=﹣,故=不成立,本选项不合题意;D.由,可得+1=+1,故,本选项符合题意;故选:D.5.下列计算正确的是()A.(2x2y)2=4x4y2B.x3÷x=x3C.2x+3y=5xy D.(x+y)2=x2+y2【分析】直接利用积的乘方的运算法则、同底数幂的乘法法则、合并同类项法则、完全平方公式分别化简得出答案.【解】:A.(2x2y)2=4x4y2,原计算正确,故本选项符合题意;B.x3÷x=x2,原计算错误,故本选项不符合题意;C.2x与3y不是同类项,不能合并,原计算错误,故本选项不符合题意;D.(x+y)2=x2+2xy+y2,原计算错误,故本选项不符合题意;故选:A.6.若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1【分析】根据二元一次方程的定义,得出a+b=1,3a+2b﹣4=1,解出a、b的值,然后把a、b的值代入a+b,计算即可得出结果.【解】:∵4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,∴,解得:,当a=3,b=﹣2时,a+b=3﹣2=1.故选:D.7.若关于x的分式方程﹣=1有增根,则a的值为()A.2B.﹣2C.4D.﹣4【分析】先求出分式方程的解,根据分式方程有增根,得到x=2,从而得到a的值.【解答】解:去分母得:x+x﹣a=x﹣2,∴x=a﹣2,∵分式方程有增根,∴x=2,∴a﹣2=2,∴a=4,故选:C.8.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.【分析】根据每人出8钱,则多出3钱,可得8x﹣3=y,根据每人出7钱,则还差4钱,可得7x+4=y,从而可以列出相应的方程组.【解答】解:由题意可得,,故选:B.9.如图所示,将两张相同的矩形纸片和三张不同的正方形纸片按如图方式不重叠地放置在矩形ABCD内若知道图中阴影部分的面积之和,则一定能求出()A.△AEH和△CFG的面积之差B.△DHG和△BEF的面积之和C.△BEF和△CFG的面积之和D.△AEH和△BEF的面积之和【分析】设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,由HI=FK,GH=EF,证明GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,则S△ADH=S△BCF =(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),可求得S阴影=2mn,可推导出S△AEH﹣S△CFG=0;S△DHG+S△BEF=mn=×2mn;S△BEF+S△CFG=mn﹣n2;S△AEH+S△BEF=mn﹣n2,可知B符合题意.【解答】解:如图,设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,∵HI=FK,GH=EF,∴HI+GH=FK+EF,∴GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,∵AJ=HI=FK=m﹣n,∴AB=CD=m+m﹣n=2m﹣n,∵AD=BC=2m+n,JE=GL=m,∴S△ADH=S△BCF=(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),∴S阴影=(2m﹣n)(2m+n)﹣2×(2m+n)(m﹣n)﹣2×m(2m﹣n),整理得S阴影=2mn,∵S△AEH﹣S△CFG=n(m﹣n)﹣n(m﹣n)=0,∴S△AEH﹣S△CFG的结果与S阴影值的大小无关,故A不符合题意;∵S△DHG+S△BEF=mn+mn=×2mn,∴△DHG和△BEF的面积之和可由S阴影的值求得,故B符合题意;∵S△BEF+S△CFG=mn+n(m﹣n)=mn﹣n2,∴△BEF和△CFG的面积之和不能由S阴影的值求得,故C不符合题意;∵S△AEH+S△BEF=n(m﹣n)+mn=mn﹣n2,∴△AEH和△BEF的面积之和不能由S阴影的值求得,故D不符合题意,故选:B.10.新定义:若两个分式A与B的差为n(n为正整数),则称A是B的“n分式”.例如:,则称分式是分式的“1分式”.根据以上定义,下列选项中说法错误的是()A.是的“3分式”B.若a的值为﹣3,则是的“2分式”C.若是的“1分式”,则a2=3b2D.若a与b互为倒数,则是的“5分式”【分析】根据新定义运算逐个验证正确与否即可.【解】:A、,A说法正确;B、,B说法正确;C、由已知条件得:,化简得:a2=2b2,C说法错误;D、由已知得:ab=1,,D说法正确.故选:C.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式a2a−1有意义,a的取值范围是.【分析】根据分式有意义的条件,进行判断即可.【解】:∵分式a2a−1有意义,∴2a﹣1≠0,解得:a≠1 2.故答案为:a≠1 2.12.分解因式:2a2﹣6ab=.【分析】根据题中的公因式是2a,用提取公因式的方法进行因式分解.【解】:2a2﹣6ab=2a(a﹣3b),故答案为:2a(a﹣3b).13.七(2)班第一组的12名同学身高(单位:cm)如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在155~160的频数是.【分析】从中找出身高在155~160的个数即可得出答案.【解】:身高在155~160的有157,156,158,则频数是3;故答案为:3.14.关于x,y的二元一次方程组{x+y=3x−3y=k的解满足x﹣y=﹣1,则k的值是.【分析】将两式相加,得到2x﹣2y=k+3,然后得到x−y=k+32,据此即可求解.【解】:{x+y=3①x−3y=k②,由②+①得2x﹣2y=k+3,∴x−y=k+3 2,∵x﹣y=﹣1,∴k+32=−1,解得k=﹣5.故答案为:﹣5.15.我们在学习代数公式时,可以用几何图形来推理论证.受此启发,在学习因式分解之后,小明同学将图1一张边长的a的正方形纸片剪去2个长为a,宽为b的长方形以及3个边长为b的正方形之后,拼成了如图2所示的长方形.观察图1和图2的阴影部分,请从因式分解的角度,用一个含有a、b等式表示从图1到图2的变化过程.【分析】利用代数式分别表示图1,图2阴影部分面积即可解答.【解】:由题可知,图1阴影部分面积为a2﹣2ab﹣3b2,图2是长为a+b,宽为a﹣3b a+b)(a﹣3b),∵两个图形阴影部分面积相等,∴a2﹣2ab﹣3b2=(a+b)(a﹣3b),故答案为:a2﹣2ab﹣3b2=(a+b)(a﹣3b).16.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠EFC=α,将纸带沿EF折叠成图②(G为ED和BF的交点),再沿BF折叠成图③(H为EF和DG的交点),则图③中的∠HFC =.(结果用含α的代数式表示)【分析】在图①中,由∠EFC=α得∠DEF=180°﹣α,∠EFB=180°﹣α,在图②中,∠EFB=180°﹣α,由折叠的性质得∠FEG =∠DEF =180°﹣α,再由三角形的外角定理得∠DGF =∠FEG +∠EFB =360°﹣2α,在图③中,由折叠的性质得∠DGF =360°﹣2α,∠EFB =180°﹣α,由三角形的外角定理得∠DHF =∠DGF +∠EFB =540°﹣3α,根据DH ∥CF 得∠DHF +∠HFC =180°,据此可得∠HFC 的度数. 【解】:在图①中, ∵四边形ABCD 是长方形, ∴AD ∥BC ,∴∠DEF +∠EFC =180°, ∵∠EFC =α,∴∠DEF =180°﹣∠EFC =180°﹣α, ∴∠EFB =180°﹣∠EFC =180°﹣α, ∴图②中,∠EFB =180°﹣α,由折叠的性质得:图②中,∠FEG =∠DEF =180°﹣α, ∵∠DGF 是△EFG 的一个外角,∴∠DGF =∠FEG +∠EFB =180°﹣α+180°﹣α=360°﹣2α, 由折叠的性质得:图③中,∠DGF =360°﹣2α,∠EFB =180°﹣α, ∵∠DHF 四△HGF 的一个外角,∴∠DHF =∠DGF +∠EFB =360°﹣2α+180°﹣α=540°﹣3α, 在图③中,DH ∥CF , ∴∠DHF +∠HFC =180°,∴∠HFC =180°﹣∠DHF =180°﹣(540°﹣3α)=3α﹣360°.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤) 17.解二元一次方程组.(1){3x −2y =9x +2y =3;(2){x +3y =14x−23−y−22=1.【分析】(1)利用加减消元法解得x =3,再用代入法求得y =0即可;(2)先将式子去分母,再用加减消元法解得x =6,再用代入法求得y =83即可.【解】:(1){3x −2y =9①x +2y =3②①+②,得4x =12, ∴x =3.把x =3代入②,得3+2y =3, 解得y =0所以原方程组的解为{x =3y =0;(2){x +3y =14①x−23−y−22=1②,②化简得:2(x ﹣2)﹣3(y ﹣2)=6,即2x ﹣3y =4③, ①+③得:3x =18,解得:x =6,将x =6代入①得:6+3y =14,解得:y =83,∴原方程组的解为:{x =6y =83. 18.先化简,再求值:(a ﹣3b )2﹣(a +b )(a ﹣b )+(4ab 2﹣2b 3)÷b ,其中a =12,b =−14.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a ,b 的值代入化简后的式子,进行有理数的混合运算即可.【解】:原式=a 2﹣6ab +9b 2﹣a 2+b 2+4ab ﹣2b 2=a 2﹣a 2+9b 2+b 2﹣2b 2+4ab ﹣6ab =8b 2﹣2ab , 当a =12,b =−14时,原式=8×(−14)2−2×12×(−14)=8×116+14 =12+14 =34.19.如图:已知,∠HCO =∠∠BHC +∠BEF =180°. (1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.【分析】(1)要证明EF ∥BH ,可通过∠E 与∠EBH 互补求得,利用平行线的性质说明∠EBH =∠CHB 可得结论.(2)要求∠CHO 的度数,可通过平角和∠FHC 求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC 的度数即可.【解】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=12∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.20.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A.法律知识竞赛;B.国际象棋大赛;C.花样剪纸大赛;D.创意书签设计大赛.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为60分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D 二场报告,补全此次活动日程表,并说明理由.【分析】(1)根据喜欢B 类型的人数及其百分比求得总人数,用总人数减去其它类型的人数求出喜欢D 类型的人数即可补全条形统计图;(2)用360°乘以喜欢“创意书签设计大赛”的百分比即可; (3)分别求出喜欢B ,D 二场的人数,补全此次活动日程表即可. 【解】:(1)共调查的学生人数为15÷30%=50(人),D 类型的人数为50﹣(5+15+20)=10(人),补全条形统计图如下:(2)360°×1050×100%=72°,答:扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是72度; (3)喜欢B 类型的人数为500×30%=150(人), 喜欢D 类型的人数为500×1050×100%=100(人), 补全此次活动日程表如下:21.如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.22.去年全国根食产量再创新高,为推进乡村振兴奠定了坚实基础,某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.(1)该专业户去年原计划生产水稻、小麦各多少吨?(2)据了解,该专业户去年水稻种植面积是小麦种植面积的2倍,且水稻亩产量比小麦多120千克,求水稻种植面积是多少亩?【分析】(1)设该专业户去年原计划生产水稻x吨,小麦y吨,根据某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.列出二元一次方程组,解方程组即可; (2)设水稻种植面积是m 亩,则小麦种植面积为12m 亩,根据水稻亩产量比小麦多120千克,列出分式方程,解方程即可.【解】:(1)设该专业户去年原计划生产水稻x 吨,小麦y 吨, 由题意得:{x +y =14(1+8%)x +(1+5%)y =15,解得:{x =10y =4,答:该专业户去年原计划生产水稻10吨,小麦4吨;(2)该专业户去年实际生产水稻:(1+8%)×10=10.8(吨),生产小麦:(1+5%)×4=4.2(吨), 设水稻种植面积是m 亩,则小麦种植面积为12m 亩,由题意得:10.8m −4.212m=1201000,解得:m =20,经检验,m =20是原方程的解,且符合题意, 答:水稻种植面积是20亩.23.如图为某社区的一块方形空地,由四块长为a ,宽为b 的长方形空地与一块小正方形水池拼接而成,为创建生态社区、小明为空地设计了甲、乙两种绿化方案,其中阴影部分都用于绿化,已知S 甲、S 乙分别表示图甲、乙中绿化的面积.(1)S 甲= ,S 乙= (用a ,b 的代数式表示); (2)当S 甲−S 乙=14a 2时,求S 甲S乙的值. 【分析】(1)S 甲为四个直角三角形的面积和;S乙为大正方形的面积减四个小直角三角形的面积减小正方形的面积;(2)根据已知以及(1)的结论求得b =a2,代入S 甲S乙计算即可求解.【解】:(1)S 甲=4×12ab =2ab ;S 乙=(a +b)2−2×12ab −2×12(a +b)b −(a −b)2=a 2+2ab +b 2﹣ab ﹣ab ﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣b 2, 故答案为:2ab ;2ab ﹣b 2; (2)解:∵S 甲−S 乙=14a 2,∴2ab −(2ab −b 2)=14a 2,解得b =a2(负值已舍),∴S 甲S 乙=2ab 2ab−b 2=2a⋅a 22a⋅a2−(a2)2=a 2a 2−a 24=a 23a 24=43. 24.已知:点A 在直线DE 上,点B 、C 都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分∠CAD ,且∠ABC =∠BAC .(1)如图1,求证:DE ∥PQ ;(2)如图2,点K 为线段AB CK ,且始终满足2∠EAC ﹣∠BCK =90°.①当CK ⊥AB 时,在直线DE 上取点F ,连接FK ,使得∠FKA =12∠AKC ,求此时∠AFK 的度数;②在点K 的运动过程中,∠AKC 与∠EAC 的度数之比是否为定值,若是,求出这个值;若不是,说明理由.【分析】(1)由角平分线的定义可得∠DAB =∠BAC ,再根据内错角相等,两直线平行可得结论; (2)①由垂直的定义可知∠AKC =90°,即可得∠FKA =45°,设∠EAC =x °,则可表示∠ABC 和∠BCK 的度数,然后利用三角形的内角和解题即可解题;②设∠EAC =x °,则可求出∠ABC 的值,然后表示∠AKC 的度数解题即可. 【解答】(1)证明:∵AB 平分∠CAD , ∴∠DAB =∠BAC , 又∵∠ABC =∠BAC , ∴∠DAB =∠ABC ,∴DE ∥PQ ; (2)解:①如图,∵CK ⊥AB , ∴∠AKC =90°, 又∵∠FKA =12∠AKC ,∴∠FKA =45°, 设∠EAC =x °,∵∠DAB =∠BAC =∠ABC , ∴∠ABC =180°−x°2=90°−12x°, 又∵2∠EAC ﹣∠BCK =90°, ∴∠BCK =2x °﹣90°, 在△BKC 中, ∠B +∠BCK =90°,即2x°−90°+90°−12x°=90°,解得:x =60,∴∠AFK =∠DAB −∠AKF =90°−12x°−45°=15°;同理,当F 点可以在A 点的左边,∠AFK =75°; ②∠AKC∠EAC =32,理由为: 如图,设∠EAC =x °, ∵∠DAB =∠BAC =∠ABC ,∴∠ABC=180°−x°2=90°−12x°,∵2∠EAC﹣∠BCK=90°,∴∠BCK=2x°﹣90°,在△BKC中,∴∠AKC=∠B+∠BCK=2x°−90°+90°−12x°=32x°,∴∠AKC∠EAC=32x°x°=32,。
2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。
2.答卷前将密封线左侧的项目填写清楚。
3.答案须用黑色字迹的签字笔书写。
一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。
河北省唐山市2023-2024学年七年级下学期期末数学试题一、单选题1.下列各式中,计算结果等于6a 的是( ) A .33a a ⋅B .()42aC .82a a -D .122a a ÷2.多项式236m mn +的公因式是( ) A .3B .mC .3mD .3n3.如图,ABC V 的边BC 上的高是( )A .线段AFB .线段DBC .线段CFD .线段BE4.若()22648x mx x ++=-,则m 的值是( ) A .8B .16-C .16D .16±5.不等式()214x -≥的解集在数轴上表示为( )A .B .C .D .6.如图,在下列条件中,能判定AD //BC 的是( )A .∠1=∠2B .∠3=∠4C .∠ABC =∠ADCD .∠ABC +∠BCD =180°7.若3x =4,3y =6,则3x+y 的值是( ) A .24B .10C .3D .28.已知a b >,则下列不等式中正确的是( ) A .22a b -<- B .1133a b ->- C .22a b <D .1212a b -<-9.如图,AB CD P , 且50A ∠=︒,32C ∠=︒, 则E ∠等于( )A .18︒B .25︒C .32︒D .41︒10.对于下列多项式,能用平方差公式进行因式分解的是( ) ①22a b + ②22a b - ③22a b -+ ④22a b --A .①②B .①④C .③④D .②③11.计算775.9910 5.9810⨯-⨯,结果用科学记数法表示为( )A .50.110⨯B .60110⨯.C .5110⨯D .6110⨯12.若ABC ∆的三个内角A ∠,B ∠,C ∠满足关系式2B C A ∠+∠=∠,则此三角形( )A .一定是直角三角形B .一定是钝角三角形C .一定有一个内角为45°D .一定有一个内角为60°13.如图,ABC V 的中线AD 、BE 相交于点 F , 若ABF △的面积为1S ,四边形CEFD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S =B .12S S <C .12S S >D .无法确定14.若关于x 的不等式组0721x m x -≤⎧⎨-<⎩的整数解共有2个,则m 的取值范围是( )A .56m <<B .56m ≤<C .56m <≤D .56m ≤≤二、填空题15.把方程2x +y =3改写成用含x 的式子表示y 的形式,得y =. 16.计算:1022-+=________. 17.不等式组14420x x +<⎧⎨-≤⎩的解集为.18.如图,已知点 P 是射线ON 上一动点 (不与点 O 重合),50O ∠=︒, 若OAP △是钝角三角形, 则A ∠的取值范围是.三、解答题19.已知a , b , c 是ABC V 的三边. (1)4a =,6b =, 则c 的取值范围是; 若c 为偶数,则ABC V 的最大周长为.(2)若ABC V 是等腰三角形, 4a =, 周长为16, 求另外两边长. 20.一次课堂练习,嘉嘉同学做了如下四道因式分解的题目:①()()22422x y x y x y -=-+;②()3244a a a a -=-;③()22x y xy xy x y -=-;④()22224222m mn n m n ++=+.(1)嘉嘉做错的或不完整的题目是(填序号); (2)把你选出(1)题中题目的正确答案写在下面.21.如图,要使输出值y 大于50,求输入的最小正整数x 的值.22.已知代数式:()()()422b a b a b a b --+- (1)化简这个代数式;(2)若2220a ab b -+=,求原代数式的值.23.如图, 在ABC V 中,30A ∠=︒,80ABC ∠=︒ ,ABC V 的外角BCD ∠的平分线CE 交AB 的延长线于点 E .(1)求BCE ∠的度数;(2)过点D 作DF CE ∥, 交AB 的延长线于点 F , 求F ∠的度数.(3)若把直线DF 绕点 F 旋转,直线 DF 和直线CE 交于点 P , 当DF 和 ABC V 的一边平行时,直接写出FPE ∠的度数.24.为保障安全,对某大桥的限重作出规定,载重后总质量超过30 吨的车辆禁止通行.现有一辆自重6吨的卡车,要运输若干套某种设备,每套设备由3个A 部件和1个B 部件组成,这种设备必须成套运输.已知2个A 部件和1个 B 部件的总质量为2.8吨,3个A 部件和2个 B 部件的质量相等.(1)1个 A 部件和1个B 部件的质量分别是多少?(2)该卡车要运输这种成套设备通过此大桥,一次最多可运输多少套? 25.ABC V 的两条角平分线BI 、CI 相交于点 I .(1)如图1:①若80BAC ∠=︒,求 BIC ∠的度数;②若BAC β∠=,直接写出 BIC ∠=°(用含β的式子表示); (2)如图2,连接AI ,AI 平分BAC ∠,作DE AI ⊥分别交AB 、AC 于点D 、E .你发现与BIC ∠一定相等的角有;与DIB ∠一定相等的角有.。
2023—2024学年度第二学期期末学业质量监测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.一、选择题(本大题共12个小题,每题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)1.如图,点D 在直线上,,则图中的和的关系是()A .互为补角B .互为余角C .同位角D .对顶角2.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .B .C .D .3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得,,那么点A 与点B 之间的距离不可能是( )A .B .C .D .4.计算的值为( )A .B .C .1D .25.事件①:射击运动员射击一次,命中靶心;事件②:随意翻到一本书的某页,这页的页码是奇数.则下列表述正确的是()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件AB CD ED ⊥1∠2∠100m PA =90m PB =90m 100m 150m 200m202420250.5(2)⨯-2-0.5-D .事件①和②都是必然事件6.如图,平分,,垂足为A ,,Q 是射线上的一个动点,则线段的最小值是( )A .10B .8C .6D .47.红外线是太阳光线中众多不可见光线中的一种,且应用广泛,某红外线遥控器发出的红外线波长约为,则下列说法正确的是( )A .是8位小数B .C .D .是7位小数8.如图,是一个可折叠衣架,是地平线,当,时,就可以确定点N 、P 、M 在同一直线上,这样判定的依据是()A .内错角相等,两直线平行B .过直线外一点有且只有一条直线与这条直线平行C .两点确定一条直线D .平行于同一直线的两直线平行9.在一次数学实践活动课上,老师指导学生进行折纸活动,下图是小明、小凡、小颖三位同学的折纸示意图(C 的对应点是),分析他们折纸情况说法正确的是()A .小明折出的是中的角平分线B .小凡折出的是边上的中线C .小颖折出的是中边上的高线D .上述说法都错误10.已知线段a ,b ,c 求作:,使,,.下面的作图顺序正确的是()OP MON ∠PA ON ⊥6PA =OM PQ 79.410m -⨯79.410-⨯779.410 1.4810--⨯-=⨯769.410109.410--⨯+=⨯79.410-⨯AB //PM AB //PN AB C 'ABC △BAC ∠BC ABC △BC ABC △BC a =AC b =AB c =①以点A 为圆心,以b 为半径画弧,以点B 为圆心,以a 为半径画弧,两弧交于C 点;②作线段等于c ;③连接,,则就是所求作图形.A .①②③B .③②①C .②①③D .②③①11.如图,已知,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B为圆心,大于的长为半径画弧,两弧分别相交于点M ,N ,作直线,交直线b 于点C ,连接,若,则的度数是()A .B .C .D .12.如图,中,,D 是线段上一点(不与点B ,C 重合),连接,点E ,F 分别在线段,的延长线上,且.则以下结论:①;②;③;④D 从B 运动到C 的过程中,周长不变.正确的是()A .①②④B .①②③C .②③④D .①③④二、填空题(本大题共4个小题;每题3分,共12分.把答案写在题中横线上)13.已知,,则____________.14.如图,点P 是外的一点,点M ,N 分别是两边上的点,点P 关于的对称点Q 恰好落在线段上,点P 关于的对称点R 落在的延长线上,若,,,则线段的长为____________.15.不透明的盒子中装有红、白两色的小球共n (n 为正整数)个,这些球除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.如图显示了用计算机模拟实验的结果.AB AC BC ABC △//a b 12AB MN AC 138∠=︒ACB∠76︒100︒102︒104︒ABC △AB AC BC ==BC AD AB AC DE DF AD ==60E BDE ∠+∠=︒60E CFD ∠+∠=︒EBD DCF △≌△BED △45x =42y=4x y+=AOB ∠AOB ∠OA MN OB MN 2.5PM = 3.5PN =3MN =QR若盒子中共装60个小球,可以根据本次实验结果,估算出盒子中红球有____________个.16.如图,长方形纸片中,,点E ,F 在边上,点G ,H 在边上,分别沿,折叠,使点D 和点A 都落在点M 处,若,则的度数是____________度.三、解答题(本大题共8个小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤.)17.计算:(本小题满分8分,(1)题4分,(2)题4分)(1).(2)利用整式乘法公式计算:.18.(本小题满分6分)先化简,再求值:,其中.19.(本小题满分7分)小明和妈妈去超市买凳子,小明发现售货员把凳子按如图方式叠放在一起时,每叠放一个凳子,增加的高度是一样的.下表是叠放凳子的总高度h 与凳子数量n 的几组对应值.凳子的数量n (个)1234…叠放凳子的总高度h (厘米)46525864…根据以上信息,回答下列问题:(1)按照表格所示的规律,当凳子的数量为6时,叠放的凳子总高度为____________厘米;(2)直接写出叠放的凳子总高度h 与凳子的数量n 之间的关系式:____________;(3)按上表所示的规律,若将该种凳子按如图方式叠放在层高为92厘米的超市货架上,能叠放8个吗?ABCD //AD BC AD BC EG FH 12115∠+∠=︒EMF ∠1021(2024)(2)3π-⎛⎫-+--- ⎪⎝⎭2202320222024-⨯432(32)()()3x x x x x x -÷---⋅12x =-请说明理由.20.(本小题满分8分)如图,墙地面b ,嘉嘉想知道这堵墙上点A 到地面的高度,但又没有直接测量的工具,于是设计了下面的方案.第一步:找一根长度大于的直杆,使直杆斜靠在墙上,且顶端与点A 重合,记下直杆与地面的夹角;第二步:使直杆顶端竖直缓慢下滑,直到,标记此时直杆的底端点D ;第三步:测量的长度即为点A 到地面的高度.(1)请说明为什么的长度即为点A 到地面的高度;(2)若测得,,求梯子下滑的高度.21.(本小题满分9分)小明和小颖都想参加学校杜团组织的暑假实践活动,但只有一个名额,小明提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小明去参加活动;转到3的倍数,小颖去参加活动;转到其它号码则重新转动转盘.(1)转盘转到号码7的概率是____________.(2)转盘转到2的倍数的概率是多少?(3)你认为这个游戏对小明和小颖公平吗?请说明理由.22.(本小题满分11分)题目:如图,中,F 为边上一点,点D 为延长线上一点.(1)在图中按要求完成尺规作图:①在右侧作,交于点G ;②作的角平分线.(不写作图步骤,保留作图痕迹,作图要用2B 铅笔,如果笔迹太细、太轻,可以描重一些.)(2)在(1)的条件下,若.①请说明.a ⊥AN NA ABN ∠NCD ABN ∠=∠ND AN ND AN 1.2m BN = 2.5m DN =AC ABC △AB BC BF BFG A ∠=∠BC ACD ∠CE 180AFG ACE ∠+∠=︒//AB CE②与的关系是____________.下面是嘉嘉的解答过程,请在(1)中完成尺规作图,并补全(2)中的说理依据:解:(1)(2)①因为,根据________________________,得到;因为,根据________________________,得到;因为已知,所以可以得到;进而根据________________________,得到.②与的关系是____________.23.(本小题满分11分)如图1,在长方形中,,E 为边中点.动点P 从点B 开始,以的速度沿路线运动,到点A 停止.图2是点P 出发t 秒后,的面积随时间变化的图象.根据图中提供的信息,回答下列问题:(1)____________;点M 表示的实际意义是________________________;(2)当点P 在上运动时,求的面积为时t 的值;(3)如图3,当点P 从点B 出发时,动点Q 同时以的速度从C 点出发,沿边运动,当点P 运动到点C 时,P 、Q 两点停止运动.当x 为何值时,与全等,请直接写出x 的值.24.(本小题满分12分)活动探究:数学活动课上,王老师准备了若干个图1所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a的长方形.AFG ∠B ∠BFG A ∠=∠//FG AC //FG AC 180AFG A ∠+∠=︒180AFG ACE ∠+∠=︒A ACE ∠=∠//AB CE AFG ∠B ∠ABCD 6cm AB =AB 3cm/s B C D A →→→BPE △2(cm )S (s)t BC =cm DA BPE △29cm cm/s x CD PBE △PCQ △(1)若小明想用图1中的三种纸片拼出一个面积为的大长方形,则需要C 种纸片____________张;(2)小兰用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成了图2所示的大正方形,在用两种不同的方法求此大正方形的面积时,小兰发现了代数式,,之间的等量关系式,这个关系式是:________________________;实践应用:(3)如图3,学校在长方形空地里铺了地砖,地砖有三种,一种是5个相同的黑色小长方形,另两种是两个白色大正方形和两个白色小正方形.已知长方形空地的周长为8.4米,每个黑色小长方形地砖的面积均为0.36平方米.设每个黑色小长方形地砖的长为m 米,宽为n 米.①____________;②求空地中白色地砖的总面积.2023-2024学年度第二学期期末学业质量监测七年级数学试卷参考答案及评分标准(仅供参考,其他解法,参照给分)一、选择题(本大题共12个小题,每题3分,共36分。
2022—2023年人教版七年级数学下册期末模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数8.64的立方根是( )A .4B .±4C .8D .±89.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±5210.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.已知A =3x 2+x+2,B =﹣3x 2+9x+6.(1)求2A ﹣13B ; (2)若2A ﹣13B 与32C -互为相反数,求C 的表达式; (3)在(2)的条件下,若x =2是C =2x+7a 的解,求a 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 444a a --.(1)直接写出点A 、B 、C 的坐标; (2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、C6、C7、A8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()2 x x y-2、55°3、(3,7)或(3,-3)4、-15、±26、5三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)证明见解析;(2)∠FAE=135°;4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。
数学 第1页(共5页)2017-2018学年上学期期末原创卷B 卷七年级数学·全解全析1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 ABBDCDBCBBBACCAB1.【答案】A【解析】单项式223a b -的系数是23-,次数是3.故选A .2.【答案】B【解析】①长方形是平面图形,②梯形是平面图形,③正方体是立体图形,④圆柱是立体图形,⑤圆锥是立体图形,所以,属于立体图形的是③④⑤.故选B . 3.【答案】B【解析】因为78分比80分少2分,可知应记作–2分.故选B .5.【答案】C【解析】根据题意,得x =–3,y =±4.当x =–3,y =4时,x –y =–3–4=–7;当x =–3,y =–4时,x –y =–3–(–4)=1.故选C . 6.【答案】D【解析】A .原式=26a ,故A 错误;B .原式=38a -,故B 错误;C .原式=3,故C 错误;D .326()a a -=,正确.故选D . 7.【答案】B【解析】把x =2分别代入四个选项中的方程,只有选项B 中方程的左右两边相等,所以选项B 中方程–x +6=2x 的解是x =2.故选B . 8.【答案】C【解析】原式=119(8)=1(8)41(32)1323194-⨯--÷---⨯=---=-+=.故选C .9.【答案】B【解析】∵21412n a b --与283m m a b 是同类项,∴8m =4,2n –1=2m ,∴12m =,1n =,则(1+n )100(1–m )。
河北省石家庄市桥西区2023-2024学年七年级下学期期末数学试题一、单选题1.某校的家长课堂直播点击量达105000人次. 数据105000用科学记数法表示为( ) A .51.0510⨯ B .410.510⨯ C .60.10510⨯ D .61.0510⨯ 2.下列各等式从左边到右边的变形中,是因式分解的是( )A .2(3)(3)9x x x -+=-B .824x x =⨯C .2244(2)x x x ++=+D .221(2)1x x x x -+=-+3.如图, 直线a , b 相交于点O , 如果1280∠+∠=︒, 那么3∠的度数为( )A .140︒B .110︒C .40︒D .50︒4.下列各式中,计算结果为10a 的是( )A .55a a +B .202a a ÷C .55a a ⋅D .()252a - 5.若不等式(2)4a x ->的解集为42x a <-,则a 的取值范围是( ) A .2a < B .2a > C .2a ≥ D .2a ≤ 6.下列各组数满足方程238x y +=的是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=⎩D .24x y =⎧⎨=⎩ 7.一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒8.下列命题是真命题的是( )A .若两个数的平方相等,则这两个数相等B .同位角相等C .同一平面内,垂直于同一直线的两条直线平行D .相等的角是对顶角9.四位同学画出如下的线段BD ,其中能表示ABC V 高的是( )A .B .C .D .10.使用a ,b 两根直的铁丝做成一个三角形框架,尺寸如图所示,若需要将其中一根铁丝折成两段,则可以把铁丝分为两段的是( )A .只有aB .只有bC .a ,b 都可以D .a ,b 都不可以 11.若k 为任意整数,则22(23)4k k +-的值总能( )A .被2整除B .被3整除C .被5整除D .被7整除12.如图,直线m n ∥,ABC V 是直角三角形,90B ??,点C 在直线n 上.若150∠=︒,则2∠的度数是( )A .60°B .50°C .45°D .40°13.如图,ABC V 沿着点B 到点C 的方向平移到DEF V 的位置,90B ??,6AB =,4DH =,平移距离为7,则阴影部分的面积为( )A .12B .16C .28D .2414.如图,直线AB CD ∥,点P 是直线AB 上一个动点,当点P 的位置发生变化时,PCD V 的面积( )A .向左移动变小B .向右移动变小C .始终不变D .无法确定15.如图,在大长方形中放置10个形状、大小都相同的小长方形,则大长方形的面积是( )A .6400B .6750C .6700D .680016.小羽制作了如图所示的卡片A 类,B 类,C 类各50张,其中A ,B 两类卡片都是正方形,C 类卡片是长方形,现要拼一个长为()57a b +,宽为()7a b +的大长方形,那么所准备的C 类卡片的张数( )A .够用,剩余4张B .够用,剩余5张C .不够用,还缺4张D .不够用,还缺5张二、填空题17.3a a ÷=18.某加工零件标出部分数据(如图),小明说,这四个数据中有一个标错了,请你完善以下修改方案:若A ∠、B ∠、BCD ∠所标数据正确,则图中D ∠所标数据应为.19.观察下列等式:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;⋯根据以上规律,回答问题:(1)()()43211x x x x x -++++=(2)109832222221++++++K 的结果可以表示为.三、解答题20.分解因式:(1)²x xy - (2)2?8?a b -21.已知61310x -=, 求代数式 ()()()3?22x x x --+-的值.22.解不等式组 ()3121113x x x x ⎧+>+⎪⎨-<+⎪⎩,并写出该不等式组的最大整数解. 23.已知AB CD P ,在AB CD ,之间任取一点E , 连接EA ED ,.(1)如图1, 若3045A D ∠=︒∠=︒,,求E ∠度数;(2)如图2, 猜想A AED D ∠∠∠,,的数量关系,并说明理由.24.如图,将边长为()a b +的正方形剪出两个边长分别为a ,b 的正方形(阴影部分).观察图形,解答下列问题:(1)用两个不同的代数式表示阴影部分的面积.方法1∶ ;方法2∶ ;(2)运用你发现的结论,解决问题;已知6x y +=,6xy =,求 ²²x y +的值.25.随着“低碳生活,绿色出行”理念的普及,新能源汽车成为大部分人首选的交通工具.灯塔市公交公司购买一批A ,B 两种型号的新能源汽车,已知购买3辆A 型汽车和1辆B 型汽车共需要55万元,购买2辆A 型汽车和4辆B 型汽车共需要120万元.(1)求购买每辆A 型和B 型汽车各需要多少万元?(2)若该公司计划购买A 型汽车和B 型汽车共15辆,且总费用不超过220万元,则最少能购买A 型汽车多少辆?26.我们将内角互为对顶角的两个三角形称为“对顶三角形”.例如,在图1中,ADB V 的内角AOB ∠与COD △的内角COD ∠为对顶角,则AOB V 与COD △为“对顶三角形”,根据三角形三个内角和是180︒,“对顶三角形”有如下性质:A B C D ∠+∠=∠+∠.(1)如图1,在“对顶三角形”AOB V 与COD △中,若85AOB ∠=︒,则______C D ∠+∠=︒.(2)如图2,在ABC V 中,AD BE 、分别平分BAC ∠和ABC ∠,若60C ∠=︒,ADE ∠比BED ∠大8︒,求BED ∠的度数.。
2023-2024学年人教版七年级数学下册期末模拟试题一、单选题1)AB .C .3D .2.如图,若直线,165a b ∠=︒∥,那么2∠的度数是( )A .60︒B .65︒C .70︒D .125︒3.如果x y <,那么下列不等式正确的是( )A .33x y <B .x y -<-C .11x y -+>--D .11x y +>+ 4)A .3±B .3C .9±D .95.在平面直角坐标系中,点()2,3M -在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在一次有1万名八年级学生参加的数学质量监测中,随机抽取2000名学生的数学成绩进行分析,以下说法正确的是( )A .2000名考生是总体的一个样本B .2000名学生是样本容量C .每位考生的数学成绩是个体D .1万名考生是总体7.如图,这是小军同学在体育课上跳远留下的痕迹,其中①号线的长度作为他的跳远成绩,这样测量的数学道理是( )A .平行线之间的距离处处相等B .垂线段最短C .两点确定一条直线D .两点之间,线段最短8.估计 1的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间9.已知,点()26,2P m m -+在y 轴上,则点P 的坐标为( )A .()0,5B .()5,0C .()0,3D .()3,010.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则3m n +的值是( ). A .4 B .9 C .5 D .1111.不等式组12213x x +>⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C .D .12.如图,将边长为2的正方形ABCD 沿对角线AC 平移,使点A 移至线段AC 的中点A '处,得新正方形A B C D '''',新正方形与原正方形重叠部分(图中阴影部分)的面积是 ( )A B .12 C .1 D .1413.杭州亚运会期间,某班组织亚运知识竞赛,成绩统计如下表:成绩在91分~100分的为优胜者,则优胜者的频率为( )A .18B .50C .0.30D .0.3614.运行程序如图所示,规定:从“输入一个值x ”到“结果是否94>”为一次程序操作,如果程序操作进行了三次才停止,则x 的取值范围是( )A .411x ≤<B .310x ≤<C .310x <≤D .411x <≤15.如图,在平面直角坐标系xOy 中,A ,B ,C ,D 是边长为1个单位长度的小正方形的顶点,开始时,顶点A ,B 依次放在点 1,0 , 2,0 的位置,然后向右滚动,第1次滚动使点C 落在点()3,0的位置,第2次滚动使点D 落在点()4,0的位置,…,按此规律滚动下去,则第2025次滚动后,顶点A 的坐标是( )A .()2024,1B .()2026,1C .()2025,0D .()2026,0二、填空题16.如图所示,请你添加一个条件(图中不得添加另外标记),使得AB DE ∥.17.用不等式表示x 的13倍加上6大于4-:. 18.将点()21,5P a a +-向下平移2个单位,向右平移3个单位得到点Q ,点Q 恰好落在y 轴上,则点Q 的坐标是.19.若关于x ,y 的方程组43623x y m x y +=+⎧⎨-=⎩的解满足9x y +=,则m 的值为.三、解答题20.计算:()2275÷-.21.解不等式组:()31412142x x x ⎧-<+⎪⎨-≤⎪⎩①②,并把解集在数轴上表示出来.22.为迎接春季运动会,学校先在体育用品商店购买30个足球和60条跳绳用去720元,后又购买10个足球和50条跳绳用去360元.(1)足球、跳绳的单价各是多少元?(2)该店最近正在开展促销活动,所有商品都按相同的折数打折销售,在该店促销期间购买100个足球和100条跳绳只需1800元,该店的商品按原价的几折销售?23.为了解某校九年级学生数学期末考试情况,小方随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为A .120~96分;B .95~72分;C .71~48分;D .47~0分四个等级进行统计,并将统计结果制成如下两幅尚不完整的统计图.请根据图中信息解答下列问题:(1)这次随机抽取的学生共有多少人?(2)请将条形统计图补充完整;(3)该校九年级共有学生900人,若分数为72分以上(含72分)为及格,请估计这次九年级学生期末数学考试成绩为及格的学生约有多少人?24.嘉嘉和淇淇同解一个关于x ,y 的二元一次方程组142mx ny nx my +=⎧⎨+=⎩①②,嘉嘉把方程①抄错,求得方程组的解为13x y =-⎧⎨=⎩,淇淇把方程②抄错,求得方程组的解为32x y =⎧⎨=⎩. (1)求m 和n 的值;(2)求方程组的正确的解.25.如图,直线、AB CD 相交于点O ,EO AB ⊥,垂足为O .(1)直接写出AOC ∠的对顶角和邻补角;(2)若:=3:1AOC COE ∠∠,则COB ∠的度数为________.26.某中学为了给同学们提供更好的学习环境,计划购买一批桂花树和香樟树来绿化校园,经市场调查发现购买2棵桂花树和3棵香樟树共需460元,购买3棵桂花树和2棵香樟树共需440元.(1)求桂花树和香樟树的单价各是多少元?(2)根据学校实际情况,需购买两种树苗共130棵,总费用不超过12000元,且购买香樟树的棵树不少于桂花树的1.5倍,请你算算,该校本次购买桂花树和香樟树共有哪几种方案.27.如图1,直线MN 与直线AB CD 、分别交于点E F 、,12180∠+∠=︒.(1)求证:AB CD ∥;(2)如图2,在(1)的条件下,BEF ∠与EFD ∠的角平分线交于点P ,延长EP 交CD 于点G ,点H 是MN 上一点,且GH EG ⊥,求证:PF GH ∥.(3)如图3,在(2)的条件下,连接PH ,Q 是EF 上一点,且45HPQ ∠=︒,若15PHG ∠=︒,请直接写出QPE ∠的度数(不需要写过程).。
绝密★启用前|1考试研究中心命制2019-2019学年上学期期末原创卷A卷(湖南)九年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:湘教版九上全册、九下全册。
第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列事件为必然事件的是A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于72.如图是由5个完全相同的小正方体组成的立体图形,这个立体图形的主视图是A.B.C.D.3.方程x2-ax+4=0有两个相等的实数根,则a的值为A.2 B.±2 C.±4 D.44.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于4的概率是A.13B.12C.23D.165.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=6,则CD的长为A.3 B.C.6 D.6.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为X甲=82分,X乙=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是A.甲班B.乙班C.两班一样整齐D.无法确定7.把二次函数y=3x2的图象向左平移1个单位,再向上平移2个单位,所得到的图象对应的二次函数表达式是A.y=3(x-1)2+2 B.y=3(x+1)2-2 C.y=3(x-1)2-2 D.y=3(x+1)2+28.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为A.(3,1)B.(3,3)C.(4,4)D.(4,1)9.二次函数y=ax2+bx+c的图象如图所示,则反比例函数ayx=与一次函数y=bx+c在同一坐标系中的大致图象是A.B.C.D.10.如图,菱形ABCD和菱形ECGF的边长分别为2和3,120A∠=︒,则图中阴影部分的面积是AB.2C.3D11.如图,△ABD内接于圆O,∠BAD=60°,AC为圆O的直径.AC交BD于P点且PB=2,PD=4,则AD的长为A.B.C.D.412.已知函数y=ax2+bx+c(a≠0)的图象与函数y=x-32的图象如图所示,则下列结论:①ab>0;②c>-32;③a+b+c<-12;④方程ax2+(b-1)x+c+32=0有两个不相等的实数根.其中正确的有A.4个B.3个C.2个D.1个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的第 1 页值约为__________.14.三角形的每条边的长都是方程x 2-7x +10=0的根,则三角形的周长是__________.15.如图,正五边形ABCDE 内接于⊙O ,对角线AC ,BE 相交于点M .若AB =1,则BM 的长为__________. 16.如图,在平面直角坐标系中,二次函数25y x bx =-++的图象与y 轴交于点B ,以点C 为圆心的半圆与抛物线25y x bx =-++相交于点A 、B ,若点C 的坐标为7(1)2-,,则b 的值为__________.17.已知点(1,3)在函数(0)ky x x=>的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD的中点,函数(0)ky x x=>的图象又经过A 、E 两点,则点E 的横坐标为__________.18.如图,AB 是半圆O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC ,12PB PC =,AD =3.给出下列结论:①AC 平分∠BAD ;②△ABC ∽△ACE ;③AB =3PB ;④S △ABC =5,其中正确的是__________(写出所有正确结论的序号).三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)如图,在△ABC 中,AM 是BC 边上的中线,直线DN ∥AM ,交AB 于点D ,交CA 的延长线于点E ,交BC 于点N .求证:AD AEAB AC=.20.(本小题满分6分)如图是一个棱柱形状的食品包装盒的侧面展开图.(1)请写出这个包装盒的几何体的名称;(2)若AC =3,BC =4,AB =5,DF =6,计算这个多面体的侧面积.21.(本小题满分8分)已知A (-4,2)、B (n ,-4)两点是一次函数y =kx +b 和反比例函数y =mx图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -mx>0的解集. 22.(本小题满分8分)如图,一艘船在A 处望见灯塔E 在北偏东60°方向上,此船沿正东方向航行60海里后到达B 处,在B 处测得灯塔E 在北偏东15°方向上. (1)求∠AEB 的度数;(2)①求A 处到灯塔E 的距离AE ;②已知灯塔E 周围40≈1.414≈1.732)23.(本小题满分9分)在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求: (1)两次取出小球上的数字相同的概率; (2)两次取出小球上的数字之和大于3的概率.24.(本小题满分9分)商城某种商品平均每天可销售20件,每件盈利30元,为庆十一,决定进行促销活动,经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设该商品每件降价x 元,请解答下列问题:(1)用含x 的代数式表示:①降价后每售一件盈利_________元;②降价后平均每天售出_________件; (2)若商城在促销活动中,计划每天盈利750元,并且使消费者得到更多实惠,每件商品应降价多少元?(列方程解答)(3)在此次促销活动中,商城若要获得最大盈利,每件商品应降价多少元?获得最大盈利多少元? 25.(本小题满分10分)如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与BC 切于点D ,与AC 交于点E ,连接AD . (1)求证:AD 平分∠BAC ;(2)若∠BAC =60°,OA =2,求阴影部分的面积.(结果保留π)26.(本小题满分10分)如图,以D 为顶点的抛物线y =-x 2+bx +c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y =-x +3.(1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO +PA 的值最小,求点P 的坐标;(3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.。
2021-2022学年度下期期末学业质量监测七年级模拟数学试题参考答案A 卷一 选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要题号12345 6 7 8 9 10 答案 D B C C BCDBAB11. 128°; 12.25; 13 . 152y x =+ ; 14. 12. 三.解答题(共54分)15.(本题满分12分,每个小题6分)(1)=-1+4-3+1--------------4 =1-------------------6解:原式分分422(2)=+4(-4)--------------3 =-------------------------56x x x y xy x x x x ÷−−−−−−−−−−−−−323232解:原式-分--分 =-分16.(本题满分8分)22222=4-------------3 =-------------------------4(1)240(1)024=051---------------------1=a ab b a ab a b a ab b a b a b a b a −++−−++=∴−=+−−−−−−−−−−−∴==⨯2222解:原式-4+4分-3分且分且=-26分当,=-2时,原式(-2)-3(----------=---------------⨯2)17分108分17.(本题满分8分)(1)转动转盘,转出的数字大于5的概率是12;-------2分 (2)可用列举法,列表法,画树状图等方法只要合理就行得出3,6,33,6,43,6,5();();();(3,6,6);(3,6,7);(3,6,9).6种等可能性--------------------------5分 p(这三条线段能构成三角形)=42=63----------------------------7分;p(这三条线段能构成等腰三角形)=16-------------------------8分 18.(本题满分8分) 11()3245()AC DFACO DFO ACO DFO ACO DFO AOC DOF OA OD ACO DFO AAS ACO DFO OF OC BF CEBF OF OC CE BO EO ABO DEO BO EO AOB DOE OA OD ABO DEO SAS ∴∠=∠−−−−−∆∠=∠⎧⎪∠=∠⎨⎪=⎩∴∆≅∆−−−−−∆≅∆∴=−−−−−=∴+=+=−−−−−∆=⎧⎪∠=∠⎨⎪=⎩∴∆≅∆()证明:分在和△中分()证明:分即分在和△中7−−−−−∴∠∠∴分B=EAB DE-----------8分注意,其它证明方法参照给分 19.(本题满分8分)(1)根据题意,填写下表:(每空1分,共4分)游泳次数 10 15 20 … x 方式一的总费用(元) 320 … 120+10x 方式二的总费用(元) 300 … 15x (2)当120+10x =300时,x=18;当15x=300时,x=20;18<20所以方式2的游泳的次数比 较多.-----------------6分(3)当x=40时,120+10x=520;当x=40时,15x=600;520<600.又10<15.所以张老师选择方式1合算.-----------------8分 20.(本小题满分10分)13BE BA BC BF BEC BAF ∠∴∠∠∆∆=⎧⎪∠∠⎨⎪=⎩∴∆≅∆∴∠=∠−−−−()证明:BE 平分ABC CBE=ABF------1分在CBE 和FBA 中CBE=ABF CBE FBA(ASA)分(2)△AFC 是等腰三角形。
2023-2024学年河北省石家庄市裕华区七年级(下)期末数学试卷一、选择题(本大题有16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>﹣1B.x<﹣1C.x≥2D.x≤22.(2分)2﹣3可以表示为()A.2×2×2B.(﹣2)×(﹣2)×(﹣2)C.2÷2÷2D.3.(2分)下列计算正确的是()A.a3+a4=a7B.a6÷a2=a3C.3a•2a=6a2D.(﹣3mn)2=﹣6m2n24.(2分)对于①x2﹣y2=(x﹣y)(x+y);②(x+2)(x﹣3)=x2﹣x﹣6.从左到右的变形,下面的表述正确的是()A.①②都是因式分解B.①②都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5.(2分)一款可折叠晾衣架的示意图如图所示,支架OP=OQ=25cm(连接处的长度忽略不计),则点P,Q之间的距离可能是()A.45cm B.55cm C.70cm D.60cm6.(2分)若x2+mx﹣21=(x﹣3)(x+n),则m,n的值分别是()A.4,﹣3B.﹣7,4C.﹣5,18D.4,77.(2分)如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为()A.28°B.22°C.32°D.35°8.(2分)若x>y,则下列判断中错误的是()A.x+2>y+2B.C.D.﹣3x>﹣3y9.(2分)若关于x的二次三项式x2+(k﹣2)x+16是一个完全平方式,那么k的值是()A.﹣6B.6C.±6D.10或﹣610.(2分)如图,给出下列四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能使AB∥CD的共有()A.1个B.2个C.3个D.4个11.(2分)我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000023米.用科学记数法表示0.000000023为()A.23×10﹣10B.2.3×10﹣10C.2.3×10﹣9D.2.3×10﹣812.(2分)如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为26cm2,则△CEF的面积为()A.13cm2B.10cm2C.6.5cm2D.6cm213.(2分)如图,∠A=100°,∠D=80°,则∠1+∠2等于()A.100°B.200°C.180°D.210°14.(2分)如果不等式组有解,那么m的取值范围为()A.m>3B.m<3C.m≥3D.m≤315.(2分)如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是()A.0°<∠A<60°B.90°<∠A<180°C.0°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°16.(2分)阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究得到如下结论:甲:∠APC+∠ABC=180°,乙:.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都不正确C.甲的结论错误,乙的结论正确D.乙的结论错误,甲的结论正确二、填空题:(本大题有4个小题,每小题3分,共12分.)17.(3分)m与10的和不大于m的一半,用不等式表示为.18.(3分)已知(x+a)(x2﹣3x+c)的展开式中不含x2和x项,则a=,c=.19.(3分)光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,在水中平行的光线,在空气中也是平行的.如图是从玻璃杯底部发出的一束平行光线经过水面折射形成的光线示意图,水面与玻璃杯的底面平行.若∠1=45°,∠2=120°,则∠3+∠4=.20.(3分)若方程组的解x,y的值互为相反数,则k的值为.三、解答题(本大题有7个小题,共56分.解答应写出文字说明、证明过程或演算步骤)21.(17分)计算:(1)因式分解:(3m﹣1)2﹣9;(2)因式分解:3a2b﹣12ab+12b;(3)简便计算101×99;(4)先化简再求值:(a+b)2﹣a(a+b)﹣b2,其中a=2,b=﹣3;(5)解不等式组.22.(6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A'B'C',及A'B'边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.23.(7分)如果一个正整数能表示为两个连续正奇数的平方差,那么称这个正整数为“正巧数”.例如:8=32﹣12,16=52﹣32,24=72﹣52,因此8,16,24都是“正巧数”.(1)设两个连续正奇数为2n﹣1和2n+1(其中n是正整数),由这两个连续正奇数构造的“正巧数”能被8整除吗?如果能,请说明理由;如果不能,请举例说明.(2)请直接写出50到80之间(不含50,80)所有的“正巧数”.24.(6分)两个边长为a和b的正方形如图1摆放,其阴影面积为S1;两个边长为b的正方形和一个边长为a的正方形如图2摆放,其阴影面积为S2.两个边长为a和b的正方形如图3摆放,其阴影面积为S3.解答问题:(1)用含a,b的代数式分别表示S1,S2.(2)若a+b=8,ab=14,求S1+S2的值;(3)当S1+S2=20时,求图3中阴影部分的面积S3.25.(6分)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE 平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB 与靠背DM的夹角∠ANM的度数.26.(7分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴共可载客435人;若租用6辆甲型大巴、2辆乙型大巴共可载客390人.信息二:甲型大巴乙型大巴租金/元500700(1)求每辆甲型大巴、乙型大巴的载客量;(2)若此次游玩租车的总租金计划不超过4600元,则最少租用甲型大巴多少辆?此时可装载多少名师生去游玩?27.(7分)问题情境:在数学探究活动课上,老师让同学们以“两条平行线AB,CD和一块含30°角的直角三角板A1B1C1”(∠C1=90°,∠A1=30°)为主题开展数学探究活动.探究发现:(1)如图1,小明把三角板A1B1C1的60°角的顶点B1放在CD上,若∠1=3∠2,则∠2=°;(2)如图2,小亮把三角板A1B1C1的两个锐角的顶点A1,B1分别放在AB和CD上,请你探索∠AA1C1与∠C1B1C之间的数量关系,并说明理由;(3)如图3,小颖把三角板A1B1C1的直角顶点C1放在CD上,30°角的顶点A1放在AB上.若∠AA1B1=α,直接写出∠B1C1C的度数(用含α的代数式表示);拓展延伸:若将如图3所示的三角形A1B1C1绕直角顶点C1逆时针旋转一周,每秒转动15°,直接写出当A1C1⊥CD时,三角形A1B1C1旋转所用的时间t(用含α的代数式表示).2023-2024学年河北省石家庄市裕华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题有16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据数轴得到两个不等式解集的公共部分即可.【解答】解:由数轴知该不等式组的解集为x≥2.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,根据数轴得到两个解集的公共部分是解答此题的关键.2.【分析】根据(a≠0)分析判断即可.【解答】解:,故选:D.【点评】本题考查了负整数指数幂,熟练掌握其运算法则是解题的关键.3.【分析】根据合并同类项、同底数幂的除法、单项式乘单项式、积的乘方法则分别计算即可判断.【解答】解:A、a3与a4不是同类项,不能合并,故不符合题意;B、a6÷a2=a4,故不符合题意;C、3a•2a=6a2,故符合题意;D、(﹣3mn)2=9m2n2,故不符合题意;故选:C.【点评】本题考查了合并同类项、同底数幂的除法、单项式乘单项式、积的乘方法则,熟练掌握这些法则是解题的关键.4.【分析】根据因式分解和整式乘法的运算法则求解.【解答】解:①从左到右是因式分解,②从左到右是整式乘法,故选:C.【点评】本题考查了因式分解的意义,理解因式分解和整式乘法的运算法则是解题的关键.5.【分析】根据三角形任意一边小于其它两边两边之和求出BC的取值范围,判断各选项即可得的答案.【解答】解:∵AC=AC=25cm,∴25﹣25≤<BC≤25+25(相等时为线段),即0cm≤BC≤50cm.故选:A.【点评】本题主要考查了翻折变换(折叠问题),三角形的三边关系,掌握据三角形任意一边小于其它两边两边之和是解决问题的关键.6.【分析】将等式右边展开,即可得出m=n﹣3,﹣3n=﹣21,从而求出m、n的值.【解答】解:x2+mx﹣21=(x﹣3)(x+n),x2+mx﹣21=x2+(n﹣3)x﹣3n,∴m=n﹣3,﹣3n=﹣21,∴m=4,n=7,故选:D.【点评】本题考查了因式分解,熟练掌握十字相乘法分解因式是解题的关键.7.【分析】过点C作CF∥AE,则∠ACF=180°﹣∠1,再由AE∥BD可知∠ECF=∠2,进而可得出结论.【解答】解:过点C作CF∥AE,∴∠ACF+∠1=180°,∵∠1=130°,∴∠ACF=180°﹣∠1=180°﹣130°=50°,∵AE∥BD,∠2=28°,∴BD∥CF,∴∠ECF=∠2=28°,∴∠ACD=∠ACF﹣∠ECF=50°﹣28°=22°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,同位角相等是解题的关键.8.【分析】利用不等式的性质逐项判断即可.【解答】解:若x>y,两边同时加上2得x+2>y+2,则A不符合题意;若x>y,两边同时减去得x﹣>y﹣,则B不符合题意;若x>y,两边同乘得x>y,则C不符合题意;若x>y,两边同时乘﹣3得﹣3x<﹣3y,则D符合题意;故选:D.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.9.【分析】根据完全平方式的特征进行计算,即可解答.【解答】解:∵x2+(k﹣2)x+16是一个完全平方式,∴x2+(k﹣2)x+16=(x±4)2,∴x2+(k﹣2)x+16=x2±8x+16,∴k﹣2=±8,解得:k=10或﹣6,故选:D.【点评】本题考查了完全平方式,熟练掌握完全平方式的特征是解题的关键.10.【分析】根据平行线的判定方法:同旁内角互补,两直线平行可得①能判定AB∥CD;根据内错角相等,两直线平行可得③能判定AB∥CD;根据同位角相等,两直线平行可得④能判定AB∥CD.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④,共3个.故选:C.【点评】此题主要考查了平行线的判定,掌握数形结合思想的应用,弄清截线与被截线是解决问题的关键.11.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000023=2.3×10﹣8,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】根据三角形的面积公式可得“三角形的中线平分这个三角形的面积”,据此计算即可.【解答】解:∵D、E、F分别是BC、AD、BE上的中点,=S△ACD=S△ABC=×26=13(cm2),∴S△ABDS△ABE=S△BDE=S△ABD=×13=6.5(cm2),S△ACE=S△CDE=S△ACD=×13=6.5(cm2),S△BCF=S△CEF=S△BCE=(S△BDE+S△CDE)=(6.5+6.5)=6.5(cm2),∴△CEF的面积为6.5cm2.故选:C.【点评】本题考查三角形的面积,掌握三角形的面积公式是解题的关键.13.【分析】根据三角形内角和定理,对顶角以及三角形外角的性质进行解答即可.【解答】解:如图,∵∠1=∠B+∠BMC,∠2=∠F+∠FNE,∴∠1+∠2=∠B+∠BMC+∠F+∠FNE,∵∠BMC=∠AMN,∠FNE=∠ANM,∠AMN+∠ANM=180°﹣∠A,∴∠1+∠2=∠B+∠F+∠AMN+∠ANM=(180°﹣∠D)+(180°﹣∠A)=360°﹣∠A﹣∠D=360°﹣100°﹣80°=180°.故选:C.【点评】本题考查据三角形内角和定理以及三角形外角的性质,掌握据三角形内角和是180°以及三角形的任意一个外角等于与它不相邻的两个内角的和是正确解答的关键.14.【分析】解出不等式组的解集,根据已知解集比较,可求出m的取值范围.【解答】解:∵不等式组有解∴3<x<m∴m>3m的取值范围为m>3.故选:A.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.15.【分析】由∠O=30°可分两种情况:若∠A为钝角,则90°<∠A<180°﹣30°,可直接求解∠A的范围;若∠A为锐角,则90°<∠A<180°﹣30°,再根据三角形外角的性质可求解.【解答】解:∵∠O=30°,若∠A为钝角,则90°<∠A<180°﹣30°,即90°<∠A<150°,若∠A为锐角,则0°<∠APN<90°,∵∠APN=∠O+∠A,∴∠A+30°<90°,∴0°<∠A<60°,综上,∠A的取值范围为0°<∠A<60°或90°<∠A<150°,故选:D.【点评】本题主要考查三角形的内角和定理,三角形外角的性质,分类讨论是解题的关键.16.【分析】根据三角形外角的性质得出∠APC=∠PEC+∠PCE,再证得∠PEC=90°,∠PCE=90°﹣∠ABC,即可得出∠APC+∠ABC=180°,从而对甲的结论进行判断;先根据角平分线的定义得出∠QAC =,∠QCA=,再根据三角形内角和定理得出∠AQC=180°﹣(∠QAC+∠QCA)=90°+,结合甲的结论即可判断乙的结论.【解答】解:∵AE⊥BC,∴∠PEC=90°,∵CD⊥AB,∴∠CDB=90°,∴∠PCE+∠ABC=90°,即∠PCE=90°﹣∠ABC,∵∠APC是△CPE的一个外角,∴∠APC=∠PEC+∠PCE=90°+90°﹣∠ABC=180°﹣∠ABC,即∠APC+∠ABC=180°,故甲的结论正确;∵AQ平分∠CAE,CQ平分∠ACD,∴∠QAC=,∠QCA=,在△AQC中,∠AQC=180°﹣(∠QAC+∠QCA)=180°﹣=180°﹣=90°+,∵∠APC=180°﹣∠ABC,∴∠AQC=90°+=180°﹣,即∠AQC+=180°,故乙的结论正确;故选:A.【点评】本题考查了三角形的内角和,三角形外角的性质,角平分线的定义,熟练掌握三角形内角和定理是解题的关键.二、填空题:(本大题有4个小题,每小题3分,共12分.)17.【分析】根据题意,可以用不等式表示出m与10的和不大于m的一半.【解答】解:m与10的和不大于m的一半,用不等式表示为m+10≤m,故答案为:m+10≤m.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.18.【分析】先根据多项式乘多项式法则把(x+a)(x2﹣3x+c)展开,然后根据展开式中不含x2和x项,列出关于a,c的方程组,解方程组即可.【解答】解:(x+a)(x2﹣3x+c)=x3﹣3x2+cx+ax2﹣3ax+ac=x3+(a﹣3)x2+(c﹣3a)x+ac,∵(x+a)(x2﹣3x+c)的展开式中不含x2和x项,∴,由①得:a=3,把a=3代入②得:c=9,∴方程组的解为:,故答案为:3,9.【点评】本题主要考查了整式的乘法运算,解题关键是熟练掌握多项式乘多项式法则.19.【分析】先利用两直线平行,同旁内角互补可得∠4=58°,再利用两直线平行,同位角相等可得∠1=∠3=45°,然后利用角的和差关系进行计算,即可解答.【解答】解:如图:∵BD∥EF,∴∠4=180°﹣∠2=180°﹣120°=60°,∵AB∥CD,∴∠1=∠3=45°,∴∠3+∠4=45°+60°=105°,故答案为:105°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.【分析】根据二元一次方程组的解法以及x+y=0进行计算即可.【解答】解:∵x,y的值互为相反数,∴x+y=0,∵3x+y=k+3,即2x+x+y=k+3,∴2x=k+3,即x=,又∵2x+3y=k,即2x+2y+y=k,∴y=k,又∵x+y=0,即+k=0,解得k=﹣1,故答案为:﹣1.【点评】本题考查二元一次方程组的解,理解二元一次方程组解的定义,掌握二元一次方程组的解法是正确解答的关键.三、解答题(本大题有7个小题,共56分.解答应写出文字说明、证明过程或演算步骤)21.【分析】(1)利用平方差公式进行分解即可;(2)先提公因式,再利用完全平方公式分解即可;(3)利用平方差公式进行求解较简便;(4)先利用整式的相应的法则对式子进行化简,再代入相应的值运算即可;(5)利用解一元一次不等式组的方法进行求解即可.【解答】解:(1)(3m﹣1)2﹣9=(3m﹣1+3)(3m﹣1﹣3)=(3m+2)(3m﹣4);(2)3a2b﹣12ab+12b=3b(a2﹣4a+4)=3b(a﹣2)2;(3)101×99=(100+1)×(100﹣1)=1002﹣12=10000﹣1=9999;(4)(a+b)2﹣a(a+b)﹣b2=a2+2ab+b2﹣a2﹣ab﹣b2=ab,当a=2,b=﹣3时,原式=2×(﹣3)=﹣6;(5),解不等式①得:x>3,解不等式②得:x>5,∴不等式组的解集为:x>5.【点评】本题主要考查整式的混合运算,因式分解,解一元一次不等式组,解答的关键是对相应的运算法则的掌握.22.【分析】(1)根据平移的性质作图可得△A'B'C',根据三角形的中线和高的定义画图可得C′H和C′G.(2)求出四边形BCC'B'的面积即可.【解答】解:(1)如图,△A'B'C',C′H和C′G即为所求.(2)线段BC所扫过的面积为S四边形BCC'B【点评】本题考查作图﹣平移变换、三角形的角平分线、中线和高,熟练掌握平移的性质、三角形的中线和高的定义是解答本题的关键.23.【分析】(1)计算出(2n+1)2﹣(2n﹣1)2=8n,即可知两个连续正奇数构造的“正巧数”能被8整除.(2)根据(1)可知,“正巧数”可以用8n表示,由此计算即可.【解答】解:(1)这两个连续正奇数构造的“正巧数”能被8整除.理由:(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n,∵8n能被8整除,∴两个连续正奇数构造的“正巧数”能被8整除.(2)根据(1)可知,“正巧数”可以用8n表示,∴50到80之间(不含50,80)所有的“正巧数”有:8×7=56,8×8=64,8×9=72,故答案为:56,64,72.【点评】本题考查的是因式分解的应用,熟练掌握因式分解的方法是解题的关键.24.【分析】(1)结合图形的特点及正方形、长方形的面积公式进行求解即可;(2)结合(1)进行求解即可;(3)先表示出S3,再结合条件求解即可.【解答】解:(1)由题意得:,;(2)=a2+b2﹣ab=(a+b)2﹣3ab,∵a+b=8,ab=14,∴S1+S2=82﹣3×14=64﹣42=22;③=∵,∴S3=10.【点评】本题主要考查整式的混合运算,完全平方公式的几何背景,解答的关键是对相应的运算法则的掌握.25.【分析】先根据平行线的性质,得出∠ODC=∠BOD=32°,再根据∠EOF=90°,即可得到∠AOE =58°,再根据平行线的性质,即可得到∠AND的度数,进而得出∠ANM的度数.【解答】解:∵扶手AB与底座CD都平行于地面,∴AB∥CD,∴∠ODC=∠BOD=32°,又∵∠EOF=90°,∴∠AOE=58°,∵DM∥OE,∴∠AND=∠AOE=58°,∴∠ANM=180°﹣∠AND=122°.【点评】本题主要考查了平行线的性质的运用,掌握两直线平行,内错角相等;两直线平行,同位角相等是解题的关键.26.【分析】(1)设每辆甲型大巴的载客量是x人,每辆乙型大巴的载客量是y人,根据“租用3辆甲型大巴、5辆乙型大巴共可载客435人;租用6辆甲型大巴、2辆乙型大巴共可载客390人”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用甲型大巴m辆,则租用乙型大巴(8﹣m)辆,根据此次游玩租车的总租金计划不超过4600元,可列出关于m的一元一次不等式,解之可得出m的取值范围,取其中的最小值,再代入45m+60(8﹣m)中,即可得出结论.【解答】解:(1)设每辆甲型大巴的载客量是x人,每辆乙型大巴的载客量是y人,根据题意得:,解得:.答:每辆甲型大巴的载客量是45人,每辆乙型大巴的载客量是60人;(2)设租用甲型大巴m辆,则租用乙型大巴(8﹣m)辆,根据题意得:500m+700(8﹣m)≤4600,解得:m≥5,∴m的最小值为5,此时45m+60(8﹣m)=45×5+60×(8﹣5)=405.答:最少租用甲型大巴5辆,此时可装载405名师生去游玩.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.27.【分析】(1)根据平行线的性质,平角的定义进行计算即可;(2)根据平行线的性质以及图形中角的和差关系进行计算即可;(3)由(2)的方法即可得出答案;拓展延伸:根据题意确定旋转角的度数,再求其所用时间即可.【解答】解:(1)如图1,∵AB∥CD,∴∠2=∠A1B1D,∵∠1+∠A1B1A+∠A1B1D=180°,∴∠1+∠2=180°﹣60°=120°,∵∠1=3∠2,∴3∠2+∠2=120°,∴∠2=30°,故答案为:30;(2)结论:∠C1B1C+∠AA1C1=90°,理由:如图2,过点C1作C1M∥AB,∵AB∥CD,∴AB∥CD∥C1M,∴∠AA1C1=∠A1C1M,∠C1B1C=∠MC1B1,∵∠A1C1M+∠MC1B1=90°,∴∠C1B1C+∠AA1C1=90°;(3)由(2)的方法可得,∠AA1B1+∠B1C1C=∠B1=60°,∴∠B1C1C=60°﹣α;拓展延伸:当A1C1在CD的上方,且A1C1⊥CD时,B1C1与CD重合,∴旋转角为60°﹣α,旋转所用的时间为=(4﹣)秒,当A1C1在CD的下方,且A1C1⊥CD时,∴旋转角为60°﹣α+180°=240°﹣α,旋转所用的时间为=(16﹣)秒,答:旋转的时间为秒或秒.【点评】本题考查平行线的性质,三角形内角和定理,掌握平行线的性质以及三角形内角和定理是正确解答的关键。
河北省2022-2023学年度七年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分)在等式y=kx+b中,当x=1时,y=﹣2;当x=﹣1时,y=﹣4.则k=,b=.2. (1分)用不等式表示:5与x的和比x的3倍小。
3. (1分) (2020七下·宁波期中) 如图,直线 AB、CD 被直线 EF 所截,当满足条件时(只需写出一个你认为合适的条件),AB∥CD.4. (1分)若5+ 的整数部分为a,小数部分为b,则a=,b=.5. (1分) (2018八上·盐城月考) 在平面直角坐标中,点M(-2,3)在象限.6. (1分) (2020八下·武城期末) 已知当1<a<2时,代数式 -|1-a|的值是。
7. (1分) (2016九上·重庆期中) 今年3月12日植树节活动中,某单位的职工分成两个小组植树,已知他们植树的总数相同,均为100多棵,如果两个小组人数不等,第一组有一人植了6棵,其他每人都植了13棵;第二组有一人植了5棵,其他每人都植了10棵,则该单位共有职工人.8. (1分) (2018九上·思明期中) 在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(2,3)的对应点为A1 ,则A1的坐标为.9. (1分) (2020八上·无锡期中) 如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC 的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC 为度.10. (1分) (2017七下·乌海期末) 如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P的坐标为.二、单选题 (共10题;共20分)11. (2分) (2020七下·大新期末) 下列计算正确的是()A .B .C .D .12. (2分) (2021七下·玉田期末) 下列是二元一次方程的是()A . 3x﹣5=xB . 2x﹣5y=x2C . 2x+D . 2x=3y13. (2分) (2017七下·昌平期末) 若a<b ,则下列各式中不正确的是()A .B .C .D .14. (2分) (2019八上·余杭期中) 不等式x≥1的解集在数轴上表示为()A .B .C .D .15. (2分)下面调查中,适合采用普查的是()A . 调查全国中学生心理健康现状B . 调查你所在的班级同学的身高情况C . 调查我市食品合格情况D . 调查南京市电视台《今日生活》收视率16. (2分) (2020七下·温州期中) 二元一次方程的一个解为()A .B .C .D .17. (2分) (2017七下·蒙阴期末) 在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是()A . (﹣2,3)B . (﹣1,2)C . (0,4)D . (4,4)18. (2分)(2018·重庆) 若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程 + =1有整数解,则满足条件的所有a的值之和是()A . ﹣10B . ﹣12C . ﹣16D . ﹣1819. (2分) (2021九上·岑溪期末) 甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔相遇一次,若同向而行,则每隔相遇一次,已知甲比乙跑得快,设甲每秒跑米,乙每秒跑米,则可列方程为()A .B .C .D .20. (2分)(2021·怀化) 如图,在中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A .B . AD一定经过的重心C .D . AD一定经过的外心三、综合题 (共8题;共85分)21. (10分) (2019七下·呼和浩特期末) 解方程组:(1);(2)22. (15分) (2019八上·历城期中) 如图所示,在平面直角坐标系中,已知、.(1)在平面直角坐标系中画出;(2)的面积为.23. (5分)已知一次函数y=(m+2)x+m+3的图象与y轴交点在x轴上方,且y随x的增大而减小,求m的取值范围.24. (15分) (2019八下·卢龙期中) “校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.25. (5分)(2020·资兴模拟) 某工厂为了扩大生产规模,计划购买5台两种型号的设备,总资金不超过28万元,且要求新购买的设备的日总产量不低于24万件,两种型号设备的价格和日产量如下表.为了节约资金,问应选择何种购买方案?A B价格(万元/台)65日产量(万件/台)6426. (10分) (2020七下·营山期末)如图1,已知PQ//MN,且∠BAM=2∠BAN.(1)求∠BAN的度数;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动多少秒?两射线互相平行.(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同(2),在射线AM到达AN之前,若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系:若改变,请说明理由.27. (15分) (2019七下·江岸期末) 某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过元,并且购买型课桌凳的数量不能超过型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种购买方案?怎样的方案使总费用最低?并求出最低消费.28. (10分) (2018八上·张家港期中) 如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒 (0<t<13).(1)①点D的坐标是;②当点P在AB上运动时,点P的坐标是(用t表示);(2)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;(3)当点P在OA上运动时,连接BP,将线段BP绕点P逆时针旋转,点B恰好落到OC的中点M处,则此时点P 运动的时间t=秒.(直接写出参考答案)参考答案一、填空题 (共10题;共10分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、单选题 (共10题;共20分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、综合题 (共8题;共85分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-3、考点:解析:。
2021-2022学年七年级下学期期末数学模拟试卷一.选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 解:A 、是轴对称图形,又是中心对称图形,故此选项正确;B 、不是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选:A .2.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y +1=12y ﹣□,小明想了想后翻看了书后的答案,此方程的解是y =−53,然后小明很快补好了这个常数,这个常数应是( )A .−32B .32C .52D .2解:设□表示的数是a ,把y =−53代入方程2y +1=12y ﹣a 得:−103+1=−56−a , 解得:a =32,即这个常数是32, 故选:B .3.设三角形三边之长分别为3,8,2a ,则a 的取值范围为( )A .1.5<a <4.5B .2.5<a <5.5C .3.5<a <6.5D .4.5<a <7.5解:由题意,得8﹣3<2a <8+3,即5<2a <11,解得:2.5<a <5.5.故选:B .4.|﹣4|=( )A .﹣4B .﹣2C .4D .2解:|﹣4|=4,故选:C . 5.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 解:∵正六边形的角度为120°,正三角形的内角为60°,∴120x +60y =360°,当x =2时,y =2,即正三角形和正六边形的个数之比为1:1;当x =1时,y =4,即正三角形和正六边形的个数之比为4:1.故选:D .6.已知等腰三角形两边长是8cm 和4cm ,那么它的周长是( )A .12cmB .16cmC .16cm 或20cmD .20cm解:当腰为4cm 时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm 时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm .故选:D .7.关于x 、y 的方程组{x +my =5x −y =3的解是{x =1y =■,其中y 的值被盖住了,不过仍能求出m ,则m 的值是( )A .﹣1B .1C .2D .﹣2解:把x =1代入x ﹣y =3得:y =﹣2,把x =1,y =﹣2代入x +my =5得:1﹣2m =5,解得:m =﹣2,故选:D .8.如图图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C.D.解:A、△DEF由△ABC平移而成,故本选项正确;B、△DEF由△ABC对称而成,故本选项错误;C、△DEF由△ABC旋转而成,故本选项错误;D、△DEF由△ABC对称而成,故本选项错误.故选:A.9.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.10.若一个正多边形的每个内角度数是方程﹣2x+140=﹣130的解,则这个正多边形的边数是()A.9B.8C.7D.6解:解方程﹣2x+140=﹣130得x=135°,设这个正多边形的边数为n,根据题意可得:(n﹣2)•180=135n,解得:n=8.故选:B .二.填空题(共5小题,满分15分,每小题3分)11.如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是 20° .解:∵△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,∴∠AOC =∠BOD =35°,且∠AOD =90°,∴∠BOC =20°,故答案为20°12.不等式组{12x −1≤05x +6>−x的所有整数解的和是 3 . 解:{12x −1≤0①5x +6>−x②∵解不等式①得:x ≤2,解不等式②得:x >﹣1,∴不等式组的解集是﹣1<x ≤2,∴不等式组的所有整数解是0,1,2,和为0+1+2=3,故答案为:3.13.一个多边形的内角和是720°,这个多边形的边数是 6 .解:∵多边形的内角和公式为(n ﹣2)•180°,∴(n ﹣2)×180°=720°,解得n =6,∴这个多边形的边数是6.故答案为:6.14.如图,在△ABC 中,∠A =45°,∠B =60°,则外角∠ACD = 105 度.解:∵∠A =45°,∠B =60°,∴∠ACD =∠A +∠B =45°+60°=105°.故答案为:105.15.如图,蚂蚁点M 出发,沿直线行走4米后左转36°,再沿直线行走4米,又左转36°,……;照此走下去,他第一次回到出发点M ,一共行走的路程是 40米 .解:∵每次小明都是沿直线前进4米后向左转36°,∴它走过的图形是正多边形,边数n =360°÷36°=10,∴它第一次回到出发点A 时,一共走了4×10=40米.故答案为:40米.三.解答题(共8小题,满分75分)16.(10分)解方程(组)(1)2x+13−5x−16=1(2){x −4y =−12x +y =16. 解:(1)2x+13−5x−16=1,去分母得:2(2x +1)﹣(5x ﹣1)=6,去括号得:4x +2﹣5x +1=6,移项得:4x ﹣5x =6﹣2﹣1,合并同类项得:﹣x =3,系数化为1得:x =﹣3;(2){x −4y =−1①2x +y =16②, ①+②×4得:9x =63,∴x =7,把x =7代入①得:7﹣4y =﹣1,解得:y =2,∴原方程组的解为{x =7y =2. 17.(10分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)15−3x 2≥7−x ;(2){2(x +1)≥0①1−x 3>x−36② 解:(1)去分母得:15﹣3x ≥14﹣2x ,移项得:﹣3x +2x ≥14﹣15,合并得:﹣x ≥﹣1,解得:x ≤1,数轴表示如下:(2)解不等式①得:x ≥﹣1,解不等式②得:x <3,∴不等式组的解集为﹣1≤x <3,数轴表示如下:.18.(9分)如图,平面上有点A 、点O 和直线PQ ,其中网格正方形的边长为1个单位,在网格中完成下列画图.(不必写出画法,保留画图痕迹,并写出结论)(1)将点A 向右平移3个单位可到达点B ,再向上平移2个单位可到达点C ,标出点B 、点C ,并联结AB 、BC 和AC ,画出三角形ABC ;(2)画出三角形ABC 关于直线PQ 的轴对称的图形;(3)画出三角形ABC 关于点O 的中心对称的图形.结论:(1) △ABC 为所作 ;(2)三角形 A ′B ′C ′ 是三角形ABC 关于直线PQ 的轴对称的图形;(3)三角形A″B″C″是三角形ABC关于点O的中心对称的图形.解:(1)如图,△ABC为所作;(2)如图,△A′B′C′是三角形ABC关于直线PQ的轴对称的图形;(3)三角形A″B″C″是三角形ABC关于点O的中心对称的图形.故答案为△ABC为所作;A′B′C′;A″B″C″.19.(9分)如图,在△ABC中,D、E为AB、BC上的点,且DE∥AC,EF平分∠DEB交AB于F,若∠B=42°,∠A=76°,求∠DFE的度数.解:∵∠B =42°,∠A =76°,∴∠C =180°﹣∠B ﹣∠A =62°,∵DE ∥AC ,∴∠DEB =∠C =62°,∵EF 平分∠DEB ,∴∠DEF =∠FEB =12∠DEB =31°,∴∠DFE =∠B +∠BEF =73°.答:∠DFE 的度数为73°.20.(9分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)现有38张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解:(1)侧面个数:6x +4(38﹣x )=(2x +152)个.底面个数:5(38﹣x )=(190﹣5x )个.(2)由题意,得2x+1523=190−5x 2. 解得:x =14.2x+1523=60(个).答:若裁剪出的侧面和底面恰好全部用完,能做60个盒子.21.(9分)某中学为丰富学生的校园生活,准备一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需170元,购买2个足球和5个篮球共需260元.(1)购买一个足球、一个篮球各需多少元?(提示:列方程组解答)(2)根据该中学的实际情况,需一次性购买足球和篮球共46个,要求购买足球和篮球的总费用不超过1480元,这所中学最多可以购买多少个篮球?(提示:列不等式解答) 解:(1)设足球单价x 元、篮球单价为y 元,根据题意得:{3x +2y =1702x +5y =260, 解得:{x =30y =40. 答:足球单价30元、篮球单价40元;(2)设最多买篮球m 个,则买足球(46﹣m )个,根据题意得:40m +30(46﹣m )≤1480,解得:m ≤10,∵m 为整数,∴m 最大取10,答:这所中学最多可以买10个篮球.22.(9分)探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图②,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.解:(1)∵∠ADC 是△ABD 的外角,∴∠ADC =∠BAD +∠B =105°,∠DAE =∠BAC ﹣∠BAD =30°,∴∠ADE =∠AED =75°,∴∠CDE =105°﹣75°=30°;(2)∠BAD =2∠CDE ,理由如下:设∠BAD =x ,∴∠ADC =∠BAD +∠B =45°+x ,∠DAE =∠BAC ﹣∠BAD =90°﹣x ,∴∠ADE =∠AED =90°+x 2, ∴∠CDE =45°+x −90°+x 2=12x , ∴∠BAD =2∠CDE ;(3)设∠BAD =x ,∴∠ADC =∠BAD +∠B =∠B +x ,∠DAE =∠BAC ﹣∠BAD =180°﹣2∠C ﹣x ,∴∠ADE =∠AED =∠C +12x ,∴∠CDE =∠B +x ﹣(∠C +12x )=12x ,∴∠BAD =2∠CDE .23.(10分)现对x ,y 定义一种新的运算T ,规定:T (x ,y )=ax+by+c x+y (其a ,b ,c 为常数且abc ≠0).例如:T (1,0)=a+1+b×0+c 1+0=a +c . 已知T (3,﹣1)=2,T (2,3)=2.8,T (1,1)=3.(1)求a ,b ,c 的值:(2)求关于m 的不等式组{T(4m ,5−4m)<3T(2m ,3−2m)>1的整数解. 解:(1)由题意,得:{ a×3+b×(−1)+c 3+(−1)=2a×2+b×3+c 2+3=2.8a×1+b×1+c 1+1=3,即{3a −b +c =42a +3b +c =14a +b +c =6, 解这个三元一次方程组,得{a =2b =3c =1;(2)由题意,得{2×4m+3(5−4m)+15<32×2m+3(3−2m)+13>1, 解这个不等式组,得:14<m <72,第 11 页 共 11 页∵大于14且小于72的整数有1,2,3. ∴关于m 的不等式组的整数解有1,2,3.。