牛顿应用 整体隔离 - 复制
- 格式:ppt
- 大小:4.02 MB
- 文档页数:31
针对训练 整体与隔离 周 11.26.2012 一、整体法、隔离法理论知识:1 整体法:即以几个物体构成的整个系统为研究对象进行分析求解的方法。
整体法分析时,对整体内部各个物体间的相互作用力不予考虑。
而无论整体内部各物体的加速度是否相同,一般都可用整体法来分析。
2、隔离法:把研究对象从周围环境中隔离,然后分析周围哪些“物体”对它施加有力的作用。
3、通常在求解外力对系统的作用力时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在处理较复杂问题时,整体法与隔离法并用。
二、共点力平衡下的整体法与隔离法 1,质量为M 、倾角为θ的斜面体上一个质量为m 的物体正沿斜面匀速下滑,此过程中斜面体保持静止,求: (1)物体与斜面间的动摩擦因数。
(2)地面对斜面体的摩擦力。
2 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用3 在光滑的水平面上,质量为m 和M 的两物体物体叠放在一起,在水平力F 的作用下共同向右运动,已知两物体间的动摩擦因数为μ,求:(1) 两物体的加速度有多大?(2) 两物体间的摩擦力大小4 如图所示,光滑水平地面上两个物体A 和B 紧靠在一起,在水平推力F 的作用下运动,FAB 代表A 、B 间的作用力,则( )A .若两物体质量相同,则FAB =F B .若两物体质量相同,则FAB =F/2C .无论两物体质量关系如何,均有FAB =FD .无论两物体质量关系如何,均有FAB =F/25 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示,已知人的质量为70kg ,吊板的质量为10kg ,绳及定滑轮的质量、滑轮的摩擦均可不计。
牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。
牛顿第二定律的理解与方法应用牛顿第二定律的理解与方法应用一、牛顿第二定律的理解。
1、矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。
其实牛顿第二定律的表达形式就是矢量式。
2、瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
3、同一性(同体性)中各物理量均指同一个研究对象。
因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
4、相对性在中,a是相对于惯性系的而不是相对于非惯性系的即a是相对于没有加速度参照系的。
5、独立性理解一:F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。
牛顿第二定律分量式为:。
二、方法与应用1、整体法与隔离法(同体性)选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。
解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。
但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。
2、牛顿第二定律瞬时性解题法(瞬时性)牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。
解决这类问题要注意:(1)确定瞬时加速度的关键是正确确定瞬时合外力。
(2)当指定某个力变化时,是否还隐含着其它力也发生变化。
(3)整体法、隔离法的合力应用。
3、动态分析法4、正交分解法(独立性)(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。
突破9牛顿运动定律的应用之用整体法、隔离法巧解连接体问题1.连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
学科,网特别提醒(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
3.连接体问题的分析方法(1)分析方法:整体法和隔离法。
(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。
4.整体法与隔离法的选用方法(1)整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。
当系统内物体的加速度相同时:a m m m F n )...(21+++=;否则n n a m a m a m F +++=...2211。
(2)隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例1】如图所示,两个质量分别为m1=3kg、m2=2kg的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。
第三章牛顿运动定律整体法与隔离法连接体问题一、整体法与隔离法在实际问题中,常常遇到几个相互联系的、在外力作用下一起运动的物体系。
因此,在解决此类问题时,必然涉及选择哪个物体为研究对象的问题。
方法研究对象选择原则整体法将一起运动的物体系作为研究对象求解物体系整体的加速度和所受外力隔离法将系统中的某一物体为研究对象求解物体之间的内力二、内力和外力1.系统:相互作用的物体称为系统.系统由两个或两个以上的物体组成.2.系统内部物体间的相互作用力叫内力,系统外部物体对系统内物体的作用力叫外力三、系统牛顿第二定律牛顿第二定律不仅对单个质点适用,对系统也适用,并且有时对系统运用牛顿第二定律要比逐个对单个物体运用牛顿第二定律解题要简便许多,可以省去一些中间环节,大大提高解题速度和减少错误的发生。
对系统运用牛顿第二定律的表达式为:…..即系统受到的合外力(系统以外的物体对系统内物体作用力的合力)等于系统内各物体的质量与其加速度乘积的矢量和。
按坐标系分解后,可以得到:∑F外x=m1a1x+m2a2x+…+m n a n x∑F外y=m1a1y+m2a2y+…+m n a n y 若系统内物体具有相同的加速度,表达式为:四、整体法与隔离法的综合应用实际上,不少问题既可用“整体法”也可用“隔离法”解,也有不少问题则需要交替应用“整体法”与“隔离法”。
对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
因此,方法的选用也应视具体问题而定。
一般应用的原则:一、整体法与隔离法【例1】如图所示,竖直放置在水平面上的轻质弹簧上叠放着两物块A、B,A、B的质量均为2kg,它们处于静止状态,若突然将一个大小为10N、方向竖直向下的力施加在物块A上,则此瞬间,A对B的压力的大小为(取g=10m/s2)A.5N B.15NC.25N D.35N变式训练1、如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。
二、连接体问题对于连结体问题,通常用隔离法,但有时也可采用整体法。
如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。
对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。
因此,方法的选用也应视具体问题而定。
一般应用的原则:【例1】相同材料的物块m和M用轻绳连接,在M上施加恒力F,使两物块作匀加速直线运动,求在下列各种情况下物块间绳子的张力T。
(1)地面光滑,T=?(2)地面粗糙,T=?(3)竖直加速上升,T=?(4)斜面光滑,加速上升,T=?变式训练1.如图所示,质量分别为m A、m B的A、B两物块用轻线连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面的动摩擦因数均为μ,为了增加轻线上的张力,可行的办法是()A.减小A物的质量B.增大B物的质量C.增大倾角θD.增大动摩擦因数μ【例2】如图3-5-3所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力.变式训练2:.光滑水平桌面上有一链条,共有(P+Q)个环,每个环的质量均为m。
链条右端受到一水平拉力F,如右图所示,则从右向左数,第P环对第(P+1)环的拉力是()A.F B.(P+1)F C. QF/(P+Q) D. PF/(P+Q)【例3】(2004年全国)如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。
试求在两个物块运动过程中轻线的拉力T。
变式训练3、如图所示,在光滑的水平地面上,有两个质量相等的物体,中间用劲度系数为k 的轻质弹簧相连,在外力作用下运动,已知F1>F2,当运动达到稳定时,弹簧的伸长量为()A.(F1-F2)/k B.(F1-F2)/2kC.(F1+F2)/2k D.(F1+F2)/k【例4】如图,在光滑的水平桌面上有一物体A,通过绳子与物体B 相连,假设绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长。
应用牛顿第二定律的几个典型模型牛顿第二定律即物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma(其中的F和m、a必须相对应)。
因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。
明确力和加速度方向,也是正确列出方程的重要环节。
一、应用牛顿第二定律解题的常用方法牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。
联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
(一)应用牛顿第二定律解题的常用方法:1.合成法与分解法牛顿第二定律F=ma是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。
2.整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.(二)应用牛顿第二定律解题的一般步骤:(1)对象和环境。
可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。
所谓环境是指物体所接触到的所有可能对物体产生力的面或线。
(2)画受力分析图和过程草图。